Citation: Jean-Marc Bomont, Dino Costa, Jean-Louis Bretonnet. Large effects of tiny structural changes on the cluster formation process in model colloidal fluids: an integral equation study[J]. AIMS Materials Science, 2020, 7(2): 170-181. doi: 10.3934/matersci.2020.2.170
[1] | Hansen JP, McDonald IR (2013) Theory of Simple Liquids, 4th Eds., Amsterdam: Elsevier. |
[2] | Pini D, Jialin G, Parola A, et al. (2000) Enhanced density fluctuations in fluid systems with competing interactions. Chem Phys Lett 327: 209-215. doi: 10.1016/S0009-2614(00)00763-6 |
[3] | Sear RP, Gelbart WM (1999) Microphase separation versus the vapor-liquid transition in systems of spherical particles. J Chem Phys 110: 4582-4588. doi: 10.1063/1.478338 |
[4] | Imperio A, Reatto L (2004) A bidimensional fluid system with competing interactions: spontaneous and induced pattern formation. J Phys-Condens Mat 16: S3769-S3791. doi: 10.1088/0953-8984/16/38/001 |
[5] | Sciortino F, Mossa S, Zaccarelli E, et al. (2004) Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys Rev Lett 93: 055701. doi: 10.1103/PhysRevLett.93.055701 |
[6] | Groenewold J, Kegel WK (2004) Colloidal cluster phases, gelation and nuclear matter. J PhysCondens Mat 16: S4877-S4886. |
[7] | Campbell AI, Anderson VJ, van Duijneveldt JS, et al. (2005) Dynamical arrest in attractive colloids: the effect of long-range repulsion. Phys Rev Lett 94: 208301. doi: 10.1103/PhysRevLett.94.208301 |
[8] | Archer AJ, WildingNB (2007) Phase behavior of a fluid with competing attractive and repulsive interactions. Phys Rev E 76: 031501. doi: 10.1103/PhysRevE.76.031501 |
[9] | Archer AJ, Ionescu C, Pini D, et al. (2008) Theory for the phase behaviour of a colloidal fluid with competing interactions. J Phys-Condens Mat 20: 415106-415117. doi: 10.1088/0953-8984/20/41/415106 |
[10] | Toledano JCF, Sciortino F, Zaccarelli E (2009) Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel. Soft Matter 5: 2390-2398. doi: 10.1039/b818169a |
[11] | Lee LL, Hara MC, Simon SJ, et al. (2010) Crystallization limits of the two-term Yukawa potentials based on the entropy criterion. J Chem Phys 132: 074505. doi: 10.1063/1.3308648 |
[12] | Costa D, Caccamo C, Bomont J-M, et al. (2011) Theoretical description of cluster formation in two-Yukawa competing fuids. Mol Phys 109: 2845-2863. doi: 10.1080/00268976.2011.611480 |
[13] | Bomont JM, Costa D (2012) A theoretical study of structure and thermodynamics of fluids with long-range competing interactions exhibiting pattern formation. J Chem Phys 137: 164901-164911. doi: 10.1063/1.4759503 |
[14] | Bomont JM, Bretonnet JL, Costa D, et al. (2012) Thermodynamic signatures of cluster formation in fluids with competing interactions. J Chem Phys 137: 011101. doi: 10.1063/1.4733390 |
[15] | Sweatman MB, Fartaria R, Lue L (2014) Cluster formation in fluids with competing short-range and long-range interactions. J Chem Phys 140: 124508. doi: 10.1063/1.4869109 |
[16] | Cigala G, Costa D, Bomont JM, et al. (2015) Aggregate formation in a model fluid with microscopic piecewise-continuous competing interactions. Mol Phys 113: 2583-2592. doi: 10.1080/00268976.2015.1078006 |
[17] | Bretonnet JL, Bomont JM, Costa D (2018) A semianalytical "reverse" approach to link structure and microscopic interactions in two-Yukawa competing fluids. J Chem Phys 149: 234907. doi: 10.1063/1.5047448 |
[18] | Liu Y, Fratini E, Baglioni P, et al. (2005) Effective long-range attraction between protein molecules in solutions studied by small angle neutron scattering. Phys Rev Lett 95: 118102. doi: 10.1103/PhysRevLett.95.118102 |
[19] | Broccio M, Costa D, Liu Y, et al. (2006) The structural properties of a two-Yukawa fluid: Simulation and analytical results. J Chem Phys 124: 084501. doi: 10.1063/1.2166390 |
[20] | Cardinaux F, Stradner A, Schurtemberger P, et al. (2007) Modeling equilibrium clusters in lysozyme solutions. EPL (Europhys Lett) 77: 48004. doi: 10.1209/0295-5075/77/48004 |
[21] | Liu Y, Porcar L, Chen J, et al. (2011) Lysozyme protein solution with an intermediate range order structure. J Phys Chem B 115: 7238-7247. doi: 10.1021/jp109333c |
[22] | Porcar L, Falus P, Chen WR, et al. (2010) Formation of the dynamic clusters in concentrated lysozyme protein solutions. J Phys Chem Lett 1: 126-129. doi: 10.1021/jz900127c |
[23] | Falus P, Porcar L, Fratini E, et al. (2012) Distinguishing the monomer to cluster phase transition in concentrated lysozyme solutions by studying the temperature dependence of the short-time dynamics. J Phys-Condens Mat 24: 064114. doi: 10.1088/0953-8984/24/6/064114 |
[24] | Zhuang Y, Charbonneau P (2016) Recent advances in the theory and simulation of model colloidal microphase formers. J Phys Chem B 120: 7775-7788. doi: 10.1021/acs.jpcb.6b05471 |
[25] | Liu Y, Xi Y (2019) Colloidal systems with a short-range attraction and long-range repulsion: phase diagrams, structures, and dynamics. Curr Op Colloid In 39: 123-136. doi: 10.1016/j.cocis.2019.01.016 |
[26] | Bretonnet JL (2019) Competing interactions in colloidal suspensions. AIMS Mat Sci 6: 509-548. doi: 10.3934/matersci.2019.4.509 |
[27] | Sweatman MB, Lue L (2019) The giant SALR cluster fluid: a review. Adv Theory Simul 2: 1900025. doi: 10.1002/adts.201900025 |
[28] | Stradner A, Sedgwick H, Cardinaux F, et al. (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432: 492-495. doi: 10.1038/nature03109 |
[29] | Baglioni P, Fratini E, Lonetti B, et al. (2004) Structural arrest in concentrated cytochrome C solutions: the effect of pH and salts. J Phys-Condens Mat 16: S5003-S5022. doi: 10.1088/0953-8984/16/42/016 |
[30] | Lonetti B, Fratini E, Chen SH, et al. (2004) Viscoelastic and small angle neutron scattering studies of concentrated protein solutions. Phys Chem Chem Phys 6: 1388-1395. doi: 10.1039/B316144G |
[31] | Bomont JM, Bretonnet JL, Costa D (2010) Temperature study of cluster formation in two-Yukawa fluids. J Chem Phys 132: 184508. doi: 10.1063/1.3418609 |
[32] | Shukla A, Mylonas E, Di Cola E, et al. (2008) Absence of equilibrium cluster phase in concentrated lysozyme solutions. PNAS 105: 5075-5080. doi: 10.1073/pnas.0711928105 |
[33] | Stradner A, Cardinaux F, Egelhaaf SU, et al. (2008) Do equilibrium clusters exist in concentrated lysozyme solutions? PNAS 105: E75. doi: 10.1073/pnas.0805815105 |
[34] | Shukla A, Mylonas E, Di Cola E, et al. (2008) Reply to stradner et al.: equilibrium clusters are absent in concentrated lysozyme solutions. PNAS 105: E76. |
[35] | Godfrin PD, Castaneda-Priego R, Liu Y, et al. (2013) Intermediate range order and structure in colloidal dispersions with competing interactions. J Chem Phys 139: 154904. doi: 10.1063/1.4824487 |
[36] | Godfrin PD, Wagner HJ, Liu Y, et al. (2014) Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions. Soft Matter 10: 5061-5071. doi: 10.1039/C3SM53220H |
[37] | Dzugutov M (1996) A universal scaling law for atomic diffusion in condensed matter. Nature 381: 137-139. doi: 10.1038/381137a0 |
[38] | Dzugutov M, Sadigh B, Elliot SR (1998) Medium-range order in a simple monatomic liquid. J Non-Cryst Solids 232-234: 20-24. doi: 10.1016/S0022-3093(98)00458-X |
[39] | Riest J, Nagele G (2015) Short-time dynamics in dispersions with competing short-range attraction and long-range repulsion. Soft Matter 11: 9273-9281. doi: 10.1039/C5SM02099A |
[40] | Godfrin PD, Hudson SD, Hong K, et al. (2015) Short-time glassy dynamics in viscous protein solutions with competing interactions. Phys Rev Lett 115: 228302. doi: 10.1103/PhysRevLett.115.228302 |
[41] | Hansen JP, Verlet L (1969) Phase transitions of the Lennard-Jones system. Phys Rev 184: 151-161. doi: 10.1103/PhysRev.184.151 |
[42] | Jadrich RB, Bollinger JA, Johnson KP, et al. (2015) Origin and detection of microstructural clustering in fluids with spatial-range competitive interactions. Phys Rev E 91: 042312. |
[43] | Bomont JM, Costa D, Bretonnet JL (2017) Tiny changes in local order trigger the cluster formation in model fluids with competing interactions. Phys Chem Chem Phys 19: 15247-15256. doi: 10.1039/C7CP01811H |
[44] | Bomont JM, Costa D, Bretonnet JL (2020) Local order and cluster formation in model fluids with competing interactions: a simulation and theoretical study. Phys Chem Chem Phys 22: 5355-5365 doi: 10.1039/C9CP06710H |
[45] | Pini D, Parola A, Reatto L (2006) Freezing and correlations in fluids with competing interactions. J Phys-Condens Mat 18: S2305-S2320. doi: 10.1088/0953-8984/18/36/S06 |
[46] | Zerah G, Hansen JP (1986) Self-consistent integral equations for fluid pair distribution functions: another attempt. J Chem Phys 84: 2336-2343. doi: 10.1063/1.450397 |
[47] | Bomont JM, Bretonnet JL (2003) A self-consistent integral equation: bridge function and thermodynamic properties for the Lennard-Jones fluid. J Chem Phys 147: 114112. |
[48] | Bomont JM, Bretonnet JL (2004) A consistent integral equation theory for hard spheres. J Chem Phys 121: 1548-1552. doi: 10.1063/1.1764772 |
[49] | Bomont JM (2008) Recent advances in the field of integral equation theories: bridge functions and applications to classical fluids. Adv Chem Phys 139: 1-83. |
[50] | Labik S, Malijevski A, Vonka P (1985) A rapidly convergent method of solving the OZ equation. Mol Phys 56: 709-715. doi: 10.1080/00268978500102651 |
[51] | Kikuchi R (1951) A theory of cooperative phenomena. Phys Rev 81: 988-1003. doi: 10.1103/PhysRev.81.988 |
[52] | Green S (1952) The Molecular Theory of Fluids, Amsterdam: Elsevier. |
[53] | Nettleton RE, Green M (1958) Expression in terms of molecular distribution functions for the entropy density in an infinite system. J Chem Phys 29: 1365-1370. doi: 10.1063/1.1744724 |
[54] | Baranyai A, Evans DJ (1989) Direct entropy calculation from computer simulation of liquids. Phys Rev A 40: 3817-3822. doi: 10.1103/PhysRevA.40.3817 |
[55] | Wallace DC (1987) On the role of density fluctuations in the entropy of a fluid. J Chem Phys 87: 2282-2284. doi: 10.1063/1.453158 |
[56] | Laird BB, Haymet A (1992) Calculation of the entropy from multiparticle correlation functions. Phys Rev A 45: 5680-5689. doi: 10.1103/PhysRevA.45.5680 |
[57] | Piaggi PM, Parrinello M (2017) Entropy based fingerprint for local crystalline order. J Chem Phys 147: 114112. doi: 10.1063/1.4998408 |
[58] | Bomont JM (2003) Excess chemical potential and entropy for pure fluids. J Chem Phys 119: 11484-11486. doi: 10.1063/1.1623184 |
[59] | Bomont JM, Bretonnet JL (2003) A new approximative bridge function for pure fluids. Molec Phys 101: 3249-3261. doi: 10.1080/00268970310001619313 |
[60] | Bomont JM (2006) A consistent calculation of the chemical potential for dense simple fluids. J Chem Phys 124: 206101. doi: 10.1063/1.2198807 |
[61] | Bomont JM, Bretonnet JL (2007) Approximative "one particle" bridge function B(1)(r) for the theory of simple fluids. J Chem Phys 126: 214504. doi: 10.1063/1.2737046 |
[62] | Israelachvili JN (2011) Intermolecular and Surface Forces, 3rd Eds., Amsterdam: Elsevier. |