Citation: Danton H. O’Day. Alzheimer’s Disease: A short introduction to the calmodulin hypothesis[J]. AIMS Neuroscience, 2019, 6(4): 231-239. doi: 10.3934/Neuroscience.2019.4.231
[1] |
Alzheimer's Association Calcium Hypothesis Workgroup (2017) Calcium hypothesis of Alzheimer's disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement 13: 178–182. doi: 10.1016/j.jalz.2016.12.006
![]() |
[2] | Khachaturian ZS (1994) Calcium hypothesis of Alzheimer's disease and brain aging. Ann N Y Acad Sci 747: 1–11. |
[3] |
Marx J (2007) Fresh evidence points to an old suspect: Calcium. Science 318: 384–385. doi: 10.1126/science.318.5849.384
![]() |
[4] | O'Day DH, Myre MA (2004) Calmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis. Biochem Biophys Res Commun 230: 1051–1054. |
[5] |
Brini M, Cali T, Ottolini D, et al. (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71: 2787–2814. doi: 10.1007/s00018-013-1550-7
![]() |
[6] |
Berridge MJ (2010) Calcium hypothesis of Alzheimer's disease. Pflüg Arch Eur J Phy 459: 441–449. doi: 10.1007/s00424-009-0736-1
![]() |
[7] |
Pepke S, Kinzer-Ursem T, Mihala S, et al. (2010) A dynamic model of interactions of Ca2+, calmodulin, and catalytic subunits of Ca2+/calmodulin-dependent protein kinase II. PLoS Comput Biol 6: e1000675. doi: 10.1371/journal.pcbi.1000675
![]() |
[8] |
Chin D, Means AR (2000) Calmodulin: A prototypical calcium sensor. Trends Cell Biol 10: 322–328. doi: 10.1016/S0962-8924(00)01800-6
![]() |
[9] |
Rhoads AR, Friedberg F (1997) Sequence motifs for calmodulin recognition. FASEB J 11: 331–340. doi: 10.1096/fasebj.11.5.9141499
![]() |
[10] |
Tidow H, Nissen P (2013) Structural diversity of calmodulin binding to its target sites. FEBS J 280: 5551–5565. doi: 10.1111/febs.12296
![]() |
[11] |
Sharma RK, Parameswaran S (2018) Calmodulin-binding proteins: A journey of 40 years. Cell Calcium 75: 89–100. doi: 10.1016/j.ceca.2018.09.002
![]() |
[12] | Hippius H, Neundörfer G (2003) The discovery of Alzheimer's disease. Dialogues Clin Neurosci 5: 101–108. |
[13] | Myre MA, Tesco G, Tanzi RE, et al. (2005) Calmodulin binding to APP and the APLPs. Molecular Mechanisms of Neurodegeneration: A Joint Biochemical Society/Neuroscience Ireland Focused Meeting; March 13–16, University College Dublin, Republic of Ireland. |
[14] |
Canobbio I, Catricalà S, Balduini C, et al. (2011) Calmodulin regulates the non-amyloidogenic metabolism of amyloid precursor protein in platelets. Biochem Biophys Acta 1813: 500–506. doi: 10.1016/j.bbamcr.2010.12.002
![]() |
[15] | Chavez SE, O'Day DH (2007) Calmodulin binds to and regulates the activity of beta-secretase (BACE1). Curr Res Alzheimers Dis 1: 37–47. |
[16] |
Corbacho I, Berrocal M, Torok K, et al. (2017) High affinity binding of amyloid β-peptide to calmodulin: Structural and functional implications. Biochem Biophys Res Commun 486: 992–997. doi: 10.1016/j.bbrc.2017.03.151
![]() |
[17] |
Cline EN, Bicca MA, Viola KL, et al. (2018) The amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 64: S567–S610. doi: 10.3233/JAD-179941
![]() |
[18] |
O'Day DH, Eshak K, Myre MA (2015) Calmodulin binding proteins and Alzheimer's disease: A review. J Alzheimers Dis 46: 553–569. doi: 10.3233/JAD-142772
![]() |
[19] |
Michno K, Knight D, Campusano JM, et al. (2009) Intracellular calcium deficits in Drosophila cholinergic neurons expressing wild type or FAD-mutant presenilin. PLoS One 4: e6904. doi: 10.1371/journal.pone.0006904
![]() |
[20] | Lee YC, Wolff J (1984) Calmodulin binds to both microtubule-associated protein 2 and tau proteins. J Biol Chem 259: 1226–1230. |
[21] | Padilla R, Maccioni RB, Avila J (1990) Calmodulin binds to a tubulin binding site of the microtubule-associated protein tau. Mol Cell Biochem 97: 35–41. |
[22] |
Huber RJ, Catalano A, O'Day DH (2013) Cyclin-dependent kinase 5 is a calmodulin-binding protein that associates with puromycin-sensitive aminopeptidase in the nucleus of Dictyostelium. Biochem Biophys Acta 1833: 11–20. doi: 10.1016/j.bbamcr.2012.10.005
![]() |
[23] |
Yu DY, Tong L, Song GJ, et al. (2008) Tau binds both subunits of calcineurin, and binding is impaired by calmodulin. Biochem Biophys Acta 1783: 2255–2261. doi: 10.1016/j.bbamcr.2008.06.015
![]() |
[24] |
Ghosh A, Geise KP (2015) Calcium/calmodulin-dependent kinase II and Alzheimer's disease. Mol Brain 8: 78. doi: 10.1186/s13041-015-0166-2
![]() |
[25] |
Reese LC, Taglialatela G (2011) A role for calcineurin in Alzheimer's disease. Curr Neuropharmacol 9: 685–692. doi: 10.2174/157015911798376316
![]() |
[26] |
Karch CM, Goate AM (2015) Alzheimer's disease risk genes and mechanisms of disease pathogenesis. Biol Psych 77: 43–51. doi: 10.1016/j.biopsych.2014.05.006
![]() |
[27] |
Newcombe EA Camats-Perna J, Silva ML, et al. (2018) Inflammation: The link between comorbidities, genetics and Alzheimer's disease. J Neuroinflamm 15: 276. doi: 10.1186/s12974-018-1313-3
![]() |
[28] |
Di Batista AM, Heinsinger NM, Rebeck GW (2016) Alzheimer's disease genetic risk factor APOE-4 also affects normal brain function. Curr Alzheimer Res 13: 1200–1207. doi: 10.2174/1567205013666160401115127
![]() |
[29] | Hansen DV, Hanson JE, Sheng M (2017) Microglia in Alzheimer's disease. J Cell Biol 217: 459–172. |
[30] |
Navarro V, Sanchez-Mejias E, Jimenez S, et al. (2018) Microglia in Alzheimer's disease: Activated, dysfunctional or degenerative. Front Aging Neurosci 10: 140. doi: 10.3389/fnagi.2018.00140
![]() |
[31] |
Jiang S, Li Y, Zhang C, et al. (2014) M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neurosci Bull 30: 295–307. doi: 10.1007/s12264-013-1406-z
![]() |
[32] |
Lucas JL, Wang D, Sadée W (2006) Calmodulin binding to peptides derived from the i3 loop of muscarinic receptors. Pharm Res 23: 647–653. doi: 10.1007/s11095-006-9784-9
![]() |
[33] |
Berrocal M, Sepulveda MR, Vazquez-Hernandez M, et al. (2012) Calmodulin antagonizes amyloid-β peptides-mediated inhibition of brain plasma membrane Ca2+-ATPase. Biochim Biophys Acta 1822: 961–969. doi: 10.1016/j.bbadis.2012.02.013
![]() |
[34] |
Ehlers MD, Zhang S, Bernhadt JP, et al. (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84: 745–755. doi: 10.1016/S0092-8674(00)81052-1
![]() |
[35] |
Rycroft BK, Gibb AJ (2002) Direct effects of calmodulin on NMDA receptor single-channel gating in rat hippocampal granule cells. J Neurosci 22: 8860–8868. doi: 10.1523/JNEUROSCI.22-20-08860.2002
![]() |
[36] |
Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer's disease. J Alzheimers Dis 57: 1041–1048. doi: 10.3233/JAD-160763
![]() |
[37] |
Hong HS, Hwang JY, Son SM, et al. (2010) FK506 reduces amyloid plaque burden and induces MMP-9 in AβPP/PS1 double transgenic mice. J Alzheimers Dis 22: 97–105. doi: 10.3233/JAD-2010-100261
![]() |
[38] |
Rozkalne A, Hyman BT, Spires-Jones TL (2011) Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol Dis 41: 650–654. doi: 10.1016/j.nbd.2010.11.014
![]() |
[39] |
Taglialatella G, Rastellini C, Cicalese L (2015) Reduced incidence of dementia in solid organ transplant patients treated with calcineurin inhibitors. J Alzheimers Dis 47: 329–333. doi: 10.3233/JAD-150065
![]() |
[40] |
Popugaeva E, Pchitskaya E, Bezprozvanny I (2017) Dysregulation of neuronal calcium homeostasis in Alzheimer's disease-A therapeutic opportunity? Biochem Biophys Res Commun 483: 998–1004. doi: 10.1016/j.bbrc.2016.09.053
![]() |