Citation: Wisawat Keaswejjareansuk, Xiang Wang, Richard D. Sisson, Jianyu Liang. Electrospinning process control for fiber-structured poly(Bisphenol A-co-Epichlorohydrin) membrane[J]. AIMS Materials Science, 2020, 7(2): 130-143. doi: 10.3934/matersci.2020.2.130
[1] |
Pang X, Zhuang X, Tang Z, et al. (2010) Polylactic acid (PLA): research, development and industrialization. Biotechnol J 5: 1125-1136. doi: 10.1002/biot.201000135
![]() |
[2] |
Abdelrasoul A, Doan H, Lohi A, et al. (2015) Morphology control of polysulfone membranes in filtration processes: a critical review. ChemBioEng Rev 2: 22-43. doi: 10.1002/cben.201400030
![]() |
[3] |
Gabor H (2000) Polymer films in sensor applications: A review of present uses and future possibilities. Sens Rev 20: 98-105. doi: 10.1108/02602280010319169
![]() |
[4] |
Kang GD, Cao YM (2014) Application and modification of poly(vinylidene fluoride) (PVDF) membranes-A review. J Memb Sci 463: 145-165. doi: 10.1016/j.memsci.2014.03.055
![]() |
[5] |
Wanasekara N, Chalivendra V, Calvert P (2011) Sub-micron scale mechanical properties of polypropylene fibers exposed to ultraviolet and thermal degradation. Polym Degrad Stab 96: 432-437. doi: 10.1016/j.polymdegradstab.2011.01.021
![]() |
[6] |
Alexander JV, Neely JW, Grulke EA (2014) Effect of chemical Functionalization on the mechanical properties of polypropylene hollow fiber membranes. J Polym Sci Pol Phys 52: 1366-1373. doi: 10.1002/polb.23572
![]() |
[7] |
Ye Z, Zhu S, Wang WJ, et al. (2003) Morphological and mechanical properties of nascent polyethylene fibers produced via ethylene extrusion polymerization with a metallocene catalyst supported on MCM-41 particles. J Polym Sci Pol Phys 41: 2433-2443. doi: 10.1002/polb.10588
![]() |
[8] |
Zhang F, Endo T, Qiu W, et al. (2002) Preparation and mechanical properties of composite of fibrous cellulose and maleated polyethylene. J Appl Polym Sci 84: 1971-1980. doi: 10.1002/app.10428
![]() |
[9] |
Shubhra QTH, Alam AKMM, Quaiyyum MA (2013) Mechanical properties of polypropylene composites: A review. J Thermoplast Compos 26: 362-391. doi: 10.1177/0892705711428659
![]() |
[10] |
Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A-Appl S 40: 404-412. doi: 10.1016/j.compositesa.2009.01.002
![]() |
[11] |
Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7: 216-223. doi: 10.1088/0957-4484/7/3/009
![]() |
[12] |
Yoshimoto H, Shin YM, Terai H, et al. (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24: 2077-2082. doi: 10.1016/S0142-9612(02)00635-X
![]() |
[13] |
Jung JW, Lee CL, Yu S, et al. (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4: 703-750. doi: 10.1039/C5TA06844D
![]() |
[14] |
Zhang F, Yuan C, Zhu J, et al. (2013) Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv Funct Mater 23: 3909-3915. doi: 10.1002/adfm.201203844
![]() |
[15] |
Formo E, Lee E, Campbell D, et al. (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8: 668-672. doi: 10.1021/nl073163v
![]() |
[16] |
Gopal R, Kaur S, Ma Z, et al. (2006) Electrospun nanofibrous filtration membrane. J Memb Sci 281: 581-586. doi: 10.1016/j.memsci.2006.04.026
![]() |
[17] |
Choi SS, Lee YS, Joo CW, et al. (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochimica Acta 50: 339-343. doi: 10.1016/j.electacta.2004.03.057
![]() |
[18] | Vanangamudi A, Yang X, Duke MC, et al. (2019) Nanofibers for membrane applications. In: Barhoum A, Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham, 937-960. |
[19] |
Yoon K, Kim K, Wang X, et al. (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47: 2434-2441. doi: 10.1016/j.polymer.2006.01.042
![]() |
[20] |
Deitzel JM, Kleinmeyer JD, Hirvonen JK, et al. (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42: 8163-8170. doi: 10.1016/S0032-3861(01)00336-6
![]() |
[21] |
Zhang C, Yuan X, Wu L, et al. (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41: 423-432. doi: 10.1016/j.eurpolymj.2004.10.027
![]() |
[22] |
Cho D, Zhou H, Cho Y, et al. (2010) Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt. Polymer 51: 6005-6012. doi: 10.1016/j.polymer.2010.10.028
![]() |
[23] | Al-Attabi R, Morsi YS, Schütz JA, et al. (2018) Electrospun membranes for airborne contaminants capture. In: Barhoum A, Bechelany M, Makhlouf A, Handbook of Nanofibers, Springer-Cham, 1-18. |
[24] |
Iriarte MA, Iruin JJ, Eguiazábal JI (1989) Thermal decomposition of miscible phenoxy/poly(ethylene oxide) blends. J Mater Sci 24: 1021-1024. doi: 10.1007/BF01148793
![]() |
[25] |
Zhang R, Luo X, Ma D (1995) Miscibility of polyhydroxy ether of bisphenol-A with ethylene terephthalate-caprolactone copolyesters. Eur Polym J 31: 1011-1014. doi: 10.1016/0014-3057(95)00048-8
![]() |
[26] |
Kim BK, Choi CH (1996) Melt blends of poly(methyl methacrylate) with a phenoxy. Polymer 37: 807-812. doi: 10.1016/0032-3861(96)87257-0
![]() |
[27] |
Corres MA, Zubitur M, Cortazar M, et al. (2011) Thermal and thermo-oxidative degradation of poly(hydroxy ether of bisphenol-A) studied by TGA/FTIR and TGA/MS. J Anal Appl Pyrol 92: 407-416. doi: 10.1016/j.jaap.2011.08.002
![]() |
[28] |
Guo Q (1995) Effect of curing agent on the phase behaviour of epoxy resin/phenoxy blends. Polymer 36: 4753-4760. doi: 10.1016/0032-3861(95)99290-B
![]() |
[29] |
Jeong HM, Ahn BK, Kim BK (2001) Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. Eur Polym J 37: 2245-2252. doi: 10.1016/S0014-3057(01)00123-9
![]() |
[30] |
Yilmaz T, Özarslan Ö, Yildiz E, et al. (1998) Effects of nonreactive resins on the properties of a UV-curable methacrylated urethane resin. J Appl Polym Sci 69: 1837-1845. doi: 10.1002/(SICI)1097-4628(19980829)69:9<1837::AID-APP19>3.0.CO;2-I
![]() |
[31] |
Qipeng G, Jinyu H, Binyao L, et al. (1991) Blends of phenolphthalein poly(ether ketone) with phenoxy and epoxy resin. Polymer 32: 58-65. doi: 10.1016/0032-3861(91)90562-W
![]() |
[32] |
Choi GD, Kim SH, Jo WH, et al. (1995) The morphology and mechanical properties of phenoxy/liquid crystalline polymer blends and the effect of transesterification. J Appl Polym Sci 55: 561-569. doi: 10.1002/app.1995.070550403
![]() |
[33] |
Wu H, Ma CM, Lin J (1997) Processability and properties of phenoxy resin toughened phenolic resin composites. J Appl Polym Sci 63: 911-917. doi: 10.1002/(SICI)1097-4628(19970214)63:7<911::AID-APP11>3.0.CO;2-U
![]() |
[34] |
Yang BX, Shi JH, Pramoda KP, et al. (2007) Enhancement of stiffness, strength, ductility and toughness of poly(ethylene oxide) using phenoxy-grafted multiwalled carbon nanotubes. Nanotechnology 18: 125606. doi: 10.1088/0957-4484/18/12/125606
![]() |
[35] |
Goh HW, Goh SH, Xu GQ, et al. (2003) Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/phenoxy resin composite. Chem Phys Lett 373: 277-83. doi: 10.1016/S0009-2614(03)00621-3
![]() |
[36] | Ueki T, Nojima K, Asano K, et al. (1998) Toughening of epoxy resin systems for cryogenic use. Adv Cryog Eng Mater 44: 277-283. |
[37] |
Ueki T, Nishijima S, Izumi Y (2005) Designing of epoxy resin systems for cryogenic use. Cryogenics 45: 141-148. doi: 10.1016/j.cryogenics.2004.07.002
![]() |
[38] |
Bhat AH, Abdul Khalil HPS, Bhat IUH, et al. (2011) Development and characterization of novel modified red mud nanocomposites based on poly(hydroxy ether) of bisphenol A. J Appl Polym Sci 119: 515-522. doi: 10.1002/app.32654
![]() |
[39] |
Yi JW, Lee W, Seong DG, et al. (2016) Effect of phenoxy-based coating resin for reinforcing pitch carbon fibers on the interlaminar shear strength of PA6 composites. Compos Part A-Appl S 87: 212-219. doi: 10.1016/j.compositesa.2016.04.028
![]() |
[40] |
Beier U, Sandler JKW, Altstadt V, et al. (2009) Mechanical performance of carbon fibre-reinforced composites based on stitched and bindered preforms. Compos Part A-Appl S 40: 1756-1763. doi: 10.1016/j.compositesa.2009.08.012
![]() |
[41] |
Beier U, Wolff-Fabris F, Fischer F, et al. (2008) Mechanical performance of carbon fibre-reinforced composites based on preforms stitched with innovative low-melting temperature and matrix soluble thermoplastic yarns. Compos Part A-Appl S 39: 1572-1581. doi: 10.1016/j.compositesa.2008.06.003
![]() |
[42] | Chemical Retrieval on the Web (CROW), Polymer properties database: epoxy or phenoxy resin, 2018. Available from: https://polymerdatabase.com/polymers/bisphenol-adiglycidyletherepoxyresin.html. |
[43] |
Lee SG, Han KS, Joo CW, et al. (2004) Electrospun PVDF nanofiber web as polymer electrolyte or separator. Electrochim Acta 50: 339-343. doi: 10.1016/j.electacta.2004.03.057
![]() |
[44] |
Hao J, Lei G, Li Z, et al. (2013) A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery. J Memb Sci 428: 11-16. doi: 10.1016/j.memsci.2012.09.058
![]() |
[45] |
Zhang J, Liu Z, Kong Q, et al. (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Inter 5: 128-134. doi: 10.1021/am302290n
![]() |
[46] | Yanilmaz M, Dirican M, Zhang X (2018) Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochim Acta 133: 501-508. |
[47] | U.S. National Library of Medicine, Acetone, 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/180. |
[48] | U.S. National Library of Medicine, N,N-Dimethylformamide, 2004. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/6228. |
[49] |
Thompson CJ, Chase GG, Yurin AL, et al. (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymers 48: 6913-6922. doi: 10.1016/j.polymer.2007.09.017
![]() |
[50] |
Shawon J, Sung C (2004) Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. J Mater Sci 39: 4605-4613. doi: 10.1023/B:JMSC.0000034155.93428.ea
![]() |
[51] |
Lin J, Ding B, Yu J, et al. (2010) Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl Mater Inter 2: 521-528. doi: 10.1021/am900736h
![]() |
[52] | Gill DS, Sherma AN (1982) Acetone + NN-Dimethylformamide solvent system. Part 2-Conductance studies of some electrolytes in Acetone + NN-Dimethylformamide mixtures at 25 ºC. J Chem Soc Faraday Trans 78: 465-474. |
[53] | Gill DS, Schneider H (1980) Acetone-N,N-dimethylformamide solvent system. Part 1-properties of Acetone-N,N-dimethylformamide binary mixtures. Indian J Chem 19A: 313-316. |
[54] |
Yoon K, Hsiao BS, Chu B (2009) Formation of functional polyethersulfone electrospun membrane for water purification by mixed solvent and oxidation process. Polymer 50: 2893-2899. doi: 10.1016/j.polymer.2009.04.047
![]() |
[55] | Qian YF, Su Y, Li XQ, et al. (2010) Electrospinning of polymethyl methacrylate nanofibers in different solvents. Irian Polym J 19: 123-129. |
[56] |
Katsogiannis KAG, Vladisavljevic GT, Georgiadou S (2015) Porous electrospun polycaprolactone (PCL) fibres by phase separation. Eur Polym J 69: 284-295. doi: 10.1016/j.eurpolymj.2015.01.028
![]() |
[57] |
Casasola R, Thomas NL, Trybala A, et al. (2014) Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55: 4728-4737. doi: 10.1016/j.polymer.2014.06.032
![]() |
[58] |
Kugel RW (1998) Raoult's law: binary liquid-vapor phase diagrams, a simple physical chemistry experiment. J Chem Educ 75: 1125-1129. doi: 10.1021/ed075p1125
![]() |
[59] | Kolling OW (1993) Dielectric characterization of cosolvents containing N,N-dimethylformamide. Trans Kansas Acad Sci 97: 88. |
[60] |
Ligneris E, Dumee LF, Al-Attabi R, et al. (2019) Mixed matrix poly(vinyl alcohol)-copper nanofibrous anti-microbial air-microfilters. Membranes 9: 87-100. doi: 10.3390/membranes9070087
![]() |
[61] |
Jacobs V, Anandjiwala RD, Maaza M (2010) The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 115: 3130-3136. doi: 10.1002/app.31396
![]() |
[62] | Sigma-Aldrich, Poly(bisphenol A-co-epichlorohydrin), 2019. Available at: https://www.sigmaaldrich.com/catalog/product/aldrich/181196. |
[63] |
Sainsbury T, Gnaniah S, Spencer SJ, et al. (2017) Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon 114: 367-376. doi: 10.1016/j.carbon.2016.11.061
![]() |
[64] |
Al-Attabi R, Dumee LF, Schutz JA, et al. (2018) Pore engineering towards highly efficient electrospun nanofibers membranes for ae rosol particle removal. Sci Total Environ 625: 706-715. doi: 10.1016/j.scitotenv.2017.12.342
![]() |
[65] | Mark JE (2009). Polymer Data Handbook, 2 Eds., New York: Oxford University Press, 190: 1170. |
[66] |
Kim YJ, Ahn CH, Lee MB, et al. (2011) Characteristics of electrospun PVDF/SiO2 composite nanofiber membranes as polymer electrolyte. Mater Chem Phys 127: 137-142. doi: 10.1016/j.matchemphys.2011.01.046
![]() |
[67] | Yang K, Ma X, Chen F, et al. (2017) Preparation and characterization of gel polymer electrolyte based on electrospun polyhedral oligomeric silsesquioxane-poly(methyl methacrylate)8/polyvinylidene fluoride hybrid nanofiber membranes for lithium-ion batteries. J Solid State Electrochem 22: 581-590 |
[68] |
Lee KH, Kim HY, Ryu YJ, et al. (2003) Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. J Polym Sci Pol Phys 41: 1256-1262. doi: 10.1002/polb.10482
![]() |