Citation: Yernat Kozhakhmetov, Mazhyn Skakov, Wojciech Wieleba, Kurbanbekov Sherzod, Nuriya Mukhamedova. Evolution of intermetallic compounds in Ti-Al-Nb system by the action of mechanoactivation and spark plasma sintering[J]. AIMS Materials Science, 2020, 7(2): 182-191. doi: 10.3934/matersci.2020.2.182
[1] | Polozov I, Sufiiarov V, Kantyukov A, et al. (2019) Selective laser melting of Ti2AlNb-based intermetallic alloy using elemental powders: effect of process parameters and post-treatment on microstructure, composition, and properties. Intermetallics 112: 106554. doi: 10.1016/j.intermet.2019.106554 |
[2] | Karakozov BK, Skakov MK, Kurbanbekov SR, et al. (2018) Structural and phase transformations in alloys during spark plasma sintering of Ti + 23.5 at% Al + 21 at% Nb powder mixtures. Inorg Mater 54: 37-41. |
[3] | Niu HZ, Chen YF, Zhang DL, et al. (2016) Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization. Mater Design 89: 823-829. doi: 10.1016/j.matdes.2015.10.042 |
[4] | Appel F, Clemens H, Fischer FD (2016) Modeling concepts for intermetallic titanium aluminides. Prog Mater Sci 81: 55-124. doi: 10.1016/j.pmatsci.2016.01.001 |
[5] | Luo L, Liu T, Li K, et al. (2016) Microstructures, micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy. China Foundry 13: 107-113. doi: 10.1007/s41230-016-6004-z |
[6] | Wu J, Xu L, Lu Z, et al. (2015) Microstructure design and heat response of powder metallurgy Ti2AlNb alloys. J Mater Sci Technol 31: 1251-1257. doi: 10.1016/j.jmst.2015.09.006 |
[7] | Maniere C, Lee G, Olevsky EA (2017) All-materials-inclusive flash spark plasma sintering. Sci Rep 7: 15071. doi: 10.1038/s41598-017-15365-x |
[8] | Bauri R, Chaudhari R (2014) Microstructure and mechanical properties of titanium processed by spark plasma sintering (SPS). Metallogr Microst Anal 3: 30-35. doi: 10.1007/s13632-013-0112-6 |
[9] | Chen X, Xie FQ, Ma TJ, et al. (2015) Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy. J Alloy Compd 646: 490-496. doi: 10.1016/j.jallcom.2015.05.198 |
[10] | Sim K, Wang G, Son R, et al. (2017) Influence of mechanical alloying on the microstructure and mechanical properties of powder metallurgy Ti2AlNb-based alloy. Powder Technol 317: 133-141. doi: 10.1016/j.powtec.2017.03.034 |
[11] | Mukhamedova NM, Kozhakhmetov YeA, Skakov MK, et al. (2019) Effect of mechanoactivation on the formation of O-phase in Ti-Al-Nb system. Bulletin KazNITU 5: 115-120. |
[12] | Salvo C, Chicardi E, García-Garrido C, et al. (2019) The influence of mechanical activation process on the microstructure and mechanical properties of bulk Ti2AlN MAX phase obtained by reactive hot pressing. Ceram Int 45: 17793-17799. doi: 10.1016/j.ceramint.2019.05.350 |
[13] | Voisin T, Monchoux JP, Couret A (2019) Near-net shaping of titanium-aluminum jet engine turbine blades by SPS, In: Cavaliere P, Spark Plasma Sintering of Materials: Advances in Processing and Applications, Cham, Switzerland: Springer, 713-737. |
[14] | Kurbanbekov ShR, Skakov МK, Baklanov VV, et al. (2017) Effect of spark plasma sintering temperature on structure and phase composition of Ti-Al-Nb based alloys. Mater Test 59: 1033-1036. doi: 10.3139/120.111107 |