Citation: Michael-Christian Mörl, Tilo Zülske, Robert Schöpflin, Gero Wedemann. Data formats for modelling the spatial structure of chromatin based on experimental positions of nucleosomes[J]. AIMS Biophysics, 2019, 6(3): 83-98. doi: 10.3934/biophy.2019.3.83
[1] | Lanctôt C, Cheutin T, Cremer M, et al. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8: 104–115. doi: 10.1038/nrg2041 |
[2] | Diermeier S, Kolovos P, Heizinger L, et al. (2014) TNFα signalling primes chromatin for NF-κB binding and induces rapid and widespread nucleosome repositioning. Genome Biol 15: 536. doi: 10.1186/s13059-014-0536-6 |
[3] | Müller O, Kepper N, Schöpflin R, et al. (2014) Changing chromatin fiber conformation by nucleosome repositioning. Biophys J 107: 2141–2150. doi: 10.1016/j.bpj.2014.09.026 |
[4] | Bajpai G, Padinhateeri R (2018) Irregular chromatin: packing density, fiber width and occurrence of heterogeneous clusters. bioRxiv: 453126. |
[5] | Busch N, Wedemann G (2009) Modeling genomic data with type attributes, balancing stability and maintainability. BMC Bioinf 10: 97. doi: 10.1186/1471-2105-10-97 |
[6] | Teif VB (2015) Nucleosome positioning: resources and tools online. Briefings Bioinf 17: 745–757. |
[7] | Bowtie: Bowtie 2: fast and sensitive read alignment. Available from: http://bowtie-bio.sourceforge.net/bowtie2/index.shtml. |
[8] | BWA-Mapping: BWA Mapper. Available from: https://www.ridom.de/u/BWA_Mapper.html. |
[9] | Zhao Y, Wang J, Liang F, et al. (2019) NucMap: a database of genome-wide nucleosome positioning map across species. Nucleic Acids Res 47: D163–D169. doi: 10.1093/nar/gky980 |
[10] | Marti-Renom MA, Almouzni G, Bickmore WA, et al. (2018) Challenges and guidelines toward 4D nucleome data and model standards. Nat Genet 50: 1352. doi: 10.1038/s41588-018-0236-3 |
[11] | Schöpflin R, Teif VB, Müller O, et al. (2013) Modeling nucleosome position distributions from experimental nucleosome positioning maps. Bioinformatics 29: 2380–2386. doi: 10.1093/bioinformatics/btt404 |
[12] | Rippe K, Stehr R, Wedemann G (2012) Monte Carlo Simulations of nucleosome chains to identify factors that control DNA compaction and access. In: Schlick T, editor, Innovations in Biomolecular Modeling and Simulations. Cambridge: Royal Society of Chemistry, 198–235. |
[13] | Nordenskiold L (2017) Coarse-Grained Modeling of Biomolecules. In: Papoian GA, editor, Coarse-Grained Modeling of Biomolecules, CRC Press, 297–340. |
[14] | Jung J, Nishima W, Daniels M, et al. (2019) Scaling molecular dynamics beyond 100,000 processor cores for large-scale biophysical simulations. J Comput Chem 40: 1919–1930. |
[15] | Perišić O, Portillo-Ledesma S, Schlick T (2019) Sensitive effect of linker histone binding mode and subtype on chromatin condensation. Nucleic Acids Res 47: 4948–4957. doi: 10.1093/nar/gkz234 |
[16] | Nordenskiöld L, Soman A, Korolev N, et al. (2019) Structure and Dynamics of the Telomeric Nucleosome and Chromatin. Biophys J 116: 71a. |
[17] | W3C: XML Technology. Available from: https://www.w3.org/standards/xml/. |
[18] | W3C: The Extensible Stylesheet Language Family (XSL). Available from: https://www.w3.org/Style/XSL/. |
[19] | W3C: World Wide Web Consortium (W3C). Available from: https://www.w3.org/. |
[20] | Group OM: About the Unified Modeling Language Specification Version 2.5.1. Available from: https://www.omg.org/spec/UML/About-UML/. |
[21] | Kepper N, Foethke D, Stehr R, et al. (2008) Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation. Biophys J 95: 3692–3705. doi: 10.1529/biophysj.107.121079 |
[22] | Stehr R, Kepper N, Rippe K, et al. (2008) The effect of internucleosomal interaction on folding of the chromatin fiber. Biophys J 95: 3677–3691. doi: 10.1529/biophysj.107.120543 |
[23] | Lenz O (2018) The VTF Plugin is a plugin for the VMD software that reads the VTF format. Available from: https://github.com/olenz/vtfplugin/wiki. |
[24] | Lenz O: VMD-Visual Molecular Dynamics. Available from: http://www.ks.uiuc.edu/Research/vmd/. |
[25] | Information NCfB: Data Series GSE40896. Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE40896. |
[26] | Teif VB, Vainshtein Y, Caudron-Herger M, et al. (2012) Genome-wide nucleosome positioning during embryonic stem cell development. Nat struct mol biol 19: 1185–1192. doi: 10.1038/nsmb.2419 |
[27] | POV-Ray: POV-Ray-The Persistence of Vision Raytracer. Available from: http://www.povray.org/. |
[28] | Wedemann G, Langowski J (2002) Computer simulation of the 30-nanometer chromatin fiber. Biophy J 82: 2847–2859. doi: 10.1016/S0006-3495(02)75627-0 |
[29] | ECMA-404: ECMA-404 The JSON Data Interchange Standard. Available from: https://www.json.org/. |
[30] | Hucka M, Finney A, Sauro HM, et al. (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19: 524–531. doi: 10.1093/bioinformatics/btg015 |
[31] | Bascom GD, Schlick T (2018) 5-Mesoscale Modeling of Chromatin Fibers. In: Lavelle C, Victor J-M, editors. Nuclear Architecture and Dynamics. Boston: Academic Press, 123–147. |
[32] | Bascom GD, Sanbonmatsu KY, Schlick T (2016) Mesoscale modeling reveals hierarchical looping of chromatin fibers near gene regulatory elements. J Phys Chem B 120: 8642–8653. doi: 10.1021/acs.jpcb.6b03197 |
[33] | Ehrlich L, Münckel C, Chirico G, et al. (1997) A Brownian dynamics model for the chromatin fiber. Comput Appl Biosci 13: 271–279. |