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Abstract: Porous and fiber structures are utilized to create lightweight materials for many 
applications. Poly(bisphenol A-co-epichlorohydrin) PBE or phenoxy resin is a widely used 
thermoplastic resin in thermoplastic, blends, and polymer matrices. In this article, PBE was selected 
as a model thermoplastic to fabricate a porous membrane with suitable structure and properties 
through an electrospinning process. The morphology of the electrospun membrane was effectively 
controlled by adjusting solution concentration and solvent composition and regulating acceleration 
potential, while keeping the solution feed rate and tip-to-collector distance at specific values. It was 
observed that the elastic modulus and tensile strength of the obtained porous PBE membranes were 
dependent on structure and form. With consistent fiber morphology, the research process obtained a 
relatively high elastic modulus, tensile strength, and density at 9.125 ± 2.573 GPa, 1.260 ± 0.195 MPa, 
and 0.420 ± 0.056 g/cm3, respectively. Thermal analysis showed insignificant differences in the 
thermal stability between the electrospun samples and raw materials. 

Keywords: electrospinning; fiber; poly(bisphenol A-co-epichlorohydrin); porous membrane; 
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1. Introduction 

Thermoplastic is extensively used in many applications such as consumer products, biomedical 
materials, chemical sensors, filtration and separation, data storage and transmission, energy materials, 
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and in the manufacturing process [1–4]. In addition to the ease of processing, mechanical 
performance is an important factor for thermoplastic utilization. Adding fiber materials and forming 
fiber composite thermoplastics to improve mechanical properties is a widely applied and well-
documented practice [5–10]. Interestingly, recently it was shown that fiber-structured thermoplastics 
demonstrated significant improvement in mechanical properties compared with the same material 
having a non-fiber structure. For example, studies of Alexander and Wanasekara showed that the 
polypropylene PP fibers had tensile strength as high as 200 MPa [5,6]. Ye demonstrated that the 
polyethylene PE fibers had tensile strength in a range of 26 MPa–3.3 GPa, depending upon the 
production process, while non-fiber-structured, injection-molded, high-density polyethylene HDPE 
had a tensile strength of less than 50 MPa [6]. 

Electrospinning (ES) is an efficient and versatile process to fabricate highly porous  
membranes [11]. It is a straightforward technique to create continuous fibers with diameters ranging 
from nano- to micrometers. In this process, a high electric potential is applied to a spinneret (needle), 
which is connected to a syringe that holds a polymer solution. The polymer solution is fed by a 
syringe pump to be spun in the applied electric field. During the spinning process, the charged 
polymer solution is elongated to fiber-like jets and then collected on a grounded collector. The ES 
process has been studied for many applications, such as biomaterials, batteries, capacitors, catalysts, 
and filtration systems [12–16]. Several thermoplastic materials have been deployed to create various 
ES membranes. A summary of the ES-thermoplastics, solvent system, and applications are shown in 
Table 1. 

Table 1. A summary of electrospun thermoplastic materials and their applications. 

Material Solvent Fiber diameter (μm) Applications 

Polyvinylidene difluoride PVdF [17,18] N,N–dimethylacetamide 
DMAc 

0.40–0.51 Battery separator; polymer  
electrolyte 

DMAc/acetone 0.38 Microfiltration membrane 

N,N–dimethylformamide 
DMF 

0.50 Membrane distillation 

Polyacrylonitrile PAN [19] DMF 0.75 Ultrafiltration membrane 

Polyethylene oxide PEO [20] Water 0.27–0.40 Biomedical applications; 
solid-polymer electrolyte 

Polyvinyl alcohol PVA [21] Water 0.08–0.24 Biomedical applications;  
filtration membrane 

Polypropylene PP [22] Decalin 0.80 Battery separator; filtration  
membrane; protective clothing 

PAN/PVA [18] DMF (PAN); water (PVA) 0.15 Ultrafiltration membrane 

Polyamide-6 PA-6 [23] Formic acid 0.17 Air filtration membrane 

Polyimide PI [23] DMF 0.30 High temperature resistance, air 
filtration membrane 

Poly(bisphenol-A-co-epichlorohydrin) PBE, or phenoxy resin, is a copolymer of bisphenol-A 
with epichlorohydrin and is a widely-used thermoplastic resin. It is ductile, tough, and miscible with 
various polymers, due to the presence of a pendant hydroxyl group (proton donor with appropriate 
functional groups) [24–27]. It has been shown to increase the glass-transition temperature of 
functional polymer blends, such as in thermal-responsive, shape-memory applications [25–29]. It has 
been used to increase the tensile strength, elongation, elastic modulus, and flexural strength in 
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polymer blends [30–33]. The PBE composites, and the blends with carbon nanotubes, have shown an 
improvement in storage modulus [34,35]. PBE is also used for increasing the fracture toughness as a 
polymer matrix and a modifier for cryogenic applications [36,37]. The PBE matrix exhibits 
significant dispersion of organic modified red mud and enhanced overall thermal stability of organic-
inorganic composites [38]. In addition to being a vital component in polymer blends and composites, 
the PBE-based materials were used as coating agents and binders to improve interfacial adhesion of 
carbon–fiber-reinforced thermoplastic composites and have gained interest as high-performance 
composites for aerospace applications [39–41]. 

In this study, PBE was selected as a model thermoplastic, and a PBE-porous membrane was 
created using the ES process. Various microstructures with different densities, elastic modulus, and 
tensile strength were obtained, by adjusting the concentration of the polymer solution, the solvent 
system, and acceleration potential. Membrane morphology and mechanical and thermal properties 
were studied, using scanning electron microscopy (SEM), tensile testing, and thermogravimetric 
analysis (TGA), respectively. This study shows that a consistent fiber structure resulted in higher 
Young’s Modulus and tensile strength, compared with those of other morphologies. This study also 
identifies the process parameter ranges that reliably resulted in consistent fiber morphology in PBE 
material. 

2. Materials and methods 

2.1. Materials 

Poly(bisphenol A-co-epichlorohydrin) (PBE, Mw = 40000 g/mol, Tg ~ 108 oC [42]), acetone 
(laboratory standard) and N,N–dimethylformamide (DMF, anhydrous 99.8%) were purchased from 
Sigma–Aldrich and used as received. 

2.2. Electrospinning experiments 

The study was conducted in two stages. In stage one, the goal was to identify a suitable solvent 
composition. Variable acetone:DMF (%, v/v) ratios were studied, in order to identify a desirable 
solvent ratio for creating consistent fiber structures. Acetone:DMF (%, v/v) ratios were varied from 
0:100 to 80:20, with an incremental step of a 10% increase in acetone and a 10% decrease in DMF 
for each data point. DMF was gradually added to the acetone and stirred, until forming a 
homogeneous solution. Then 0.200 g/mL of PBE was dissolved in these acetone:DMF-solvent 
solutions for the ES experiments. The obtained polymer solution was loaded into a 10 mL syringe, 
equipped with a stainless-steel gauge 18 blunt-tip needle (0.838 mm, inner diameter). The polymer 
solution was fed at a feeding rate of 0.3 mL/h. An acceleration potential of 25 kV was applied at the 
needle-tip against the collector. A stationary aluminum foil collector was set up at 15 cm (tip-to-
collector distance) from the needle tip. Electrospinning experiments were conducted at 23–25 ºC and 
50–55% relative humidity. 

In stage two, after a suitable acetone:DMF ratio was identified, different PBE concentrations 
were investigated, including 0.125, 0.150, 0.175, 0.200, 0.225, and 0.250 g/mL, at two different 
acceleration potentials, 20 kV and 25 kV. 
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2.3 Characterizations 

Surface micrographs were obtained by a field emission scanning electron microscope (FE-SEM, 
JEOL 7000F), operated at 2 kV. Average density of the membrane spun with each solution 
concentration was calculated by the weight and volume of three ES samples with an identical 
diameter of 7/32 inch (0.56 cm). Mechanical properties were measured by a universal testing 
machine (UTM, Instron 5567A) with a cross-head speed of 2 mm/min. The samples that were used 
to perform mechanical property measurements were prepared following the previously reported 
electrospinning studies [43–46]. Each ES membrane was cut into a strip of 0.25 inches (0.63 cm) 
width, 1 inch (2.54 cm) length, with 0.5 inches (1.27 cm) gauge-length and approximate 65 µm 
thickness. Each ES-sample was obtained after 40 min. of electrospinning. After drying, the thickness 
of the deposition was ≥65 μm in the thickest portion. A micrometer was used to measure the 
thickness at different locations in each sample. The portion that had a thickness of approximately  
65 μm was chosen and cut into strips for testing. At least three ES samples were measured for each 
data point. The samples were also analyzed by thermogravimetric analysis (TGA, TA Instrument 
Q50) in air, in a temperature range of 35–700 ºC, at a heating rate of 10 ºC/min. 

3. Results and discussion 

3.1. Solvent composition 

The use of the acetone and DMF solvent system in this study was informed by the established 
understanding of the vapor pressure effect. The boiling point and vapor pressures are 56 ºC for 
acetone vs. 153 ºC for DMF, and 30.79 kPa for acetone vs. 0.49 kPa for DMF, at 25 ºC,  
respectively [47,48]. Acetone has a relatively high vapor pressure, at 25 ºC. Hence, the acetone 
evaporated quickly, which was expected to assist in obtaining thin fibers. The DMF, on the other 
hand, evaporated slowly, which was anticipated to provide flexibility and allow the spun jets to 
elongate [49–51]. The rheology of the acetone and DMF binary mixture was thoroughly  
studied [52,53]. Previous research has investigated the effects of vapor pressure, boiling point, and 
viscosity of the various binary solvents on morphology [49,51,54–57]. As the solution jets were spun 
in the electric field, the dielectric constant was suspected to be a factor in producing a membrane 
with the desired morphology. Hence, dielectric constants of the acetone and DMF solvents were 
provided in this report. 

Different acetone:DMF (%, v/v) ratios were studied to identify a suitable solvent ratio for 
consistent fiber structures. It was found that a minimum of 20% DMF was needed to fully dissolve 
0.200 g/mL of PBE and form a homogeneous solution. Vapor pressure of the mixed solvent at each 
acetone:DMF ratio was the summation of the partial vapor pressure of acetone and DMF, and 
calculated by Eq 1 [58]. The dielectric constant of the solvent changes as a function of the 
composition. O. Kolling experimentally determined and calculated the dielectric constants of the 
acetone:DMF system at 25 ºC by Eq 2, where  is the mole fraction of acetone [59]: 

, 	 	 	 	 , 	 	 	 	 ,                        (1) 

	 	36.69	 	15.99                                                      (2) 
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Table 2. Dielectric constant of the mixed solvents at different ratios of acetone:DMF. 

Acetone:DMF 

% (v/v) 

Moles of solvent (mol) Mole fraction 

of acetone 

Vapor pressure 

(kPa) 

Dielectric constant Membrane structure 

Acetone DMF 

80:20 0.103 0.031 0.769 23.779 24.400 Fiber with large diameter 

distribution 70:30 0.088 0.045 0.660 20.476 26.143 

60:40 0.073 0.059 0.555 17.298 27.820 Fiber with small diameter 

distribution 

50:50 0.060 0.072 0.454 14.237 29.435 Fiber-bead 

40:60 0.047 0.084 0.356 11.288 30.992 

30:70 0.034 0.096 0.263 8.444 32.493 Nonporous membrane; 

process turned to 

electrospray 

20:80 0.022 0.108 0.172 5.699 33.941 

10:90 0.011 0.119 0.084 3.050 35.339 

0:100 0.000 0.129 0.000 0.490 36.690 

 

Figure 1. Effect of solvent composition of acetone:DMF (%, v/v) to morphology of the 
ES-PBE membrane: (a) 80:20; (b) 70:30; (c) 60:40; (d) 50:50; (e) 40:60; (f) 30:70;  
(g) 20:80; and (h) 10:90 (700× magnification, scale bar corresponds to 10 μm). 

Using Eq 2, the dielectric constants of the various solvents tested in this study were calculated 
and are summarized in Table 2. It was observed that a high dielectric constant resulted in a 
nonporous membrane. Figure 1 shows the typical morphology of ES-PBE membranes with different 
solvent ratios. Porous structures of the ES-PBE membrane were obtained, with amounts of DMF up 
to 60% (Figure 1a–c). Fiber structures were obtained up to a dielectric constant (  of approximately 
28 (Table 2). Although a homogeneous solution can be obtained with pure DMF, acetone is required 
to control the morphology, because acetone evaporates faster than DMF, and the rapid evaporation is 
needed to reduce the diameter of the spinning jets prior to being collected on the grounded collector. 
When the amount of acetone was 40–50% (Figure 1d,e), a mixed fiber-bead structure was obtained. 
When the amount of acetone was less than 40% (Figure 1f–h), there were no fibers observed, and the 
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membrane became nonporous. A consistently fine fiber structure (Figure 1c) was reliably obtained 
with an acetone:DMF ratio of 60:40 (%, v/v). Thus, this solvent ratio was selected to be used in 
future experiments, in order to rule out any variation in solvent composition. 

3.2. PBE concentration and acceleration potential 

The solvent ratio of 60:40 (%, v/v) acetone:DMF was used in experiments with different 
concentrations and acceleration potentials. Concentrations ranging from 0.125 to 0.250 g/mL were 
tested under two acceleration potentials, 20 kV and 25 kV. At low concentrations, ranging           
from 0.125 to 0.175 g/mL (Figure 2a–c and 2a’–c’), a mixed fiber-bead structure was observed with 
beads dominant at both acceleration potentials. When the concentrations were increased, this 
structure gradually transitioned to a fiber-dominant structure. The fiber structure was obtained at 
concentrations of 0.200–0.250 g/mL (Figure 2d–f and 2d’–f’) at both acceleration potentials. At the 
concentration of 0.200 g/mL, fine and consistent fiber structure was reliably obtained (Figure 2d,d’). 
At the higher concentration of 0.250 g/mL (Figure 2f,f’), thicker fibers were obtained. At the 
concentration of 0.125 g/mL, a powder-like deposition was formed on the collector. 

 

Figure 2. Effects of the concentration and the acceleration potential at 20 kV (a–f)  
and 25 kV (a’–f’) on the morphology: (a) and (a’) 0.125 g/mL; (b) and (b’) 0.150 g/mL; 
(c) and (c’) 0.175 g/mL; (d) and (d’) 0.200 g/mL; (e) and (e’) 0.225 g/mL; (f) and  
(f’) 0.250 g/mL (3000× magnification, scale bar corresponds to 1 μm). 
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It is known that the morphology of the ES membrane may be affected by the acceleration 
potential. The high acceleration potentials (20 kV and 25 kV) in this study were chosen based on 
previous studies [21,60,61]. A high-acceleration potential results in a stronger electric field. Hence, 
the charged solution jets, at high acceleration potential, move faster and produce fibers with a 
smaller diameter than at the low acceleration potential [61]. The distribution of the fiber diameter  
(Figure 2d–f and 2d’–f’) was measured from 50 different fibers in each SEM figure. The membranes 
created from the solution concentrations of 0.225 g/mL and 0.250 g/mL had either a wide 
distribution or showed a bimodal distribution of the fiber diameter. In addition, average fiber 
diameter expanded with an increase in solution concentration. Similar observations were reported in 
other studies of electrospun thermoplastics [19,21,61]. The average fiber diameters created from the 
solution concentration of 0.200 g/mL were 0.49 ± 0.14 μm (spun at 20 kV, Figure 2d) and 0.29 ± 
0.02 μm (spun at 25 kV, Figure 2d’). An acceleration potential of 20 kV enables better control over 
the total deposition thickness, due to a slower deposition rate, as compared with that of 25 kV. In this 
study, 20 kV was used in subsequent experiments. 

3.3. TGA study of ES-PBE membrane 

Figure 3 shows the TGA thermogram of the ES-PBE membranes and pellets. The ES-PBE 
membranes did not show significant weight change until 370 ºC (initial decomposition temperature). 
Two decomposition steps occurred: the first one at 370–420 ºC and the second one between  
480–650 ºC. This observation is similar to Corres’ study on thermal decomposition of the PBE 
powder under ambient atmosphere [27]. Corres et al.’s study shows that the presence of oxygen in an 
ambient atmosphere affects the degradation behavior and results in two decomposition steps in air, as 
opposed to a single decomposition step in a nitrogen environment [27]. 

 

Figure 3. TGA thermogram illustrating thermal decomposition temperatures (~370 oC) 
and thermal stability of the ES-PBE membranes. 

The ES-PBE membrane was further examined at temperatures slightly higher than the 
material’s glass-transition temperature Tg ~ 108 ºC [42] (Figure 4). Three ES samples, obtained by 
the same processing conditions (solution concentration = 0.200 g/mL, acceleration potential = 20 kV), 
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were cut into squares of 2 cm (0.78 inch) by 2 cm. The samples were heated in a box furnace, from 
room temperature to 110 ºC (slightly higher than the Tg), 115 oC, and 118 ºC, then held for 1 h.  
At 110 ºC, a change in the fiber morphology was already noticeable (compared to Figure 2d).         
At 118 ºC, some fibers were fused together. Even though ES-PBE membranes do not start to 
decompose until 370 ºC, it is probably necessary to set the service temperature lower than the Tg for 
applications that demand integrity of the membrane morphology and structure. 

 

Figure 4. SEM micrographs demonstrate macroscopic morphology deformation of the 
ES-PBE membrane (solution concentration = 0.200 g/mL, and acceleration potential  
= 20 kV) at tested temperatures: (a) 110 ºC; (b) 115 ºC; and (c) 118 ºC (3000× 
magnification, scale bar corresponds to 1 μm). 

3.4. Mechanical property 

Elastic modulus and tensile strength of the ES-PBE membranes were measured and listed in 
Table 3. In comparison to the reported nonporous, cast PBE, the electrospun samples had a similar or 
higher elastic modulus but exhibited lower tensile strength [63]. The relatively large standard 
deviation of tensile strength and elastic modulus was typical for the ES fibers deposited on the 
stationary collector, due to the random depositions. This observation agrees with a previous study by 
Al-Attabi et al. [64]. Differences in the tensile strength between the electrospun membrane and the 
raw materials have also been seen in previous electrospinning studies on other thermoplastics, for 
example, PVdF (1.2–7.5 vs 42–43 MPa) and polyvinyl chloride PVC (0.90 vs 56.6 MPa) [65–68]. 
As presented in Figure 5, membranes with the mixed fiber-bead structure (solution concentrations 
<0.200 g/mL) had much lower tensile strength than that of the fiber structure (solution concentration 
≥0.200 g/mL). Although the tensile strength of the fiber-structured membranes was similar, the 
membranes with a more consistent fiber structure had a higher elastic modulus (Figure 6). It was 
observed that the membranes produced from a concentration of 0.200 g/mL had the highest elastic 
modulus and tensile strength among all the samples tested. 
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Table 3. Physical and mechanical properties of ES samples, which correspond to 
different polymer solution concentrations at an acceleration potential of 20 kV. 

Concentration of polymer solution  
(g/mL) 

Membrane structure Average density  
(g/cm3) 

E  
(GPa) 

TS  
(MPa) 

0.150 Fiber-bead 0.345 ± 0.029 1.129 ± 0.746 0.135 ± 0.065

0.175 Fiber-bead 0.263 ± 0.019 3.322 ± 0.736 0.294 ± 0.022

0.200 Consistent fiber 0.420 ± 0.056 9.125 ± 2.573 1.260 ± 0.195

0.225 Inconsistent fiber 0.368 ± 0.008 2.229 ± 0.994 1.055 ± 0.353

0.250 Inconsistent fiber 0.302 ± 0.005 5.019 ± 2.309 1.271 ± 0.112

PBE pellet - 1.180 [62] - - 

Cast PBE (thickness = 120 µm) [63] Nonporous - 1.2 [63] 41 [63] 

 

Figure 5. Tensile strength (MPa) correspondence with the polymer solution concentration (g/mL). 

 

Figure 6. Elastic modulus (GPa) correspondence with the polymer solution concentration (g/mL). 
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4. Conclusion 

In this report, porous PBE membranes were created by an electrospinning process. The thermal 
stability of the electrospun samples was confirmed to be similar to that of PBE pellets. In this study, 
the density, tensile strength, and elastic modulus varied, depending on the membrane morphology. 
Consistent fiber morphology resulted in high tensile strength and elastic modulus. The concentration 
of polymer solution, solvent composition, and acceleration potential were important factors 
influencing membrane morphology. Solvent composition determines the dielectric constant, which 
affects the spinning rate of the solution jets, and, hence, the membrane morphology. In addition, 
solvent composition is an important parameter for controlling morphology, due to the boiling point 
and the vapor pressure of each solvent component. PBE is used as an adhesive, coating agent, 
additive, and matrix to other functional materials. The porous, non-woven membranes of PBEs, with 
a high thermal stability similar to that of PBE pellets, may be desirable for applications at elevated 
temperatures that other ES membranes cannot withstand. 
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