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1. Introduction

A discrete dynamical system consists of a pair (X,T ) in which X is a set, and T : Z+ × X → X is
a function which describes the evolution of elements of X in discrete time steps. It is known that, if
the evolution of the system is reversible in time, then the evolution function can be treated as a group
acting over X. For example, consider the joint action of two homeomorphisms T1 and T2 of the same
space X with T1 ◦ T2 = T2 ◦ T1, then the joint action of T1 and T2 can be viewed as a Z2-action over X.
A natural question is to study a countable or finitely generated group acting over the space.

Generally, these systems could be difficult to elucidate. One of the most important tools is to par-
tition the set X into finitely many parts and subsequently code each element of the set as the sequence
of partitions visited by its orbit. This technique is nowadays known as “symbolic dynamics,” and the
first study dedicated to this technique is referred to Hedlund and Morse [1]. In other words, symbolic
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dynamics is the discipline which studies dynamical systems obtained through codings. These objects
are called shift spaces or shifts. For instance, studying symbolic dynamical systems helps for the in-
vestigation of hyperbolic topological dynamical systems. The interested reader can consult standard
literature such as [2–6].

LetA be a finite alphabet and G a group. A configuration is a function from G toA, and a pattern
is a function from a finite subset of G toA. A shift space is a subset X ⊆ AG consists of configurations
which avoid patterns from some set F . We denote such a space by X = XF . A shift space is called a
shift of finite type (SFT) if F is a finite set. Shifts of finite type have been thoroughly studied in the case
of Z-actions, most of the core results can be found in the celebrated book by Lind and Marcus [7]. In
particular, SFTs are characterized by graphs (hence they are nonempty except their graphs containing
no bi-infinite walks), and they always contain periodic configurations. What is more, their topological
entropies correspond to nonnegative rational multiples of logarithms of Perron numbers [8]. However,
the investigation of SFTs is rife for the case of Zd-actions when d ≥ 2 [9–13].

Several properties which are seen in one-dimensional SFTs no longer hold in higher dimensions.
For instance, it is even undecidable if an SFT is nonempty [9]; there exist two-dimensional SFTs
which contain no periodic cinfigurations [9,14,15]; different kinds of mixing properties are introduced
for examining the existence and denseness of periodic configurations [10]. For the set of numbers
achieved as topological entropies of two-dimensional shifts of finite type, the groundbreaking theorem
of Hochman and Meyerovitch [16] indicates that they are right recursively enumerable.

In the recent years, shift spaces defined on monoids or groups have also gained attention, see [17–
25] for instance. Whenever G is a free monoid, many properties hold again. For example, the conjugacy
between two irreducible G-SFTs is decidable [17]; the nonemptiness, extensibility, and the existence
and denseness of periodic configurations are decidable for G-SFTs [19,21]. Aside from the qualitative
behavior of G-SFTs, the phenomena from the computational perspective are also fruitful. Petersen and
Salama [26] reveal an algorithm to estimate the entropy of a hom-shift [27]. (A hom-shift, roughly
speaking, is a G-SFT which is isotropic and symmetric; alternatively, each direction of a hom-shift
shares the same rule.) What is more, there are fruitful results about computational aspects of shifts on
finitely generated groups [23, 28–32].

This paper studies the properties of G-SFTs for the case where G is a finitely generated free group
via topological degree. The topological degree of a G-shift reflects the idea of entropy dimension,
which has been extensively investigated for zero entropy systems over Zd-actions [33–37]. The impor-
tance of zero entropy systems has been revealed recently since they exhibit diverse complexities. For
example, Katok and Thouvenot revealed a Z2-action in [38] which has zero directional entropy in each
direction but

lim sup
n→∞

1
nα

H(
∨

(i, j)∈Cn

σ−(i, j)P) > 0

for any 0 < α < 2, where Cn denotes the square of size n × n and P is some finite measurable parti-
tion. Another motivation of elucidating the topological degrees of G-shifts is that they are conjugacy-
invariant while the topological entropies∗ (defined in (3.1)) are not when G is non-amenable [39].

After demonstrating the conjugacy-invariance of topological degree (Proposition 3.1) and the fact
∗When G is a countable amenable group and X ⊆ AG is a subshift. The topological entropy of X is defined as the growth rate of

B fn (X) with respect to fn, where ( fn)n∈N is any Følner sequence. When G = Zd, one can pick fn = {0, 1, . . . , n − 1}d the n-ball for n ∈ N.
The same idea extends to finitely generated free groups.

AIMS Mathematics Volume 5, Issue 5, 5121–5139.



5123

that every G-SFT is topologically conjugated to a vertex shift (Proposition 2.5), where a vertex shift is
a G-SFT characterized by a set of matrices, we reveal that the calculation of topological degree (of an
SFT) is equivalent to solving a system of nonlinear recurrence equations (Proposition 4.1 and Theorem
5.1). Finally, the algorithm is derived by decomposing the system into several subsystems (Theorem
4.7). Section 6 extends the study to a class of finitely generated groups.

2. Shift spaces and higher block shifts

Let Fd be the free group on d generators with basis Σd = {s1, . . . , sd} for some d ∈ N. A word in Fd

is a product of the form

w = so1
i1

so2
i2
· · · son

in
, where 1 ≤ i j ≤ d, o j ∈ {−1, 1}, n ≥ 0. (2.1)

Herein, the empty word (or the empty product), such as n = 0, refers to the identity element eFd ∈ Fd.
Each element of Fd has the unique expression of the form (2.1) in the sense that so j

i j
so j+1

i j+1
, eFd . A

product of this form is called the minimal presentation. Suppose g is an element of Fd. The length of
g is defined as the number of elements of its minimal presentation; that is,

|g| = min{n : g = so1
i1

so2
i2
· · · son

in
, 1 ≤ i j ≤ d, o j ∈ {−1, 1}, n ≥ 0}.

It follows that eFd is the unique word of length 0. For the simplification, we denote by e the identity
element of Fd for the rest of this paper unless otherwise stated.

LetA = {1, 2, . . . , k} be a finite alphabet. A configuration (or a coloring) is a function x : Fd → A

and a pattern is a function from a finite subset of Fd to A. For each n ∈ N, denote by En = {g ∈ Fd :
|g| ≤ n} the n-ball in G centered at e. A pattern is called an n-block if its domain (or support) is En

for some n ≥ 0. For each g ∈ Fd, xg := x(g) denotes the label attached to the Cayley graph of Fd at
the vertex g. The full shift AFd consists of all configurations from Fd toA, and the (right-)shift action
σ : Fd × A

Fd → AFd is defined as (σgx)g′ := σ(g, x)g′ = xgg′ . For H ⊂ Fd and x ∈ AFd , we denote by
x|H the restriction of x on H given by (x|H)g = xg for g ∈ H.

Remark 2.1. Notably, there are four possibilities to define σ as a group action; one could either define
(σgx)h as xg−1h, xgh, xhg−1 , or xhg. The first and the last define left group actions while the other two are
right group actions. From a theoretical point of view, the choice is arbitrary. We choose the second one
so that σ corresponds to the left shift in Z.

Suppose x ∈ AFd is a configuration and p : H → A is a pattern. We say x accepts p (at g) or p
appears in x (at g) if there exists g ∈ Fd such that σgx|H = p, i.e., xgh = ph for all h ∈ H. Let P be the
set of all possible patterns and F ⊆ P. A shift space over Fd withA is defined as follows.

Definition 2.2. Let Fd be a free group generated by Σd = {s1, . . . , sd} andA a finite alphabet. Suppose
P is the set of all possible configurations. A set of configurations X ⊆ AFd is called a shift space if
there exists F ⊆ P such that

X = XF = {x ∈ AFd : no p ∈ P appears in x}.

For any two configurations x, y ∈ AFd , define d : AFd ×AFd → R as

d(x, y) =

k−n, n = min{|g| : xg , yg} < ∞;
0, otherwise.
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Then d is a metric onAFd and is similar to the one defined in one-dimensional shift spaces. A straight-
forward elucidation demonstrates that every shift space X is topologically closed and shift invariant;
that is, σgX ⊆ X for all g ∈ Fd. A shift space X is called a shift of finite type (SFT) if X = XF for some
finite set F ⊆ P.

Suppose X ⊆ AFd and Y ⊆ BFd are two shift spaces with finite alphabets A and B, respectively. A
transformation φ : X → Y is called a sliding block code if there exists a block map Φ : Γm(X) → B
for some m ≥ 0 such that (φx)g = Φ(x|gEm) for all g ∈ Fd, where Γm(X) = {x|Em : x ∈ X} and
gEm = {gg′ : |g′| ≤ m}. For the case where B = Γm(X), the sliding block code φ is called the mth higher
block code. It is not difficult to see that the well-known Curtis-Lyndon-Hedlund theorem in classical
symbolic dynamical systems remains true for shift spaces over Fd. More explicitly, a transformation
φ : X → Y is a sliding block code if and only if φ is continuous and φ ◦σg = σg ◦ φ for all g ∈ Fd [40].

A sliding block code φ : X → Y is called an embedding code (resp. a factor code) if it is one to one
(resp. onto). Furthermore, we say that φ is a conjugacy if there exists a sliding block code ψ : Y → X
such that (ψ ◦ φ)(x) = x and (φ ◦ψ)(y) = y for all x ∈ X and y ∈ Y; two shifts X and Y are topologically
conjugated, denoted by X � Y , if there is a conjugacy from X to Y .

Definition 2.3. Suppose X ⊆ AFd is a shift space and m is a nonnegative integer. We define the mth
higher block presentation of X, denoted by X[m], as the image of the mth higher block code φ, i.e.,
X[m] = φ(X) ⊆ Γm(X)Fd .

It is known that X[m] � X for m ≥ 0 when d = 1 [7]. (Note that F1 is isomorphic with Z.) Theorem
2.4 indicates that, for d ∈ N, every shift space over Fd is topologically conjugated to its mth higher
block presentation.

Theorem 2.4. Suppose X is a shift space and m ≥ 0. Then X � X[m].

Proof. Let ψ : X[m] → X be the sliding block code derived from the block map Ψ : Γm(X)→ A defined
as Ψ(u) = ue. It can be verified without difficulty that φ is the inverse of ψ, and vice versa. �

Suppose X is an SFT over Fd with the alphabet A. Then there exists m ≥ 0 such that X = XF
for some F ⊆ AEm . We say that X is an SFT with the nearest neighborhood (or X is a Markov
shift) provided m = 1. Theorem 2.4 infers that we may assume that X is an SFT with the nearest
neighborhood without loss of generality.

A classical result for Z-shifts is that every Z-SFT is topologically conjugated to an SFT

XA = {x ∈ AZ : A(xi, xi+1) = 1 for i ∈ Z}

for some binary matrix A indexed by the alphabet A. Such a result extends to SFTs over Fd with the
alphabet A. Let A = {A1, A2, . . . , Ad} be a collection of binary matrices indexed by A. We define the
vertex shift XA as

XA = {x ∈ AFd : Ai(xg, xgsi) = 1 for 1 ≤ i ≤ d, g ∈ Fd}. (2.2)

It follows immediately that XA is a Markov shift. Proposition 2.5, which extends the above classical
result to Fd-SFTs, infers that it suffices to investigate vertex shifts instead of general SFTs.

Proposition 2.5. Every shift of finite type is topologically conjugated to a vertex shift.

Proof. The demonstration is achieved yielding similar discussion in classical symbolic dynamical sys-
tems, thus it is omitted. �
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3. Topological degree of shift spaces

Suppose X is a shift space over Fd with the alphabet A. Let Γn(X) be the collection of allowable
n-blocks of X; that is, u ∈ Γn(X) if and only if x accepts u for some x ∈ X. The topological entropy and
the topological degree of X are defined as

h(X) = lim sup
n→∞

ln γn(X)
|En|

(3.1)

and

deg(X) = lim sup
n→∞

ln ln γn(X)
n

, (3.2)

respectively. When d = 1, both the limits of (3.1) and (3.2) exists since ln γn(X) is subadditive [7]; the
subadditivity of ln γn(X) infers zero degree of X.

While the topological entropy is conjugacy invariant for F1-shifts (i.e., Z-shifts), Ornstein and Weiss
exhibited an example in which the factor admitted larger topological entropy (see [39,41] for more de-
tails). This makes topological entropy no longer classifies Fd-SFTs since it is not conjugacy invariant.
Hence, a general entropy theory (now known as the topological sofic entropy, see [39, 42]) has to
abandon the property that factor maps cannot increase the entropy. It is of interest if topological de-
gree remains to be conjugacy invariant; Proposition 3.1 demonstrates that the topological degree is
conjugacy invariant.

Proposition 3.1. The topological degree of shift spaces over Fd is conjugacy invariant.

Proof. Obviously, the topological degree is conjugacy invariant for d = 1 since deg(X) = 0 for all X.
For the case where d ≥ 2, it suffices to show that deg(X) ≥ deg(Y) for any two shifts X and Y such

that Y is a factor of X. Let φ : X → Y be a factor code comes from the block map Φ : Γm(X)→ AY for
some m ≥ 0, whereAY is the alphabet of Y . Observe that

γn(Y) ≤ γm+n(X) ≤ γm(X)γn(X)2d(2d−1)m−1
for n ∈ N.

Therefore,

ln ln γn(Y) ≤ ln(ln γm(X) + 2d(2d − 1)m−1 ln γn(X)) ≤ ln K + ln(1 + ln γn(X))

for some constant K > 0. This concludes that deg(Y) ≤ deg(X). �

For the rest of this paper, we consider the case where d = 2 unless otherwise stated. Although the
limit (3.1) may not exist in general, Proposition 3.2 indicates that the limit (3.2) exists provided the
specific shift has positive entropy.

Proposition 3.2. Suppose X is a shift space over Fd with the alphabet A and lim inf
n→∞

ln γn(X)
|En|

> 0.

Then the limit (3.2) exists; that is,

deg(X) = lim
n→∞

ln ln γn(X)
n

.
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Proof. We denote by γn := γn(X) for the simplification of the notation. For n ∈ N, observe that

|En| =
c + 1
c − 1

(cn − 1) and |Ên| = (c + 1)cn−1,

where c = 2d − 1 and Ên = {g ∈ Fd : |g| = n}. Let

α = lim inf
n→∞

ln γn

|En|
= lim inf

n→∞

ln γn
c+1
c−1cn

> 0.

For each ε > 0 such that ε < α/2, there exists m ∈ N such that

α − ε <
ln γm
c+1
c−1cm

< α + ε and

∣∣∣ln c−1
c+1

2
α

∣∣∣
m

< ε. (3.3)

For n ∈ N, write n = `m + r with 0 ≤ r ≤ m − 1. Notably,

γn = γr+`m ≤ γr · γ
(c+1)cr−1

`m ≤ γr

(
γmγ

cm

(`−1)m

)(c+1)cr−1

≤ γr

(
γm

(
γmγ

cm

(`−2)m

)cm)(c+1)cr−1

≤ γrγ
c`m−1
cm−1 (c+1)cr−1

m .

Let β = lim inf
n→∞

ln ln γn

n
. Then

β − ε <
ln ln γn

n
≤

ln
(
ln γr + c`m−1

cm−1 (c + 1)cr−1 ln γm

)
n

≤
ln γr + ln

(
c`m−1
cm−1 (c + 1)cr−1 ln γm

)
n

≤
ln γr

n
+

ln
((

c−1
c+1

1
α−ε

ln γm

)`
· ln γm

)
n

+
ln (c+1)cr−1

cm−1

n

< 2ε +
` ln c−1

c+1
2
α

`m
+

(` + 1) ln ln γm

`m
< β + 3ε

whenever n is large enough, where the third inequality is driven by the mean value theorem, and the
fourth and the last inequalities come from (3.3). The desired result then follows. �

Suppose X is a Zd-shift space with zero topological entropy

h(X) = lim
n→∞

ln |Cn(X)|
nd = 0,

where Cn(X) is the set of all allowable patterns over hypercube of length n.

Definition 3.3. Let X be a Zd-shift space. The entropy dimension of X is then defined as

D(X) = inf
{

s > 0 : lim sup
n→∞

ln |Cn(X)|
ns = 0

}
= sup

{
s > 0 : lim sup

n→∞

ln |Cn(X)|
ns = ∞

}
.
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The idea of entropy dimension extends to Fd-shift space as follows. Let

K = inf
{

s > 0 : lim sup
n→∞

ln γn(X)
sn = 0

}
= sup

{
s > 0 : lim sup

n→∞

ln γn(X)
sn = ∞

}
. (3.4)

Then K ≤ 2d− 1 and K = 2d− 1 if h(X) > 0. Proposition 3.2 demonstrates that h(X) > 0 is a sufficient
condition for the existence of the limit (3.2). For the case where h(X) = 0 (thus the limit (3.1) exists),
the following proposition reveals another sufficient condition for the existence of the limit (3.2). The
proof is delivered via similar discussion in the proof of Proposition 3.2, thus it is omitted.

Proposition 3.4. Suppose X is a shift space over Fd with the alphabet A and h(X) = 0. Let K be

defined as (3.4). If lim inf
n→∞

ln γn(X)
Kn > 0, then the limit (3.2) exists.

Remark 3.5. Following Proposition 3.2, it is seen that h(X) > 0 implies deg(X) = ln(2d − 1). Further-
more, it can be verified without difficulty from the definition of entropy dimension and Proposition 3.4
that deg(X) = ln K whenever h(X) = 0.

4. Algorithm for degree of SFTs

For each Fd-shift space X, K < 2d − 1 infers that X is a zero entropy system. It is of interest how
to calculate the topological degree of X. This section is devoted to developing an algorithm for the
computation of topological degrees of Fd-SFTs.

4.1. SFTs over monoid

Suppose X is a shift of finite type over Fd with the alphabetA = {1, 2, . . . , k}. Propositions 2.5 and
3.1 indicate that, without loss of generality, we may assume X = XA is a vertex shift for some k × k
binary matrices A = {A1, . . . , Ad}.

Notably, the free group Fd can be treated as a monoid G = 〈S |R〉 with S = {t1, t2, . . . , t2d} and
R = {titi+d = ti+dti = e for 1 ≤ i ≤ d}. Indeed, G is obtained from Fd by renaming the elements of Fd.
What is more, write w ∈ Fd as its unique expression

w = so1
i1

so2
i2
· · · son

in
, where 1 ≤ i j ≤ d, o j ∈ {−1, 1}, n ≥ 0.

Then
g = t j1t j2 · · · t jn , where j` = i` +

1 − o`
2

d, 1 ≤ ` ≤ n,

is the rename of w in G, and vice versa. The Cayley graph of G is then a rooted tree such that every
node has (2d−1)-children except the root, which has (2d)-children. We call G a monoid representation
of Fd. Let Ω be the set of vertex shifts over Fd and

Ξ = {X ⊆ AG : X = XB : B = {Bi}
2d
i=1, Bi+d = B′i for 1 ≤ i ≤ d, Bi ∈ {0, 1}k×k}

a proper subset of vertex shifts over G, where M′ denotes the transpose of M. It is seen that there
is a one-to-one correspondence between Ω and Ξ. Indeed, suppose X = XA is a vertex shift over Fd

determined by some k × k binary matrices A = {A1, . . . , Ad} and Y = XB is a vertex shift over G with
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B = {A1, . . . , A2d}, Ai+d = A′i for 1 ≤ i ≤ d. Since x ∈ X if and only if Ai(xw, xwsi) = 1 for 1 ≤ i ≤ d and
w ∈ Fd, it follows immediately that

Ai+d(xw, xws−1
i

) = A′i(xw, xws−1
i

) = 1 for 1 ≤ i ≤ d.

Let g ∈ G be the (unique) representation of w, and let y be defined as yg = xw. Then y is well-defined
and y ∈ Y . Similarly, for each y ∈ Y , we can construct the unique x ∈ X that is the representation of
y in X. Note that X � Y in this case. Conversely, for each Y ∈ Ξ, we can construct the unique X ∈ Ω

such that X � Y . The above discussion yields the following proposition.

Proposition 4.1. Let G = 〈t1, . . . , t2d|t1td+1, . . . , tdt2d〉 be the monoid representation of Fd. For each
vertex shift X over Fd, there exists a vertex shift Y over G such that X � Y. More explicitly, the vertex
shift XA over Fd with A = {A1, . . . , Ad} is topologically conjugated to the vertex shift XB over G with
B = {A1, . . . , A2d}, Ai+d = A′i for 1 ≤ i ≤ d.

Proposition 4.1 reveals that, to calculate the topological degree of vertex shifts over Fd, it suffices
to investigate vertex shifts over G. Roughly speaking, there is no difference between the structure of
Fd and G since the Cayley graph of G is obtained by “twisting” the Cayley graph of Fd appropriately
(cf. Figure 1). For the rest of this section, X is a vertex shift XA, where A = {A1, . . . , A2d}, over G with
the alphabetA unless otherwise stated.

Figure 1. A finitely generated free group can be treated as a finitely generated monoid whose
generators satisfy some relations. For example, the free group F2 can be seen as the monoid
G = 〈t1, t2, t3, t4|t1t3, t2t4〉. More explicitly, F2 is isomorphic with G.

Let En = {g ∈ G : |g| ≤ n} and Γn;a = {x|En : x ∈ X, xe = a}, where a ∈ A, n ∈ N. Write
A = AE

⋃
AI , herein a ∈ AE if and only if γn;a ≥ 2 for some n ∈ N. (Without loss of generality, we

assume that γn;a ≥ 1 for all a ∈ A, n ∈ N.) Proposition 4.2 then follows.

Proposition 4.2. Suppose X is a vertex shift over G with the alphabetA. Then

deg(X) = lim sup
n→∞

ln
∑

a∈A ln γn;a

n
= lim sup

n→∞

ln
∑

a∈AE
ln γn;a

n
. (4.1)

Proof. Recall thatA = {1, 2, . . . , k}. Since

γn;1 · γn;2 · · · γn;k ≤

(∑k
i=1 γn;i

k

)k

,
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We derive that

lim sup
n→∞

ln
∑k

i=1 ln γn;i

n
≤ lim sup

n→∞

ln ln
∑k

i=1 γn;i

n
= deg(X).

On the other hand, denote by an = max1≤i≤k γn;i. The inequality

an ≤

k∑
i=1

γn;i ≤ kan

yields that

lim sup
n→∞

ln ln
∑k

i=1 γn;i

n
= lim sup

n→∞

ln ln an

n
. (4.2)

Observe that
k∑

i=1

ln γn;i = ln
k∏

i=1

γn;i ≥ ln an. (4.3)

It follows from (4.2) and (4.3) that

lim sup
n→∞

ln
∑k

i=1 ln γn;i

n
≥ lim sup

n→∞

ln ln an

n
= lim sup

n→∞

ln ln
∑k

i=1 γn;i

n
= deg(X).

This completes the proof. �

For i ∈ A, g ∈ G, and n ∈ N, denote by

Γ
[g]
n;i = {x|gEn : x ∈ X}

the set of all n-blocks centered at g and labeled i at g. Notably, G is a monoid whose Cayley graph
satisfies that only the root (which represents the identity element e ∈ G) has (2d)-children and g has
(2d − 1)-children for g , e. Since X = XAwith A = {A1, . . . , A2d} is a vertex shift, it is seen that

γn = γn;1 + γn;2 + · · · + γn;k

and

γn;i = γ[e]
n;i =

2d∏
`=1

k∑
j=1

A`(i, j)γ[t`]
n−1; j, (4.4)

γ[tl]
n−1;i =

∏
1≤`≤2d,|l−`|,d

k∑
j=1

A`(i, j)γ[tlt`]
n−2; j (4.5)

for 1 ≤ i ≤ k and 1 ≤ l ≤ 2d. For n ∈ N and g ∈ G such that g , e, define

En(g) = {g′ ∈ G : 1 ≤ |g′| ≤ n and |gg′| = |g| + |g′|}.

It is easily seen that En(g) = En(tl) if and only if g = g′tl with |g| = |g′|+ 1. Hence, we can rewrite (4.5)
as

γ[tl]
n−1;i =

∏
1≤`≤2d,|l−`|,d

k∑
j=1

A`(i, j)γ[t`]
n−2; j. (4.6)
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Conclusively, computing the topological degree of XA, where A = {A1, . . . , A2d}, is equivalent to study
the system of nonlinear recurrence equations defined as

γn;i =

2d∏
`=1

k∑
j=1

A`(i, j)γ[t`]
n−1; j,

γ[tl]
n;i =

∏
1≤`≤2d,|l−`|,d

k∑
j=1

A`(i, j)γ[t`]
n−1; j,

γ[tl]
0;i = 1;

(4.7)

herein, n ∈ N and 1 ≤ l ≤ 2d.

Example 4.3. Suppose d = 2. A monoid representation of F2 is

G = 〈t1, t2, t3, t4|t1t3, t3t1, t2t4, t4t2〉.

Each w ∈ F2 has the unique representation g ∈ G, and vice versa. For example, the representation of
s2

1s2s−1
1 s2 ∈ F2 in G is t2

1t2t3t2. Furthermore, for n ∈ N and g ∈ G, En(g) is uniquely determined by the
last digit of the minimal presentation of g; an example is

E2(t1t2) = {t1, t2, t3, t2
1, t1t2, t1t4, t2t1, t2

2, t2t3, t3t2, t2
3, t3t4, . . .} = E2(t2).

Suppose X = XA is a vertex shift over G with the alphabetA = {1, 2} and A = {A1, A2, A3, A4}, where

A1 = A3 =

(
1 1
1 0

)
, A2 = A4 =

(
0 1
1 1

)
.

Evaluating the topological degree of X is equivalent to investigating the system of nonlinear recur-
rence equations

γn;1 =
(
γ[t1]

n−1;1 + γ[t1]
n−1;2

) (
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t2]

n−1;2γ
[t4]
n−1;2,

γn;2 =
(
γ[t2]

n−1;1 + γ[t2]
n−1;2

) (
γ[t4]

n−1;1 + γ[t4]
n−1;2

)
γ[t1]

n−1;1γ
[t3]
n−1;1,

γ[t1]
n;1 =

(
γ[t1]

n−1;1 + γ[t1]
n−1;2

)
γ[t2]

n−1;2γ
[t4]
n−1;2,

γ[t2]
n;1 =

(
γ[t1]

n−1;1 + γ[t1]
n−1;2

) (
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t2]

n−1;2,

γ[t3]
n;1 =

(
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t2]

n−1;2γ
[t4]
n−1;2,

γ[t4]
n;1 =

(
γ[t1]

n−1;1 + γ[t1]
n−1;2

) (
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t4]

n−1;2,

γ[t1]
n;2 =

(
γ[t2]

n−1;1 + γ[t2]
n−1;2

) (
γ[t4]

n−1;1 + γ[t4]
n−1;2

)
γ[t1]

n−1;1,

γ[t2]
n;2 =

(
γ[t2]

n−1;1 + γ[t2]
n−1;2

)
γ[t1]

n−1;1γ
[t3]
n−1;1,

γ[t3]
n;2 =

(
γ[t2]

n−1;1 + γ[t2]
n−1;2

) (
γ[t4]

n−1;1 + γ[t4]
n−1;2

)
γ[t3]

n−1;1,

γ[t4]
n;2 =

(
γ[t4]

n−1;1 + γ[t4]
n−1;2

)
γ[t1]

n−1;1γ
[t3]
n−1;1, n ∈ N,

γ[ti]
0; j = 1, 1 ≤ i ≤ 4, 1 ≤ j ≤ 2.
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4.2. System of nonlinear recurrence equations

In this subsection, we investigate the growth rate of sequences described by systems of nonlinear
recurrence equations.

Suppose {an;1, an;2, . . . , an;p}n∈N is determined byan;i = fi(an−1;1, an−1;2, . . . , an−1;p), n ≥ 2,
a1;i = ci,

(4.8)

for some polynomials fi : Rp → R with zero constant term and nonnegative coefficients, and ci ∈

R+, 1 ≤ i ≤ p. Let F = ({an;1, an;2, . . . , an;p}n∈N, { fi}
p
i=1) denote the system (4.8). With the abuse of

terminology, we define the degree of F as

deg(F) = lim sup
n→∞

ln
∑p

i=1 ln an;i

n
.

A system of nonlinear recurrence equations F is simple if fi contains only one term for each i. For the
simplicity, we focus on the case where ci ≥ 1 for all i.

Definition 4.4. Suppose F = ({an;1, an;2, . . . , an;p}n∈N, { fi}
p
i=1) is a simple system of nonlinear recurrence

equations. The weighted adjacency matrix of F is a p × p integral matrix defined as

M(i, j) = max
m≥0

{
m ≥ 0 : αm

j | fi(α1, . . . , αp)
}
. (4.9)

For the case where F is a simple system, let bn = (ln an;1, ln an;2, . . . , ln an;p)′ ∈ Rp. The definition of
weighted adjacency matrix indicates that bn = Mbn−1 for n ≥ 2. Suppose there exists N ∈ N such that
an;i > 1 for 1 ≤ i ≤ p. The Perron-Frobenius theorem asserts that

deg(F) = lim sup
n→∞

ln
∑p

i=1 ln an;i

n
= lim sup

n→∞

ln
∑p

i, j=1 Mn−1(i, j)

n
= ln ρM,

where ρM is the spectral radius of M. This derives Proposition 4.5, which is also demonstrated in [43].

Proposition 4.5. Suppose F = ({an;1, an;2, . . . , an;p}n∈N, { fi}
p
i=1) is a simple system of nonlinear recur-

rence equations and M is the weighted adjacency matrix of F. If an;i > 1 for 1 ≤ i ≤ p and n large
enough, then

deg(F) = ln ρM,

where ρM is the spectral radius of M.

Remark 4.6. Suppose that an;i = 1 for some 1 ≤ i ≤ p and n ∈ N. Then ln an;i = 0 makes no
contribution to the degree of F. If this is the case, let M be the matrix obtained by deleting the ith row
and the ith column of M. It is seen that deg(F) = ln ρM.

Proposition 4.5 is analogous to the classical result of the topological entropy of one-dimensional
shifts of finite type; that is, the topological entropy of a shift of finite type is the logarithm of the
spectral radius of some matrix. Theorem 4.7, which is an extension of Proposition 4.5, elucidates that
the degree of a system of nonlinear recurrence equations is the degree of its maximal simple subsystem.

AIMS Mathematics Volume 5, Issue 5, 5121–5139.



5132

Theorem 4.7. Suppose F = ({an;1, an;2, . . . , an;p}n∈N, { fi}
p
i=1) is a system of nonlinear recurrence equa-

tions. If, for 1 ≤ i ≤ p, an;i > 1 for n large enough, then

deg(F) = max{ln ρME : E is a simple subsystem of F}. (4.10)

Proof. Let E be a simple subsystem of F such that deg(F) = ln ρME . Obviously, deg(E) ≤ deg(F). It
remains to show that deg(F) ≤ deg(E).

Without loss of generality, we may assume that a1;i > 1 for 1 ≤ i ≤ p and

an;1 ≥ an;2 ≥ · · · ≥ an;p for n ∈ N.

For each i, write
fi(an;1, . . . , an;p) = ami,1

n;1 ami,2
n;2 · · · a

mi,p
n;p · fi(an;1, . . . , an;p),

where mi, j = ME(i, j) for 1 ≤ j ≤ p. Observe that ρME ≥ ρME′
for any simple subsystem E′ implies

ME(i, j) ≥ ME′(i, j) for 1 ≤ i, j ≤ p. Therefore, there exists C > 0 such that

1 < fi(an;1, . . . , an;p) < C for 1 ≤ i ≤ p, n ∈ N.

Let αn = (ln an;1, ln an;2, . . . , ln an;p)′. Then

αn = MEαn−1 + βn−1, where βn−1 = (ln f1, . . . , ln fp)′, n ≥ 2.

It follows from
αn = Mn−1

E α1 + Mn−2
E β1 + · · · + βn−1

that

‖αn‖ =

p∑
i=1

α(i)
n ≤ d0‖

n−1∑
i=1

Mi
E‖ ≤ d1

n−1∑
i=1

ρi
ME
≤ d2ρ

n
ME

for some constants d0, d1, and d2 depending on ME. Thus, we have derive

deg(F) = lim sup
n→∞

ln
∑p

i=1 α
(i)
n

n
≤ ln ρME = deg(E).

This completes the proof. �

Example 4.8. Given a system of nonlinear recurrence equations F as

an;1 = (an−1;1 + an−1;2)an−1;2,

an;2 = (an−1;1 + an−1;2)an−1;1, n ≥ 2,
a1;1 = a1;2 = 1.

Then an;1 ≥ 2 and an;2 ≥ 2 for n ≥ 2. Consider the following simple subsystem

an;1 = an−1;1an−1;2,

an;2 = a2
n−1;1.

The weighted adjacency matrix is

M =

(
1 1
2 0

)
,

and Proposition 4.5 demonstrates that the degree of this subsystem is ln 2. Observe that deg(E) = ln 2
for each simple subsystem E. Theorem 4.7 indicates that deg(F) = ln 2.
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5. Topological degree of SFTs over free groups

Suppose X = XA is a vertex shift over Fd with the alphabet A = {1, 2, . . . , k} and A =

{A1, A2, . . . , Ad} for some k × k binary matrices. Section 4 reveals that the cardinality of set of n-blocks
in X forms a system of nonlinear recurrence equations FX defined as

γn;i =

2d∏
`=1

k∑
j=1

A`(i, j)γ[t`]
n−1; j,

γ[tl]
n;i =

∏
1≤`≤2d,|l−`|,d

k∑
j=1

A`(i, j)γ[t`]
n−1; j,

γ[tl]
0;i = 1,

(5.1)

where 1 ≤ i ≤ k, 1 ≤ l ≤ 2d, n ∈ N, and Ar+d = A′r for 1 ≤ r ≤ d. Recall that {t1, t2, . . . , t2d} represents
the set of generators {s1, . . . , sd, s−1

1 , . . . , s
−1
d } of Fd. Since γ[tl]

0;i = 1 for 1 ≤ i ≤ k and 1 ≤ l ≤ 2d, we
conclude that γn;i ≥ γ

[tl]
n;i for all i, l. Therefore,

k∑
i=1

γn;i ≤

k∑
i=1

(γn;i +

2d∑
l=1

γ[tl]
n;i ) ≤ (2d + 1)

k∑
i=1

γn;i.

Since deg(X) and deg(FX) measure the growth rate of
∑k

i=1 ln γn;i and
∑k

i=1(ln γn;i +
∑2d

l=1 ln γ[tl]
n;i ), respec-

tively, the inequality above derives the following theorem that demonstrates the coincidence of degrees
of X and FX. In addition, deg(FX) is obtained by Theorem 4.7.

Theorem 5.1. Given a set of binary matrices A = {A1, A2, . . . , Ad}. Suppose X = XA is a vertex
shift over Fd and FX is the corresponding system of nonlinear recurrence equations. Then deg(X) =

deg(FX).

Recall that the alphabet A = AE
⋃
AI is decomposed as the union of two disjoint subsets, where

i ∈ AE if and only if γn;i ≥ 2 for some n ∈ N. Observe that, for each simple subsystem of FX, the
weighted adjacency matrix is an upper triangular block matrix

M =

(
N11 N12

O N22

)
,

where N11 is a k×k matrix indexed by {γn;i}
k
i=1 and N22 is a 2dk×2dk matrix indexed by {γ[tl]

n;i }1≤i≤k,1≤l≤2d.
It is seen from (5.1) that N11 is the zero matrix and

2dk∑
j=1

N22(i, j) = 2d − 1 for 1 ≤ i ≤ 2dk.

Theorem 4.7 explains that the degree of FX is ln ρN22 if and only if A = AE. For the case where
AI , ∅, we denote by N the matrix obtained from N22 by eliminating those rows and columns indexed
byAI . Then deg(FX) = ln ρN . This concludes Proposition 5.2.
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Proposition 5.2. Suppose X is a vertex shift over Fd with the alphabetA. IfA = AE, then deg(FX) =

ln(2d − 1).

Example 5.3. Suppose X is the vertex shift studies in Example 4.3. It is easily seen that A = AE.
Hence, we can conclude that deg(X) = ln 3.

Example 5.4. Let X = XA be the vertex shift over F2 with the alphabetA = {1, 2, 3} and

A1 =


1 1 0
1 0 0
0 0 1

 , A2 =


0 1 0
1 0 0
0 0 1

 .
The system of nonlinear recurrence equations FX is

γn;1 =
(
γ[t1]

n−1;1 + γ[t1]
n−1;2

) (
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t2]

n−1;2γ
[t4]
n−1;2,

γn;2 = γ[t1]
n−1;1γ

[t2]
n−1;1γ

[t3]
n−1;1γ

[t4]
n−1;1,

γn;3 = γ[t1]
n−1;3γ

[t2]
n−1;3γ

[t3]
n−1;3γ

[t4]
n−1;3,

γ[t1]
n;1 =

(
γ[t1]

n−1;1 + γ[t1]
n−1;2

)
γ[t2]

n−1;2γ
[t4]
n−1;2,

γ[t2]
n;1 =

(
γ[t1]

n−1;1 + γ[t1]
n−1;2

) (
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t2]

n−1;2,

γ[t3]
n;1 =

(
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t2]

n−1;2γ
[t4]
n−1;2,

γ[t4]
n;1 =

(
γ[t1]

n−1;1 + γ[t1]
n−1;2

) (
γ[t3]

n−1;1 + γ[t3]
n−1;2

)
γ[t4]

n−1;2,

γ[t1]
n;2 = γ[t1]

n−1;1γ
[t2]
n−1;1γ

[t4]
n−1;1,

γ[t2]
n;2 = γ[t1]

n−1;1γ
[t2]
n−1;1γ

[t3]
n−1;1,

γ[t3]
n;2 = γ[t2]

n−1;1γ
[t3]
n−1;1γ

[t4]
n−1;1,

γ[t4]
n;2 = γ[t1]

n−1;1γ
[t3]
n−1;1γ

[t4]
n−1;1,

γ[t1]
n;3 = γ[t1]

n−1;3γ
[t2]
n−1;3γ

[t4]
n−1;3,

γ[t2]
n;3 = γ[t1]

n−1;3γ
[t2]
n−1;3γ

[t3]
n−1;3,

γ[t3]
n;3 = γ[t2]

n−1;3γ
[t3]
n−1;3γ

[t4]
n−1;3,

γ[t4]
n;3 = γ[t1]

n−1;3γ
[t3]
n−1;3γ

[t4]
n−1;3, n ∈ N,

γ[ti]
0; j = 1, 1 ≤ i ≤ 4, 1 ≤ j ≤ 3.

It is seen thatAE = {1, 2} andAI = {3}. Consider the following simple subsystem

γn;1 = γ[t1]
n−1;1γ

[t3]
n−1;2γ

[t2]
n−1;2γ

[t4]
n−1;2,

γ[t1]
n;1 = γ[t1]

n−1;1γ
[t2]
n−1;2γ

[t4]
n−1;2,

γ[t2]
n;1 = γ[t1]

n−1;2γ
[t3]
n−1;1γ

[t2]
n−1;2,

γ[t3]
n;1 = γ[t3]

n−1;1γ
[t2]
n−1;2γ

[t4]
n−1;2,

γ[t4]
n;1 = γ[t1]

n−1;1γ
[t3]
n−1;1γ

[t4]
n−1;2.
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(Herein, we only state those equations with multiple terms.) Then the weighted adjacency matrix is

M =

(
N11 N12

O N22

)
with N22 =



1 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 1 0 1 1



.

SinceAI = {3}, by eliminating the last 4 rows and columns of N22 we derive

N =



1 0 0 0 0 1 0 1
0 0 1 0 1 1 0 0
0 0 1 0 0 1 0 1
1 0 1 0 0 0 0 1
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0


.

Theorems 4.7 and 5.1 demonstrate that

deg(X) ≥ ln ρN = ln 3.

Since deg(X) ≤ ln 3, we have concluded that deg(X) = ln 3.

6. Finitely generated group action over SFTs

The discussion in Sections 3 and 4 can easily extend to a class of finitely generated groups. For the
completeness of this paper, this section illustrates the methodology of the computation of topological
degree via an example. The detailed investigation will be studied in the future work.

Let G = 〈α1, . . . , αd|R〉 be a finitely generated group such that S d = {α1, . . . , αd} is a minimal
generating set, and

R = {α2
i = e for 1 ≤ i ≤ d}.

Then there is only one homomorphism π : Fd → G satisfying π(si) = αi for 1 ≤ i ≤ d. For each g ∈ G,
define the length of g as

|g|π = min{|w| : w ∈ π−1(g)},

recall that |w| is the length of w ∈ Fd. This definition is equivalent to

|g|S d = min{n : g = αi1 · · ·αin , αi j ∈ S d

⋃
S −1

d }.
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Suppose X = XA is a vertex shift over G with the alphabet A, where A = {A1, . . . , Ad} is a collection
of binary matrices indexed byA. To compute the topological degree of X, following the discussion in
Section 4 we derive a system of nonlinear recurrence equations since the relation

En(g) = En(α) if and only if g = g′α with |g|π = |g′|π + 1

still holds in G, where α ∈ S d
⋃

S −1
d and

En(g) = {g′ ∈ G : 1 ≤ |g′|π ≤ n and |gg′|π = |g|π + |g′|π}.

We use an example to show how the discussion for free groups extends to finitely generated groups
satisfying the property mentioned above.

Example 6.1. Suppose G = 〈α1, α2|α
2
2〉 is a finitely generated group. Let X = XA is a vertex shift over

G with the alphabetA = {1, 2, 3} and A = {A1, A2}, where

A1 =


1 1 0
0 1 0
0 0 1

 and A2 =


0 1 0
0 0 1
0 0 1

 .
Since α2

2 = e is of order 2, it follows that the monoid representation of G is G′ = 〈t1, t2, t3|t1t3, t3t1〉.
Observe from the structure of Cayley graph of G′ that the cardinality of n-blocks of X, γn, satisfies



γn;1 =
(
γ[α1]

n−1;1 + γ[α1]
n−1;2

)
γ[α2]

n−1;2γ
[α3]
n−1;1,

γn;2 =
(
γ[α3]

n−1;1 + γ[α3]
n−1;2

)
γ[α1]

n−1;2γ
[α2]
n−1;3,

γn;3 = γ[α1]
n−1;3γ

[α2]
n−1;3γ

[α3]
n−1;3,

γ[α1]
n;1 =

(
γ[α1α1]

n−1;1 + γ[α1α1]
n−1;2

)
γ[α1α2]

n−1;2 ,

γ[α2]
n;1 =

(
γ[α2α1]

n−1;1 + γ[α2α1]
n−1;2

)
γ[α2α3]

n−1;1 ,

γ[α3]
n;1 = γ[α3α2]

n−1;2 γ
[α3α3]
n−1;1 ,

γ[α1]
n;2 = γ[α1α1]

n−1;2 γ
[α1α2]
n−1;3 ,

γ[α2]
n;2 =

(
γ[α2α3]

n−1;1 + γ[α2α3]
n−1;2

)
γ[α2α1]

n−1;2 ,

γ[α3]
n;2 =

(
γ[α3α3]

n−1;1 + γ[α3α3]
n−1;2

)
γ[α3α2]

n−1;3 ,

γ[α1]
n;3 = γ[α1α1]

n−1;3 γ
[α1α2]
n−1;3 ,

γ[α2]
n;3 = γ[α2α1]

n−1;3 γ
[α2α3]
n−1;3 ,

γ[α3]
n;3 = γ[α3α2]

n−1;3 γ
[α3α3]
n−1;3 ,

γ
[α j]
0;i = 1, 1 ≤ i, j ≤ 3,
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where α3 = α−1
1 . Since En(αiα j) = En(α j) for 1 ≤ i, j ≤ 3, we can rewrite the system as

γn;1 =
(
γ[α1]

n−1;1 + γ[α1]
n−1;2

)
γ[α2]

n−1;2γ
[α3]
n−1;1,

γn;2 =
(
γ[α3]

n−1;1 + γ[α3]
n−1;2

)
γ[α1]

n−1;2γ
[α2]
n−1;3,

γn;3 = γ[α1]
n−1;3γ

[α2]
n−1;3γ

[α3]
n−1;3,

γ[α1]
n;1 =

(
γ[α1]

n−1;1 + γ[α1]
n−1;2

)
γ[α2]

n−1;2,

γ[α2]
n;1 =

(
γ[α1]

n−1;1 + γ[α1]
n−1;2

)
γ[α3]

n−1;1,

γ[α3]
n;1 = γ[α2]

n−1;2γ
[α3]
n−1;1,

γ[α1]
n;2 = γ[α1]

n−1;2γ
[α2]
n−1;3,

γ[α2]
n;2 =

(
γ[α3]

n−1;1 + γ[α3]
n−1;2

)
γ[α1]

n−1;2,

γ[α3]
n;2 =

(
γ[α3]

n−1;1 + γ[α3]
n−1;2

)
γ[α2]

n−1;3,

γ[α1]
n;3 = γ[α1]

n−1;3γ
[α2]
n−1;3,

γ[α2]
n;3 = γ[α1]

n−1;3γ
[α3]
n−1;3,

γ[α3]
n;3 = γ[α2]

n−1;3γ
[α3]
n−1;3.

Observe thatAE = {1, 2} andAI = {3}. Theorems 4.7 and 5.1 demonstrate that

deg(X) = ln
1 +
√

5
2

.

7. Conclusions

In this paper, we consider the topological degree of G-shifts of finite type for the case where G is a
finitely generated free group. Topological degree, which is the logarithm of entropy dimension, char-
acterizes zero entropy systems in more details. Since the topological entropy is no longer conjugacy-
invariant for shifts over free groups, the conjugacy-invariance of topological degree may be treated as
a criterion for determining whether two shift spaces over free group are topological conjugate. After
showing that finding topological degree is equivalent to solving a system of nonlinear recurrence equa-
tions, we reveal that the topological degree of G-shift of finite type is achieved as the maximal spectral
radius of a collection of matrices corresponding to the shift itself.
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