Research article Recurring Topics

When is a Face a Face? Schematic Faces, Emotion, Attention and the N170

  • Received: 30 June 2015 Accepted: 27 August 2015 Published: 11 September 2015
  • Emotional facial expressions provide important non-verbal cues as to the imminent behavioural intentions of a second party. Hence, within emotion science the processing of faces (emotional or otherwise) has been at the forefront of research. Notably, however, such research has led to a number of debates including the ecological validity of utilising schematic faces in emotion research, and the face-selectively of N170. In order to investigate these issues, we explored the extent to which N170 is modulated by schematic faces, emotional expression and/or selective attention. Eighteen participants completed a three-stimulus oddball paradigm with two scrambled faces as the target and standard stimuli (counter-balanced across participants), and schematic angry, happy and neutral faces as the oddball stimuli. Results revealed that the magnitude of the N170 associated with the target stimulus was: (i) significantly greater than that elicited by the standard stimulus, (ii) comparable with the N170 elicited by the neutral and happy schematic face stimuli, and (iii) significantly reduced compared to the N170 elicited by the angry schematic face stimulus. These findings extend current literature by demonstrating N170 can be modulated by events other than those associated with structural face encoding; i.e. here, the act of labelling a stimulus a ‘target’ to attend to modulated the N170 response. Additionally, the observation that schematic faces demonstrate similar N170 responses to those recorded for real faces and, akin to real faces, angry schematic faces demonstrated heightened N170 responses, suggests caution should be taken before disregarding schematic facial stimuli in emotion processing research per se.

    Citation: Frances A. Maratos, Matthew Garner, Alexandra M. Hogan, Anke Karl. When is a Face a Face? Schematic Faces, Emotion, Attention and the N170[J]. AIMS Neuroscience, 2015, 2(3): 172-182. doi: 10.3934/Neuroscience.2015.3.172

    Related Papers:

    [1] Panpan Jia, Jizhu Nan, Yongsheng Ma . Separating invariants for certain representations of the elementary Abelian $ p $-groups of rank two. AIMS Mathematics, 2024, 9(9): 25603-25618. doi: 10.3934/math.20241250
    [2] Hengbin Zhang . Automorphism group of the commuting graph of $ 2\times 2 $ matrix ring over $ \mathbb{Z}_{p^{s}} $. AIMS Mathematics, 2021, 6(11): 12650-12659. doi: 10.3934/math.2021729
    [3] Huaqing Gong, Shilin Yang . The representation ring of a non-pointed bialgebra. AIMS Mathematics, 2025, 10(3): 5110-5123. doi: 10.3934/math.2025234
    [4] Hicham Saber, Tariq Alraqad, Rashid Abu-Dawwas . On graded $ s $-prime submodules. AIMS Mathematics, 2021, 6(3): 2510-2524. doi: 10.3934/math.2021152
    [5] Fatma Zehra Uzekmek, Elif Segah Oztas, Mehmet Ozen . $ (\theta_i, \lambda) $-constacyclic codes and DNA codes over $ \mathbb{Z}_{4}+u\mathbb{Z}_{4}+u^{2}\mathbb{Z}_{4} $. AIMS Mathematics, 2024, 9(10): 27908-27929. doi: 10.3934/math.20241355
    [6] Pengcheng Ji, Jialei Chen, Fengxia Gao . Projective class ring of a restricted quantum group $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $. AIMS Mathematics, 2023, 8(9): 19933-19949. doi: 10.3934/math.20231016
    [7] Dong Su, Shilin Yang . Automorphism groups of representation rings of the weak Sweedler Hopf algebras. AIMS Mathematics, 2022, 7(2): 2318-2330. doi: 10.3934/math.2022131
    [8] Junyong Zhao . On the number of unit solutions of cubic congruence modulo $ n $. AIMS Mathematics, 2021, 6(12): 13515-13524. doi: 10.3934/math.2021784
    [9] Fareeha Jamal, Muhammad Imran . Distance spectrum of some zero divisor graphs. AIMS Mathematics, 2024, 9(9): 23979-23996. doi: 10.3934/math.20241166
    [10] Nikken Prima Puspita, Indah Emilia Wijayanti . Bi-clean and clean Hopf modules. AIMS Mathematics, 2022, 7(10): 18784-18792. doi: 10.3934/math.20221033
  • Emotional facial expressions provide important non-verbal cues as to the imminent behavioural intentions of a second party. Hence, within emotion science the processing of faces (emotional or otherwise) has been at the forefront of research. Notably, however, such research has led to a number of debates including the ecological validity of utilising schematic faces in emotion research, and the face-selectively of N170. In order to investigate these issues, we explored the extent to which N170 is modulated by schematic faces, emotional expression and/or selective attention. Eighteen participants completed a three-stimulus oddball paradigm with two scrambled faces as the target and standard stimuli (counter-balanced across participants), and schematic angry, happy and neutral faces as the oddball stimuli. Results revealed that the magnitude of the N170 associated with the target stimulus was: (i) significantly greater than that elicited by the standard stimulus, (ii) comparable with the N170 elicited by the neutral and happy schematic face stimuli, and (iii) significantly reduced compared to the N170 elicited by the angry schematic face stimulus. These findings extend current literature by demonstrating N170 can be modulated by events other than those associated with structural face encoding; i.e. here, the act of labelling a stimulus a ‘target’ to attend to modulated the N170 response. Additionally, the observation that schematic faces demonstrate similar N170 responses to those recorded for real faces and, akin to real faces, angry schematic faces demonstrated heightened N170 responses, suggests caution should be taken before disregarding schematic facial stimuli in emotion processing research per se.


    Tensor categories should be thought as counterparts of rings in the world of categories [1,2,3], i.e., the categorification of groups and rings [4,5,6]. They are ubiquitous in noncommutative algebra and representation theory. Tensor categories were introduced by Bénabou [7] in 1963 and Lane [8] as "categories with multiplication", and its related theories are now widely used in many fields of mathematics, including algebraic geometry [9], algebraic topology [10], number theory [11], operator algebraic theory [12], etc. The theory of tensor categories is also seen as a development following from that of Hopf algebras and their representation theory [13,14]. As an important invariant in the theory of tensor categories, the concept of a $ \mathbb{Z}_+ $-ring can be traced back to Lusztig's work [15] in 1987. Later, in [16,17], the notion of a $ \mathbb{Z}_+ $-module over a $ \mathbb{Z}_+ $-ring was introduced. Module categories over multitensor categories were first considered in [4,18], and then the notion of an indecomposable module category was introduced in [17]. As a categorification of irreducible $ \mathbb{Z}_+ $-modules, it is interesting to classify indecomposable exact module categories over a given tensor category. In this process, it is often necessary to first classify all irreducible $ \mathbb{Z}_+ $-modules over the Grothendieck ring of a given tensor category.

    Typical examples of $ \mathbb{Z}_+ $-rings are the representation rings of Hopf algebras [19,20,21,22,23,24]. Another example is the Grothendieck rings of tensor categories [25,26,27,28]. It is natural to consider the classification of all irreducible $ \mathbb{Z}_+ $-modules over them. For example, Etingof and Khovanov classified irreducible $ \mathbb{Z}_+ $-modules over the group ring $ \mathbb ZG $, and showed that indecomposable $ \mathbb{Z}_+ $-modules over the representation ring of $ {\rm SU}(2) $, under certain conditions, correspond to affine and infinite Dynkin diagrams [16]. Also, there is a lot of related research in the context of near-group fusion categories. For instance, Tambara and Yamagami classified semisimple tensor categories with fusion rules of self-duality for finite abelian groups. Evans, Gannon, and Izumi have contributed to the classification of the near-group $ C^{*} $-categories [29,30]. Yuan et al. [31] studied irreducible $ \mathbb{Z}_+ $-modules of the near-group fusion ring $ K\left(\mathbb Z_3, 3\right) $ and so on.

    In this paper, we explore the problem of classifying irreducible based modules of rank up to 5 over the complex representation ring $ r(S_4) $, and then discuss their categorification. Furthermore, we overcome the technical difficulty of solving a series of non-negative integer equations using MATLAB. In contrast with the representation ring of $ S_3 $, $ r(S_n) $ is no longer a near-group fusion ring when $ n > 3 $, and the classification of irreducible $ \mathbb{Z}_+ $-modules over general $ r(S_n) $ seems to be a hopeless task. Hence, our paper attempts to classify irreducible based modules for the non-near-group fusion ring $ r(S_4) $. In fact, the fusion rule of $ r(S_n) $ is already a highly nontrivial open problem in combinatorics, namely counting the multiplicities of irreducible components of the tensor product of any two irreducible complex representations of $ S_n $ (so called the Kronecker coefficients).

    The paper is organized as follows. In Section 2, we recall some basic definitions and propositions. In Section 3, we discuss the irreducible based modules of rank up to 5 over $ r(S_4) $ and give the classification of all these based modules (Propositions 3.1–3.5). In Section 4, we first show that any $ \mathbb{Z}_+ $-module over the representation ring $ r(G) $ of a finite group $ G $ categorified by a module category over the representation category $ {\rm Rep}(G) $ should be a based module (Theorem 4.2), and then determine which irreducible based modules over $ r(S_4) $ can be categorified (Theorem 4.12).

    Throughout this paper, all rings are assumed to be associative with unit 1. Let $ \mathbb{Z}_+ $ denote the set of nonnegative integers. First, we recall the definitions of $ \mathbb{Z}_+ $-rings and $ \mathbb{Z}_+ $-modules. For more details about these concepts, readers can refer to [17,32].

    In this section, we first recall some definitions, and then we exhibit a class of identities for transposed Poisson $ n $-Lie algebras.

    Definition 2.1. Let $ A $ be a ring which is free as a $ \mathbb{Z} $-module:

    (i) A $ \mathbb{Z}_+ $-basis of $ A $ is a basis

    $ B = \left \{ b_{i} \right \} _{i\in I}, $

    such that

    $ b_{i}b_{j} = \sum\limits_{k\in I} c_{ij}^{k} b_{k}, $

    where $ c_{ij}^{k}\in \mathbb{Z}_+ $.

    (ii) A $ \mathbb{Z}_+ $-ring is a ring with a fixed $ \mathbb{Z}_+ $-basis and with unit 1 being a non-negative linear combination of the basis elements.

    (iii) A $ \mathbb{Z}_+ $-ring is unital if the unit $ 1 $ is one of its basis elements.

    Definition 2.2. Let $ A $ be a $ \mathbb{Z}_+ $-ring with basis $ \left \{ b_{i} \right \}_{i\in I} $. A $ \mathbb{Z}_+ $-module over $ A $ is an $ A $-module $ M $ with a fixed $ \mathbb{Z} $-basis $ \left \{ m_{l} \right \} _{l\in L} $ such that all the structure constants $ a_{il}^{k} $, defined by the equality

    $ b_{i} m_{l} = \sum\limits_{k} a_{il}^{k} m_{k} $

    are non-negative integers.

    A $ \mathbb{Z}_+ $-module has the following equivalent definition referring to [32, Section 3.4].

    Definition 2.3. Let $ A $ be a $ \mathbb{Z}_+ $-ring with basis $ \left \{ b_{i} \right \}_{i\in I} $. A $ \mathbb{Z}_+ $-module $ M $ over $ A $ means an assignment where each basis $ b_{i} $ in $ A $ is in one-to-one correspondence with a non-negative integer square matrix $ M_i $ such that $ M $ forms a representation of $ A $:

    $ M_{i} M_{j} = \sum\limits_{k\in I} c_{ij}^{k} M_{k}, \; \; \forall \space i, j, k\in I, $

    where the unit of $ A $ corresponds to the identity matrix. The rank of a $ \mathbb{Z}_+ $-module $ M $ is equal to the order of the matrix $ M_{i} $.

    Definition 2.4. (i) Two $ \mathbb{Z}_+ $-modules $ M_{1}, \, M_{2} $ over $ A $ with bases $ {\left \{ m_{i}^{1} \right \} }_{i\in L_{1}}, {\left \{ m_{j}^{2} \right \} }_{j\in L_{2}} $ are equivalent if and only if there exists a bijection $ \phi $: $ L_{1}\to L_{2} $ such that the induced $ \mathbb{Z} $-linear map $ \tilde{\phi} $ of abelian groups $ M_{1}, \, M_{2} $ defined by

    $ \tilde{\phi} (m_{i}^{1} ) = m_{{\phi} (i)}^{2} $

    is an isomorphism of $ A $-modules. In other words, for $ a\in A $, let $ a_{M_{1} } $ and $ a_{M_{2} } $ be the matrices with respect to the bases $ {\left \{ m_{i}^{1} \right \} }_{i\in L_{1}} $ and $ {\left \{ m_{j}^{2} \right \} }_{j\in L_{2}} $, respectively. Then, two $ \mathbb{Z}_+ $-modules $ M_{1} $, $ M_{2} $ of rank $ n $ are equivalent if and only if there exists an $ n\times n $ permutation matrix $ P $ such that

    $ a_{M_{2}} = Pa_{M_{1}}P^{-1}, \; \; \; \forall \space a\in A. $

    (ii) The direct sum of two $ \mathbb{Z}_+ $-modules $ M_{1}, \, M_{2} $ over $ A $ is the module $ M_{1}\oplus M_{2} $ over $ A $ whose basis is the union of the bases of $ M_{1} $ and $ M_{2} $.

    (iii) A $ \mathbb{Z}_+ $-module $ M $ over $ A $ is indecomposable if it is not equivalent to a nontrivial direct sum of $ \mathbb{Z}_+ $-modules.

    (iv) A $ \mathbb{Z}_+ $-submodule of a $ \mathbb{Z}_+ $-module $ M $ over $ A $ with basis $ \left \{ m_{l} \right \}_{l\in L} $ is a subset $ J\subset L $ such that the abelian subgroup of $ M $ generated by $ {\left \{ m_{j} \right \} }_{j\in J} $ is an $ A $-submodule.

    (v) A $ \mathbb{Z}_+ $-module $ M $ over $ A $ is irreducible if any $ \mathbb{Z}_+ $-submodule of $ M $ is 0 or $ M $. In other words, the $ \mathbb{Z} $-span of any proper subset of the basis of $ M $ is not an $ A $-submodule.

    Let $ A $ be a $ \mathbb{Z}_+ $-ring with basis $ \left \{ b_{i} \right \}_{i\in I} $, and let $ I_{0} $ be the set of $ i\in I $ such that $ b_{i} $ occurs in the decomposition of 1. Let $ \tau $: $ A\to \mathbb Z $ denote the group homomorphism defined by

    $ \tau (b_{i} ) = {1, if  iI0,0, if  iI0.
    $

    Definition 2.5. A $ \mathbb{Z}_+ $-ring with basis $ \left \{ b_{i} \right \}_{i\in I} $ is called a based ring if there exists an involution $ i \mapsto i^{*} $ of $ I $ such that the induced map

    $ a = \sum\limits_{i\in I} a_{i} b_{i}\mapsto {}a^{*} = \sum\limits_{i\in I} a_{i} b_{i^*}, \; \; \; a_{i}\in \mathbb{Z}, $

    is an anti-involution of the ring $ A $, and

    $ \tau (b_{i}b_{j} ) = {1,if i=j,0,if ij.
    $

    A fusion ring is a unital based ring of finite rank.

    Definition 2.6. A based module over a based ring $ A $ with basis $ \left \{ b_{i} \right \}_{i\in I} $ is a $ \mathbb{Z}_+ $-module $ M $ with basis $ \left \{ m_{l} \right \}_{l\in L} $ over $ A $ such that

    $ a_{il}^{k} = a_{i^{\ast } k}^{l} , $

    where $ a_{il}^{k} $ are defined as in Definition 2.2.

    Let $ A $ be a unital $ \mathbb{Z}_+ $-ring of finite rank with basis $ \left \{ b_{i} \right \}_{i\in I} $, and let $ M $ be a $ \mathbb{Z}_+ $-module over $ A $ with $ \mathbb{Z} $-basis $ \left \{ m_{l} \right \} _{l\in L} $. Take

    $ b = \sum\limits_{i\in I}b_i. $

    For any fixed $ m_{l_0} $, the $ \mathbb{Z}_+ $-submodule of $ M $ generated by $ m_{l_0} $ is the $ \mathbb{Z} $-span of $ \left \{m_k\right\}_{k\in Y} $, where the set $ Y $ consists of $ k\in L $ such that $ m_k $ is a summand of $ bm_{l_0} $. Also, we need the following facts.

    Proposition 2.1. [32, Proposition 3.4.6] Let $ A $ be a based ring of finite rank over $ \mathbb{Z} $. Then there exist only finitely many irreducible $ \mathbb{Z}_+ $-modules over $ A $.

    Proposition 2.2. [17, Lemma 2.1] Let $ M $ be a based module over a based ring $ A $. If $ M $ is decomposable as a $ \mathbb{Z}_+ $-module over $ A $, then $ M $ is irreducible as a $ \mathbb{Z}_+ $-module over $ A $.

    As a result, any $ \mathbb{Z}_+ $-module of finite rank over a fusion ring is completely reducible, and then only irreducible $ \mathbb{Z}_+ $-modules need to be classified.

    In general, the rank of an irreducible $ \mathbb{Z}_+ $-module over a fusion ring $ A $ may be larger than the rank of $ A $; e.g., $ A = r(D_5) $ for the dihedral group $ D_5 $ ([33, Remark 1]). In this paper, we explore which irreducible based modules over $ r(S_4) $ can be categorified by indecomposable exact module categories over the representation category $ {\rm Rep}(S_4) $. Since all these module categories are of rank not greater than 5, we only deal with based modules of rank up to 5 correspondingly.

    In this section, we will classify the irreducible based modules over the complex representation ring $ r(S_4) $ of $ S_4 $ up to equivalence. $ r(S_4) $ is a commutative fusion ring having a $ \mathbb{Z}_+ $-basis $ \left \{ 1, V_{\psi}, V_{\rho _{1}}, V_{\rho _{2}}, V_{\rho _{3}} \right \} $ with the fusion rule.

    $ V2ψ=1,VψVρ1=Vρ1,VψVρ2=Vρ3,V2ρ1=1+Vψ+Vρ1,Vρ1Vρ2=Vρ2+Vρ3,V2ρ2=1+Vρ1+Vρ2+Vρ3,
    $
    (3.1)

    where $ 1 $, $ V_{\psi} $, and $ V_{\rho _{1}} $ denote the trivial representation, sign representation, and 2-dimensional irreducible representation, respectively, while $ V_{\rho_2} $ stands for the 3-dimensional standard representation and $ V_{\rho_3} $ denotes its conjugate representation. Then we have the following Table 1.

    Table 1.  The complex character table of $ S_4 $.
    $ (1) $ $ (12) $ $ (123) $ $ (1234) $ $ (12)(34) $
    $ \chi_1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $ $ 1 $
    $ \chi_\psi $ $ 1 $ $ -1 $ $ 1 $ $ -1 $ $ 1 $
    $ \chi_{\rho_1} $ $ 2 $ $ 0 $ $ -1 $ $ 0 $ $ 2 $
    $ \chi_{\rho_2} $ $ 3 $ $ 1 $ $ 0 $ $ -1 $ $ -1 $
    $ \chi_{\rho_3} $ $ 3 $ $ -1 $ $ 0 $ $ 1 $ $ -1 $

     | Show Table
    DownLoad: CSV

    Let $ M $ be a based module of $ r(S_4) $ with the basis $ \left \{ m_{l} \right \} _{l\in L} $. Let $ T, \, Q, \, U $, and $ W $ be the matrices representing the action of $ V_{\psi}, \, V_{\rho _{1}}, \, V_{\rho _{2}} $, and $ V_{\rho _{3}} $ on $ M $ respectively. They are all symmetric matrices with nonnegative integer entries by Definition 2.6. Let $ E $ be the identity matrix. By the fusion rule of $ r(S_4) $, we have

    $ T2=E,
    $
    (3.2)
    $ TQ=QT=Q,
    $
    (3.3)
    $ TU=UT=W,
    $
    (3.4)
    $ Q2=E+T+Q,
    $
    (3.5)
    $ QU=U+TU,
    $
    (3.6)
    $ U2=E+Q+U+TU.
    $
    (3.7)

    In particular, since $ T^2 = E $ and $ T $ has nonnegative integer entries, we know that $ T $ is a symmetric permutation matrix.

    Convention 3.1. Let $ P_n $ be the group of $ n\times n $ permutation matrices. Since there is naturally a group isomorphism between $ S_n $ and $ P_n $, we will use the cycle notation of permutations to represent permutation matrices.

    We define a $ \mathbb{Z}_+ $-module $ M_{1, 1} $ of rank 1 over $ r(S_4) $ by letting

    $ Vψ1,Vρ12,Vρ23,Vρ33.
    $
    (3.8)

    Proposition 3.1. Any irreducible based module of rank $ 1 $ over $ r(S_4) $ is equivalent to $ M_{1, 1} $.

    Proof. Note that any integral fusion ring $ A $ has the unique character $ {\rm FPdim} $: $ A\to \mathbb{Z} $, which takes non-negative values on the $ \mathbb{Z}_+ $-basis, so there exists a unique $ \mathbb{Z}_+ $-module $ M $ of rank 1 over it. Clearly, such $ M $ is a based module. Now this argument is available for the situation $ A = r(S_4) $.

    Next, we consider irreducible based modules of rank $ 2, 3 $. According to the fusion rule of $ r(S_4) $ given in (3.1), it is sufficient to only list the representation matrices of $ V_{\psi} $, $ V_{\rho _{1}} $, and $ V_{\rho _{2}} $ acting on them. For simplicity, we choose to present our result for the cases of small rank 2 and 3 directly, and then analyze the cases of higher rank 4 and 5 with details.

    Proposition 3.2. Let $ M $ be an irreducible based module of rank $ 2 $ over $ r(S_4) $. Then $ M $ is equivalent to one of the based modules $ M_{2, i}, \, 1\leq i\leq 3 $, listed in Table 2.

    Table 2.  Inequivalent irreducible based modules of rank 2 over $ r(S_4) $.
    $ V_{\psi} $ $ V_{\rho _{1}} $ $ V_{\rho _{2}} $
    $ M_{2, 1} $ $ (1001)
    $
    $ (2002)
    $
    $ (1221)
    $
    $ M_{2, 2} $ $ (0110)
    $
    $ (1111)
    $
    $ (2112)
    $
    $ M_{2, 3} $ $ (0110)
    $
    $ (1111)
    $
    $ (1221)
    $

     | Show Table
    DownLoad: CSV

    Proposition 3.3. Let $ M $ be an irreducible based module of rank $ 3 $ over $ r(S_4) $. Then $ M $ is equivalent to one of the based modules $ M_{3, i}, \, 1\leq i\leq 3 $, listed in Table 3.

    Table 3.  Inequivalent irreducible based modules of rank 3 over $ r(S_4) $.
    $ V_{\psi} $ $ V_{\rho _{1}} $ $ V_{\rho _{2}} $
    $ M_{3, 1} $ $ (100010001)
    $
    $ (011101110)
    $
    $ (111111111)
    $
    $ M_{3, 2} $ $ (010100001)
    $
    $ (001001111)
    $
    $ (101011112)
    $
    $ M_{3, 3} $ $ (010100001)
    $
    $ (001001111)
    $
    $ (011101112)
    $

     | Show Table
    DownLoad: CSV

    Proposition 3.4. Let $ M $ be an irreducible based module of rank $ 4 $ over $ r(S_4) $. Then $ M $ is equivalent to one of the based modules $ M_{4, i}, \, 1\leq i\leq 7 $, listed in Table 4.

    Table 4.  Inequivalent irreducible based modules of rank 4 over $ r(S_4) $.
    $ V_{\psi} $ $ V_{\rho _{1}} $ $ V_{\rho _{2}} $
    $ M_{4, 1} $ $ (1000010000100001)
    $
    $ (0011020010011010)
    $
    $ (0100121101000100)
    $
    $ M_{4, 2} $ $ (1000010000100001)
    $
    $ (2000020000200002)
    $
    $ (0111101111011110)
    $
    $ M_{4, 3} $ $ (0100100000100001)
    $
    $ (1100110000200002)
    $
    $ (1011011111011110)
    $
    $ M_{4, 4} $ $ (0100100000100001)
    $
    $ (1100110000200002)
    $
    $ (0111101111011110)
    $
    $M_{4, 5} $ $ (0100100000010010)
    $
    $ (1100110000110011)
    $
    $ (0111101111011110)
    $
    $ M_{4, 6} $ $ (0100100000010010)
    $
    $ (1100110000110011)
    $
    $ (0111101111101101)
    $
    $ M_{4, 7} $ $ (0100100000010010)
    $
    $ (1100110000110011)
    $
    $ (1011011111101101)
    $

     | Show Table
    DownLoad: CSV

    Proof. Before giving its detailed proof, we provide the following proof outline first.

    $ ({\rm{i}}) $ The symmetric group $ S_4 $ has 3 conjugacy classes of permutations of order $ \le 2 $, so there are 3 representatives for matrix $ T $ up to conjugation as follows:

    $ T1=E4,T2=(12),T3=(12)(34).
    $

    Consequently, we can take $ T = T_r $ for some $ r = 1, 2, 3 $ as the representation matrix of $ V_\psi $ for the based module $ M $ up to equivalence.

    $ ({\rm{ii}}) $ Use MATLAB to search all solutions of the representation matrices $ Q $ and $ U $ in the group of nonnegative integer matrix Eqs (3.3)–(3.7) by constraint satisfaction.

    $ ({\rm{iii}}) $ Distinguish all conjugacy classes of tuples $ (T, Q, U) $ without simultaneous block decomposition. They correspond to the equivalence classes of irreducible based modules over $ r(S_4) $.

    Proof. Let $ M $ be a based module of rank 4 over $ r(S_4) $, with the action of $ r(S_4) $ on it given by

    $ VψT,Vρ1Q=(aij)1i,j4,Vρ2U=(bij)1i,j4,Vρ3W=TU,
    $

    where $ a_{ij} = a_{ji} $, $ b_{ij} = b_{ji} $.

    The symmetric group $ S_4 $ has two conjugacy classes of permutations of order 2. One conjugacy class of 6 permutations includes $ (12) $, and the other one of 3 permutations includes $ (12)(34) $. As previously seen, $ T $ is the unit or an element of order 2 in $ P_4 $, so we have 10 candidates for $ T $, and each of them is conjugate to one of the following 3 matrices:

    $ T1=E4,T2=(12),T3=(12)(34).
    $

    Hence, for the based module $ M $ determined by the pair $ (T, Q, U) $, there exists a $ 4\times 4 $ permutation matrix $ P $ such that

    $ T' = PTP^{-1} $

    is one of the above $ T_r $'s $ (1\leq r\leq 3) $. Correspondingly, let

    $ Q' = PQP^{-1} , \; \; \; U' = PUP^{-1}. $

    Then we get a based module $ M' $ determined by the pair $ (T', Q', U') $ and equivalent to $ M $ as based modules by Definition 2.4 (ⅰ). So, we have reduced the proof to the situation when $ T = T_r $.

    Case 1. $ T = T_1 = E_4 $.

    Since $ Q $ satisfies Eq (3.5), we obtain the following system of integer equations:

    $ {a211+a212+a213+a214=2+a11,a11a12+a12a22+a13a23+a14a24=a12,a11a13+a12a23+a13a33+a14a34=a13,a11a14+a12a24+a13a34+a14a44=a14,a212+a222+a223+a224=2+a22,a12a13+a22a23+a23a33+a24a34=a23,a12a14+a22a24+a23a34+a24a44=a24,a213+a223+a233+a234=2+a33,a13a14+a23a24+a33a34+a34a44=a34,a214+a224+a234+a244=2+a44.
    $

    We use MATLAB to figure out all the solutions of $ Q $ as follows:

    $ Q1=(0011020010011010),Q2=(0101100100201100),Q3=(0110101011000002),Q4=(2000001101010110),Q5=(2000020000200002).
    $

    Next, we calculate $ U $ after taking $ Q $ as one $ Q_k $ $ \left (1\le k\le5 \right) $.

    Case 1.1. $ Q = Q_1 $.

    Since $ U $ satisfies Eq (3.6), we get

    $ b12=b23=b24,b11=b13=b14=b33=b34=b44.
    $

    Then, by Eq (3.7), we have

    $ {3b211+b212=2b11+1,3b11b12+b12b22=2b12,3b212+b222=2b22+3.
    $

    The solutions of $ U $ given by MATLAB are as follows:

    $ U1=(0100121101000100),U2=(1011030010111011).
    $

    It is easy to check that the based module determined by $ \left (T_1, Q_1, U_1\right) $ is an irreducible based module denoted as $ M_{4, 1} $, while the based module determined by $ \left (T_1, Q_1, U_2\right) $ is reducible.

    Note that there exists a permutation matrix $ P = (14)(23) $ such that

    $ PQ_1P^{-1} = Q_2. $

    Let

    $ U'_1 = PU_1P^{-1}. $

    There is an irreducible based module $ N' $ determined by the pair $ \big (T_1, Q_2, U'_1\big) $ and equivalent to $ M_{4, 1} $ by Definition 2.4 (ⅰ). Conversely, any irreducible based module with representation matrices $ T_1 $ and $ Q_2 $ is equivalent to $ M_{4, 1} $. The same analysis tells us that irreducible based modules with representation matrices $ T_1 $ and $ Q_3 $ (or $ Q_4 $) are also equivalent to $ M_{4, 1} $.

    Case 1.2. $ Q = Q_5 $.

    Since $ U $ satisfies Eqs (3.6) and (3.7), we get a system of integer equations as follows:

    $ {b211+b212+b213+b214=2b11+3,b11b12+b12b22+b13b23+b14b24=2b12,b11b13+b12b23+b13b33+b14b34=2b13,b11b14+b12b24+b13b34+b14b44=2b14,b212+b222+b223+b224=2b22+3,b12b13+b22b23+b23b33+b24b34=2b23,b12b14+b22b24+b23b34+b24b44=2b24,b213+b223+b233+b234=2b33+3,b13b14+b23b24+b33b34+b34b44=2b34,b214+b224+b234+b244=2b44+3.
    $

    Thus, the solutions of $ U $ by MATLAB are as follows:

    $ U1=(0111101111011110),U2=(1002012002102001),U3=(1020010220100201),U4=(1200210000120021),U5=(1020030020100003),U6=(1002030000302001),U7=(1200210000300003),U8=(3000030000120021),U9=(3000012002100003),U10=(3000010200300201),U11=(3000030000300003).
    $

    Since $ T_1 $ and $ Q_5 $ are diagonal and the solutions $ U_t $ $ \left (2\le t\le11 \right) $ are block diagonal with at least two blocks, only the based module determined by $ (T_1, Q_5, U_1) $ is irreducible, denoted as $ M_{4, 2} $.

    Case 2. $ T = T_2 = (12) $.

    Since $ Q $ satisfies Eq (3.3), we get

    $ Q=(a11a11a13a14a11a11a13a14a13a13a33a34a14a14a34a44).
    $

    Since $ Q $ also satisfies Eq (3.5), we have the following system of integer equations:

    $ {2a211+a213+a214=a11+1,2a11a13+a13a33+a14a34=a13,2a11a14+a13a34+a14a44=a14,2a213+a233+a234=a33+2,2a13a14+a33a34+a34a44=a34,2a214+a234+a244=a44+2.
    $

    Hence, the solutions of $ Q $ by MATLAB are as follows:

    $ Q1=(0001000100201101),Q2=(0010001011100002),Q3=(1100110000200002).
    $

    Since $ U $ satisfies Eq (3.4), we get

    $ U=(b11b12b13b14b12b11b13b14b13b13b33b34b14b14b34b44).
    $

    Next, we calculate $ U $ after taking $ Q $ as one $ Q_k $ $ \left (1\le k\le3 \right) $.

    Case 2.1. $ Q = Q_1 $.

    Since $ U $ satisfies Eqs (3.6) and (3.7), the solutions of $ U $ given by MATLAB are as follows:

    $ U1=(0101100100301102),U2=(1001010100301102).
    $

    Since $ T_2 $, $ Q_1 $ and all the solutions $ U_t $ for $ t = 1, 2 $ are block diagonal with at least two blocks, the based modules determined by each pair $ (T_2, Q_1, U_t) $ are reducible.

    Note that there exists a permutation matrix $ P = (12)(34) $ such that

    $ PQ_1P^{-1} = Q_2. $

    Let

    $ U'_t = PU_tP^{-1}. $

    Then each based module $ N_t $ determined by the pair $ \left (T_2, Q_2, U'_t\right) $ is reducible. Namely, any based module with representation matrices $ T_2 $ and $ Q_2 $ is reducible.

    Case 2.2. $ Q = Q_3 $.

    Since $ U $ satisfies Eqs (3.6) and (3.7), we have

    $ U1=(0111101111011110),U2=(1011011111011110),U3=(1200210000120021),U4=(1200210000300003),U5=(2100120000120021),U6=(2100120000300003).
    $

    Since $ T_2 $, $ Q_3 $ and the solutions $ U_s $ $ (3\le s\le 6) $ are block diagonal with at least two blocks, only the based module determined by $ (T_2, Q_3, U_1) $ and $ (T_2, Q_3, U_2) $ are irreducible, denoted as $ M_{4, 3} $ and $ M_{4, 4} $, respectively. It is easy to check that $ M_{4, 3} $ and $ M_{4, 4} $ are inequivalent based modules.

    Case 3. $ T = T_3 = (12)(34) $.

    Since $ Q $ satisfies Eq (3.3), we get

    $ Q=(a11a11a13a13a11a11a13a13a13a13a33a33a13a13a33a33).
    $

    Then, by Eq (3.5), we have the following system of integer equations:

    $ {2a211+2a213=a11+1,2a11a13+2a13a33=a13,2a213+2a233=a33+1.
    $

    $ Q $ has the following unique solution:

    $ Q1=(1100110000110011).
    $

    Since $ U $ satisfies Eq (3.4), we get

    $ U=(b11b12b13b14b12b11b14b13b13b14b33b34b14b13b34b33).
    $

    Since $ U $ also satisfies Eqs (3.6) and (3.7), we obtain the solutions of $ U $ by MATLAB as follows:

    $ U1=(0111101111011110),U2=(0111101111101101),U3=(1011011111101101),U4=(1011011111011110),U5=(1200210000120021),U6=(1200210000210012),U7=(2100120000120021),U8=(2100120000210012).
    $

    Clearly, $ T_3 $, $ Q_1 $ and the solutions $ U_s $ are block diagonal with at least two blocks, but the based module determined by the pair $ \left (T_3, Q_1, U_t\right) $ is irreducible, denoted as $ M_{4, s} $, where $ 5\le s \le8, 1\le t\le4 $. Define the $ \mathbb Z $-module isomorphism $ \phi $: $ M_{4, 6}\to M_{4, 8} $ by

    $ ϕ(v11)=v24,ϕ(v12)=v23,ϕ(v13)=v22,ϕ(v14)=v21.
    $

    It is easy to see that $ M_{4, 6} $ is equivalent to $ M_{4, 8} $ as based modules over $ r(S_4) $ under $ \phi $. Then, we can check that $ \left \{ M_{4, s} \right \} _{5\le s \le7} $ are inequivalent irreducible based modules.

    Finally, we construct two based modules $ M_{5, i}\ \left (i = 1, 2 \right) $ over $ r(S_4) $ with the actions of $ r(S_4) $ on them presented in Table 5.

    Table 5.  Inequivalent irreducible based modules of rank 5 over $ r(S_4) $.
    $ V_{\psi} $ $ V_{\rho _{1}} $ $ V_{\rho _{2}} $
    $ M_{5, 1} $ $ (0100010000000100010000001)
    $
    $ (0000100001001100011011001)
    $
    $ (0001000100011111011100110)
    $
    $ M_{5, 2} $ $ (0100010000000100010000001)
    $
    $ (1100011000001100011000002)
    $
    $ (0001100101010011000111111)
    $

     | Show Table
    DownLoad: CSV

    Proposition 3.5. Let $ M $ be an irreducible based module of rank $ 5 $ over $ r(S_4) $. Then $ M $ is equivalent to one of the based modules $ M_{5, i}\, (i = 1, 2) $, listed in Table 5.

    Proof. Let $ M $ be a based module of rank 5 over $ r(S_4) $, with the action of $ r(S_4) $ on it given by

    $ VψT,Vρ1Q=(aij)1i,j5,Vρ2U=(bij)1i,j5,Vρ3W=TU,
    $

    where $ a_{ij} = a_{ji} $, $ b_{ij} = b_{ji} $.

    First, by a similar argument applied in the case of rank 4, we only need to deal with one of the following 3 cases for $ T $:

    $ T1=E5,T2=(12),T3=(12)(34).
    $

    Case 1. $ T = T_1 = E_5 $.

    There are 11 solutions of $ Q $ satisfying Eq (3.5), but only two conjugacy classes by permutation matrices with their representatives given as follows:

    $ Q1=(0110010100110000002000002),Q2=(2000002000002000002000002).
    $

    Next, we calculate $ U $ after taking $ Q $ as one $ Q_k $ $ \left (k = 1, 2 \right) $.

    Case 1.1. $ Q = Q_1 $.

    There are 4 solutions of $ U $ satisfying Eqs (3.6) and (3.7) as follows:

    $ U1=(0001000010000101112000003),  U2=(0000100001000010003011102),  U3=(1110011100111000003000003),  U4=(1110011100111000001200021).
    $

    Case 1.2. $ Q = Q_2 $.

    There are 31 solutions of $ U $ satisfying Eqs (3.6) and (3.7), but only 4 conjugacy classes by permutation matrices and their representatives as follows:

    $ U1=(0111010110110101110000003),  U2=(1002001200021002001000003),  U3=(1200021000003000003000003),  U4=(3000003000003000003000003).
    $

    Each pair $ (T_1, Q_k, U_r) $ above determines a based module, but is not irreducible for any $ 1\le r\le4 $.

    Case 2. $ T = T_2 = (12) $.

    There are 5 solutions of $ Q $ satisfying Eq (3.5), but only 3 conjugacy classes with the following representatives:

    $ Q1=(0000100001002000002011001),Q2=(1100011000000110010100110),Q3=(1100011000002000002000002).
    $

    Next, we calculate $ U $ after choosing $ Q $.

    Case 2.1. $ Q = Q_1 $.

    There are 4 solutions of $ U $ satisfying Eqs (3.6) and (3.7) as follows:

    $ U1=(0100110001001200021011002),  U2=(0100110001003000003011002),  U3=(1000101001001200021011002),  U4=(1000101001003000003011002).
    $

    Case 2.2. $ Q = Q_2 $.

    There are 2 solutions of $ U $ satisfying Eqs (3.6) and (3.7) as follows:

    $ U1=(1200021000001110011100111),  U2=(2100012000001110011100111).
    $

    Case 2.3. $ Q = Q_3 $.

    There are 14 solutions of $ U $ satisfying Eqs (3.6) and (3.7), but only 6 conjugacy classes by permutation matrices with their representatives given as follows:

    $ U1=(0111010110110101110000003),U2=(1011001110110101110000003),U3=(1200021000001200021000003),U4=(2100012000001200021000003),U5=(1200021000003000003000003),U6=(2100012000003000003000003).
    $

    Through analysis, all based modules derived from Case 2 are reducible.

    Case 3. $ T = T_3 = (12)(34) $.

    There are 3 solutions of $ Q $ satisfying Eq (3.5) as follows:

    $ Q1=(0000100001001100011011001),Q2=(1100011000001100011000002),Q3=(1100011000000010000100111).
    $

    Next, we calculate $ U $ after fixing $ Q $.

    Case 3.1. $ Q = Q_1 $.

    There are 6 solutions of $ U $ satisfying Eqs (3.6) and (3.7) as follows:

    $ U1=(0001000100011111011100110),U2=(0010000010101110111100110),U3=(0100110001001200021011002),U4=(0100110001002100012011002),U5=(1000101001001200021011002),U6=(1000101001002100012011002).
    $

    Each pair $ (T_3, Q_1, U_r) $ $ \left (1\le r\le6 \right) $ above determines a based module, but only the based modules with representation matrices $ U_1 $ and $ U_2 $ are irreducible. Such two irreducible based modules are denoted by $ M_{5, 1} $ and $ M'_{5, 1} $, with the corresponding $ \mathbb Z $-basis $ \left \{ v_1^k, v_2^k, v_3^k, v_4^k, v_5^k\right \} $ for $ k = 1, 2 $, respectively. Define the $ \mathbb Z $-module isomorphism $ \phi $: $ M_{5, 1}\to M'_{5, 1} $ by

    $ ϕ(v1s)=v2s,ϕ(v13)=v24,ϕ(v14)=v23,s=1,2,5.
    $

    Then it is easy to see that $ M_{5, 1} $ is equivalent to $ M'_{5, 1} $ as based modules over $ r(S_4) $ under $ \phi $.

    Case 3.2. $ Q = Q_2 $.

    There are 10 solutions of $ U $ satisfying Eqs (3.6) and (3.7), but only 7 conjugacy classes with their representatives given as follows:

    $ U1=(0001100101010011000111111),  U2=(0111010110110101110000003),  U3=(0111010110111001101000003),  U4=(1011001110111001101000003),
    $
    $ U5=(1200021000001200021000003),  U6=(1200021000002100012000003),  U7=(2100012000002100012000003).
    $

    Each pair $ (T_3, Q_2, U_t) $ $ \left (2\le t\le7 \right) $ above determines a based module, but only the based module with representation matrix $ U_1 $ is irreducible. We denote it by $ M_{5, 2} $.

    Also, the based modules obtained by taking $ Q = Q_3 $ are equivalent to the based module $ M_{5, 1} $ found in Case 3.1.

    In this section, we will apply the knowledge of module categories over the complex representation category of a finite group to find which based modules over $ r(S_4) $ can be categorified by module categories over the representation category $ {\rm Rep}(S_4) $ of $ S_4 $. For the details about module categories over tensor categories, see, e.g., [32, Section 7].

    First, we recall the required result for the upcoming discussion. For any finite group $ G $, the second cohomology group $ H^2(G, {{\mathbb C}}^*) $ is known to be a finite abelian group called the Schur multiplier and classifies central extensions of $ G $. The notion of a universal central extension of a finite group was first investigated by Schur in [34].

    Let $ {\rm Rep}(G, \alpha) $ denote the semisimple abelian category of projective representations of $ G $ with the multiplier $ \alpha\in Z^2(G, {{\mathbb C}}^*) $. Equivalently, $ {\rm Rep}(G, \alpha) $ is the representation category of the twisted group algebra $ {{\mathbb C}} G_\alpha $ of $ G $ with multiplication

    $ g\cdot_\alpha h = \alpha(g, h)gh, \quad g, h\in G. $

    In particular,

    $ {\rm Rep}(G, \alpha) = {\rm Rep}(G), $

    when taking $ \alpha = 1 $.

    Let $ \alpha \in Z^2(G, {{\mathbb C}}^*) $ represent an element of order $ d $ in $ H^2(G, {{\mathbb C}}^*) $. Define

    $ {\rm Rep}^\alpha(G) = \bigoplus \limits_{j = 0}^{d-1}{\rm Rep}(G, \alpha^j). $

    According to the result in [35], we know that $ {\rm Rep}^\alpha(G) $ becomes a fusion category with the tensor product of two projective representations in $ {\rm Rep}(G, \alpha^i) $ and $ {\rm Rep}(G, \alpha^j) $ respectively lying in $ {\rm Rep}(G, \alpha^{i+j}) $, and the dual object in $ {\rm Rep}(G, \alpha^i) $ lying in $ {\rm Rep}(G, \alpha^{d-i}) $. Correspondingly, we have the fusion ring

    $ rα(G)=d1j=0r(G,αj).
    $
    (4.1)

    Now let $ H $ be a subgroup of $ G $ and $ \alpha \in Z^2(H, {{\mathbb C}}^*) $. The category $ {\rm Rep}(H, \alpha) $ is a module category over $ {\rm Rep}(G) $ by applying the restriction functor $ {\rm Res}_H^{G} $: $ {\rm Rep}(G)\to {\rm Rep}(H) $.

    Theorem 4.1. [17, Theorem 3.2] The indecomposable exact module categories over the representation category $ {\rm Rep}(G) $ are of the form $ {\rm Rep}(H, \alpha) $ and are classified by conjugacy classes of pairs $ (H, [\alpha]) $.

    Consequently, by [32, Proposition 7.7.2], we know the following:

    Proposition 4.1. The Grothendieck group

    $ r(H, \alpha) = {\rm Gr}({\rm Rep}(H, \alpha)) $

    is an irreducible $ \mathbb{Z}_+ $-module over $ r(G) $.

    Next, we show that any $ \mathbb{Z}_+ $-module over the complex representation ring $ r(G) $ of a finite group $ G $ categorified in this way is a based module.

    Theorem 4.2. Let $ G $ be a finite group, $ H $ a subgroup of $ G $, and $ \alpha \in Z^2(H, {{\mathbb C}}^*) $. The $ \mathbb{Z}_+ $-module $ r(H, \alpha) $ over $ r(G) $ is a based module.

    Proof. Let $ \left \{ {\psi}_i \right \} _{i\in I} $ be the $ \mathbb{Z}_+ $-basis of $ r(G) $. Take $ r^\alpha(H) $ defined in Eq (4.1) as a $ \mathbb{Z}_+ $-module over $ r(G) $ with the $ \mathbb{Z} $-basis $ \left \{ {\chi}_k \right \} _{k\in J} $ such that

    $ \psi_i.\chi_k = \sum\limits_l a_{ik}^l \chi_l, \quad a_{ik}^l\in \mathbb{Z}_+. $

    On the other hand, we write the fusion rule of the fusion ring $ r^\alpha(H) $ as follows:

    $ χiχj=sk=1nkijχk,nkijZ+.
    $

    Since the number $ n_{ij}^{k^*} $ is invariant under cyclic permutations of $ i, j, k $, we have

    $ n_{ij}^k = n_{k^*i}^{j^*} = n_{i^*k}^{j}. $

    By the restriction rule, we interpret $ r(G) $ as a subring of $ r^\alpha(H) $ and write down

    $ \psi_i = \sum\limits_j r_{ij} \chi_j, \quad r_{ij}\in \mathbb{Z}_+. $

    Then

    $ \psi_i.\chi_k = \sum\limits_j r_{ij} \chi_j\chi_k = \sum\limits_{j, \, l} r_{ij}n_{jk}^l \chi_l. $

    By comparing the coefficients, we see that

    $ a_{ik}^l = \sum\limits_{j} r_{ij}n_{jk}^l = \sum\limits_{j} r_{ij}n_{j^*l}^k = \sum\limits_{j} r_{i^*j^*}n_{j^*l}^k = \sum\limits_{j} r_{i^*j}n_{jl}^k = a_{i^*l}^k, $

    so $ r^\alpha(H) $ is a based module over $ r(G) $, and $ r(H, \alpha) $ is clearly a based submodule of $ r^\alpha(H) $. Equivalently, any $ \mathbb{Z}_+ $-module over $ r(G) $ categorified by a module category $ {\rm Rep}(H, \alpha) $ over $ {\rm Rep}(G) $ must be a based module.

    By Theorem 4.2, we only need to focus on those inequivalent irreducible based modules $ M_{i, j} $ over $ r(S_4) $ collected in Section 3, each of which is possibly categorified by a module category $ {\rm Rep}(H, \alpha) $ for some $ H < S_4 $ and $ \alpha \in Z^2(H, {{\mathbb C}}^*) $.

    All the non-isomorphic subgroups of the symmetric group $ S_4 $ are as follows:

    $ ({\rm{i}}) $ The symmetric group $ S_3 $;

    $ ({\rm{ii}}) $ The cyclic groups $ \mathbb Z_i, \, 1\leq i\leq 4 $;

    $ ({\rm{iii}}) $ The Klein 4-group $ K_4 $;

    $ ({\rm{iv}}) $ The alternating group $ A_4 $;

    $ ({\rm{v}}) $ The dihedral group $ D_4 $;

    $ ({\rm{vi}}) $ The symmetric group $ S_4 $ itself.

    Correspondingly, the Schur multipliers we consider here are given as follows (see e.g., [36]):

    $ H^2(\mathbb Z_n, {{\mathbb C}}^*)\cong H^2(S_3, {{\mathbb C}}^*)\cong 0, \ n\geq 1, \quad \ H^2(K_4, {{\mathbb C}}^*)\cong H^2(D_4, {{\mathbb C}}^*)\cong H^2(A_4, {{\mathbb C}}^*)\cong H^2(S_4, {{\mathbb C}}^*)\cong\mathbb Z_2. $

    As a result, we only need to consider the following two situations:

    (1) Module category $ {\rm Rep}(H) $ for any subgroup $ H < S_4 $;

    (2) Module category $ {\rm Rep}(H, \alpha) $ for any subgroup $ H < S_4 $ and nontrivial twist $ \alpha \in Z^2(H, {{\mathbb C}}^*) $.

    (ⅰ) First, we consider the representation category $ {\rm Rep}(S_3) $ as a module category over $ {\rm Rep}(S_4) $.

    Theorem 4.3. $ r(S_3) = {\rm Gr}({\rm Rep}(S_3)) $ is an irreducible based module over $ r(S_4) = {\rm Gr}({\rm Rep}(S_4)) $ equivalent to the based module $ M_{3, 2} $ in Table 3.

    Proof. According to the branching rule of symmetric groups (see e.g., [37, Theorem 2.8.3]), we have the following restriction rules:

    $ ResS4S3(1)=1,ResS4S3(Vψ)=χ,ResS4S3(Vρ1)=V,ResS4S3(Vρ2)=1+V,ResS4S3(Vρ3)=χ+V,
    $

    where $ \chi $ and $ V $ denote the sign representation and the standard representation in $ {\rm Rep}({S_3}) $, respectively. Hence, we get the representation matrices of basis elements of $ r(S_4) $ acting on $ r({S_3}) $ as follows:

    $ 1E3,Vψ(010100001),Vρ1(001001111),Vρ2(101011112),Vρ3(011101112).
    $

    We see that $ r(S_3) $ is an irreducible based module $ M_{3, 2} $ according to Table 3. In other words, the based module $ M_{3, 2} $ can be categorified by the module category $ {\rm Rep}({S_3}) $ over $ {\rm Rep}(S_4) $.

    Remark 4.1. Since the roles of the standard representation and its dual in $ r(S_4) $ are symmetric, we can exchange the notations $ V_{\rho_{2}} $ and $ V_{\rho_{3}} $ for them to get the following restriction rules instead:

    $ ResS4S3(Vρ2)=χ+V,ResS4S3(Vρ3)=1+V.
    $

    Therefore, we get another action of $ r(S_4) $ on $ r({S_3}) $ such that $ r(S_3) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{3, 3} $ according to Table 3. In other words, the based module $ M_{3, 3} $ can also be categorified by the module category $ {\rm Rep}({S_3}) $ over $ {\rm Rep}(S_4) $.

    (ⅱ) Second, we consider $ {\rm Rep}(\mathbb{Z}_4) $ as a module category over $ {\rm Rep}(S_4) $.

    Theorem 4.4. $ r(\mathbb{Z}_4) = {\rm Gr}({\rm Rep}(\mathbb{Z}_4)) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{4, 5} $ in Table 4.

    Proof. Let

    $ \mathbb{Z}_4 = \left \{ 1, g, g^2, g^3 \right \} $

    be the cyclic group of order $ 4 $, with four non-isomorphic 1-dimensional irreducible representations denoted by $ U_i, \, i = 0, 1, 2, 3 $. Let $ U_0 = 1 $ represent the trivial representation, and

    $ χU1(g)=1,χU2(g)=1,χU3(g)=1.
    $

    On the other hand, we consider $ \mathbb{Z}_4 $ as the subgroup of $ S_4 $ generated by $ g = (1234) $. Then, by the character table of $ S_4 $ (Table 1), we have

    $ χψ(gi)=(1)i,χρ1(gi)=1+(1)i,χρ2(gi)=(1)i+(1)i+(1)i,χρ3(gi)=1+(1)i+(1)i.
    $

    So, the restriction rule of $ r(S_4) $ on $ r(\mathbb{Z}_4) $ is given as follows:

    $ ResS4Z4(1)=1,ResS4Z4(Vψ)=U2,ResS4Z4(Vρ1)=1+U2,ResS4Z4(Vρ2)=U1+U2+U3,ResS4Z4(Vρ3)=1+U1+U3.
    $

    Then, we get the representation matrices of basis elements of $ r(S_4) $ acting on $ r(\mathbb{Z}_4) $ as follows:

    $ 1E4, Vψ(0010000110000100), Vρ1(1010010110100101), Vρ2(0111101111011110), Vρ3(1101111001111011).
    $

    Let $ \left \{ w_i\right \}_{1\leq i\leq 4} $ be the stated $ \mathbb{Z} $-basis of $ M_{4, 5} $, and define a $ \mathbb{Z} $-linear map $ \varphi $: $ M_{4, 5}\to r(\mathbb{Z}_4) $ by

    $ φ(w1)=U3,φ(w2)=U1,φ(w3)=U2,φ(w4)=1.
    $

    Then, it is easy to check that $ \varphi $ is an isomorphism of $ r(S_{4}) $-modules, so $ M_{4, 5} $ is equivalent to $ r(\mathbb{Z}_4) $ as based modules by Definition 2.4 (ⅰ). In other words, the based module $ M_{4, 5} $ can be categorified by the module category $ {\rm Rep}(\mathbb{Z}_4) $ over $ {\rm Rep}(S_4) $.

    Remark 4.2. By the same argument as in Remark 4.1, $ V_{\rho _{2}} $ and $ V_{\rho _{3}} $ can be required to satisfy the following restriction rules instead:

    $ ResS4Z4(Vρ2)=1+U1+U3,ResS4Z4(Vρ3)=U1+U2+U3.
    $

    Therefore, we get another action of $ r(S_4) $ on $ r({\mathbb{Z}_4}) $ such that $ r(\mathbb{Z}_4) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{4, 7} $ according to Table 4. In other words, the based module $ M_{4, 7} $ can also be categorified by the module category $ {\rm Rep}(\mathbb{Z}_4) $ over $ {\rm Rep}(S_4) $.

    Also, one can similarly check that the module category $ {\rm Rep}(\mathbb{Z}_2) $ over $ {\rm Rep}(S_4) $ categorifies the based modules $ M_{2, 2} $ and $ M_{2, 3} $, while $ {\rm Rep}(\mathbb{Z}_3) $ over $ {\rm Rep}(S_4) $ categorifies the based module $ M_{3, 1} $.

    (ⅲ) Now we consider $ {\rm Rep}(K_4) $ as a module category over $ {\rm Rep}(S_4) $.

    Theorem 4.5. $ r(K_4) = {\rm Gr}({\rm Rep}(K_4)) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{4, 7} $ in Table 4.

    Proof. We consider $ K_4 $ as the subgroup of $ S_4 $ generated by $ (12) $ and $ (34) $, and it has four non-isomorphic 1-dimensional irreducible representations $ Y_0 = 1 $ and $ Y_1, Y_2, Y_3 $ such that

    $ χY1((12))=1,χY1((34))=1;χY2((12))=1,χY2((34))=1;χY3((12))=1,χY3((34))=1.
    $

    On the other hand, by the character table of $ S_4 $ (Table 1), we have

    $ χψ((12))=χψ((34))=1,χψ((12)(34))=1;χρ1((12))=χρ1((34))=0,χρ1((12)(34))=2;χρ2((12))=χρ2((34))=1,χρ2((12)(34))=1;χρ3((12))=χρ3((34))=1,χρ3((12)(34))=1.
    $

    So, we have the following restriction rules:

    $ ResS4K4(1)=1,ResS4K4(Vψ)=Y3,ResS4K4(Vρ1)=1+Y3,ResS4K4(Vρ2)=1+Y1+Y2,ResS4K4(Vρ3)=Y1+Y2+Y3.
    $

    Then we get the representation matrices of basis elements of $ r(S_4) $ acting on $ r(K_4) $ as follows:

    $ 1E4,Vψ(0001001001001000),Vρ1(1001011001101001),Vρ2(1110110110110111),Vρ3(0111101111011110).
    $

    Let $ \left \{ w_i\right \}_{1\leq i\leq 4} $ be the stated $ \mathbb{Z} $-basis of $ M_{4, 7} $ listed in Table 4. Then

    $ w1Y2,w2Y1,w31,w4Y3,
    $

    defines an equivalence of $ \mathbb{Z}_+ $-modules between $ M_{4, 7} $ and $ r(K_4) $. In other words, the irreducible based module $ M_{4, 7} $ can be categorified by the module category $ {\rm Rep}(K_4) $ over $ {\rm Rep}(S_4) $.

    Remark 4.3. In a manner analogous to the argument in Remark 4.1, it follows that the irreducible based module $ M_{4, 5} $ can also be categorified by the module category $ {\rm Rep}(K_4) $ over $ {\rm Rep}(S_4) $.

    (ⅳ) We consider $ {\rm Rep}(A_4) $ as a module category over $ {\rm Rep}(S_4) $.

    Theorem 4.6. $ r(A_4) = {\rm Gr}({\rm Rep}(A_4)) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{4, 1} $ in Table 4.

    Proof. We know that $ A_4 $ has three non-isomorphic 1-dimensional irreducible representations and one 3-dimensional irreducible representation, denoted by $ N_0, N_1, N_2 $, and $ N_3 $, respectively, where $ N_0 = 1 $ represents the trivial representation, and

    $ χN1((123))=ω,χN1((12)(34))=1;χN2((123))=ω2,χN2((12)(34))=1;χN3((123))=χN3((132))=0, χN3((12)(34))=1, ω=1+32.
    $

    On the other hand, the character table of $ S_4 $ (Table 1) tells us that

    $ χψ((123))=1,χψ((12)(34))=1;χρ1((123))=1,χρ1((12)(34))=2;χρ2((123))=0,χρ2((12)(34))=1;χρ3((123))=0,χρ3((12)(34))=1.
    $

    So, we have the following restriction rules:

    $ ResS4A4(1)=ResS4A4(Vψ)=1,ResS4A4(Vρ1)=N1+N2,ResS4A4(Vρ2)=ResS4A4(Vρ3)=N3.
    $

    Hence, we get the representation matrices of basis elements of $ r(S_4) $ acting on $ r(A_4) $ as follows:

    $ 1E4,VψE4,Vρ1(0110101011000002),Vρ2,Vρ3(0001000100011112).
    $

    Then, $ r(A_4) $ is an irreducible based module over $ r(S_4) $ equivalent to $ M_{4, 1} $ listed in Table 4. In other words, the irreducible based module $ M_{4, 1} $ can be categorified by the module category $ {\rm Rep}(A_4) $ over $ {\rm Rep}(S_4) $.

    (ⅴ) Next, we consider $ {\rm Rep}(D_4) $ as a module category over $ {\rm Rep}(S_4) $.

    Theorem 4.7. $ r(D_4) = {\rm Gr}({\rm Rep}(D_4)) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{5, 2} $ in Table 5.

    Proof. The dihedral group

    $ D_4 = \langle r, s\, |\, r^4 = s^2 = (rs)^2 = 1\rangle $

    has four 1-dimensional irreducible representations and one 2-dimensional irreducible representation up to isomorphism, denoted by $ W_0, W_1, W_2, W_3 $, and $ W_4 $, respectively. Let $ W_0 = 1 $ stand for the trivial representation, and

    $ χW1(r)=1,χW1(s)=1;χW2(r)=1,χW2(s)=1;χW3(r)=1,χW3(s)=1;χW4(r)=χW4(s)=χW4(rs)=0.
    $

    On the other hand, we consider $ D_4 $ as the subgroup of $ S_4 $ by taking $ r = (1234) $ and $ s = (12)(34) $. Then $ rs = (13) $. By the character table of $ S_4 $ (Table 1), we have

    $ χψ((1234))=1,χψ((12)(34))=1,χψ((13))=1;χρ1((1234))=0,χρ1((12)(34))=2,χρ1((13))=0;χρ2((1234))=1,χρ2((12)(34))=1,χρ2((13))=1;χρ3((1234))=1,χρ3((12)(34))=1,χρ3((13))=1.
    $

    So, we have the following restriction rules:

    $ ResS4D4(1)=1,ResS4D4(Vψ)=W2,ResS4D4(Vρ1)=1+W2,ResS4D4(Vρ2)=W3+W4,ResS4D4(Vρ3)=W1+W4.
    $

    Then we get the representation matrices of basis elements of $ r(S_4) $ acting on $ r(D_4) $ as follows:

    $ 1E5,Vψ(0010000010100000100000001),Vρ1(1010001010101000101000002),Vρ2(0001100101010011000111111),Vρ3(0100110001000110010111111).
    $

    Then $ r(D_4) $ is an irreducible based module over $ r(S_4) $ equivalent to $ M_{5, 2} $ listed in Table 5. In other words, the irreducible based module $ M_{5, 2} $ can be categorified by the module category $ {\rm Rep}(D_4) $ over $ {\rm Rep}(S_4) $.

    (ⅵ) Finally, we consider $ {\rm Rep}(S_4) $ as a module category over itself.

    Theorem 4.8. The regular $ \mathbb{Z}_+ $-module $ r(S_4) $ over itself is equivalent to the irreducible based module $ M_{5, 1} $ in Table 5.

    Proof. Let $ r(S_4) $ be the regular $ \mathbb{Z}_+ $-module over itself with the $ \mathbb{Z} $-basis $ \left \{ 1, V_{\psi}, V_{\rho_{1}}, V_{\rho_{2}}, V_{\rho_{3}} \right \} $, and the action of $ r(S_4) $ on it is given as follows:

    $ 1E5,Vψ(0100010000001000000100010),Vρ1(0010000100111000001100011),Vρ2(0001000001000111011101111),Vρ3(0000100010000110111110111).
    $

    Then, the regular $ \mathbb{Z}_+ $-module $ r(S_4) $ over itself is equivalent to $ M_{5, 1} $ listed in Table 5. In other words, the irreducible based module $ M_{5, 1} $ over $ r(S_4) $ can be categorified by the module category $ {\rm Rep}(S_4) $ over itself.

    Remark 4.4. Following the argument presented in Remark 4.1, if we exchange the notations $ V_{\rho _{2}} $ and $ V_{\rho _{3}} $ with their restriction rules given in the proof of Theorems 4.7 and 4.8, we see that $ r(D_4) $ and $ r(S_4) $ are still equivalent to $ M_{5, 2} $ and $ M_{5, 1} $, respectively.

    Lastly, we consider the module category $ {\rm Rep}(H, \alpha) $ over $ {\rm Rep}(S_4) $, where $ H $ is a subgroup of $ S_4 $ with $ \alpha $ representing the unique nontrivial cohomological class in $ H^2(H, {{\mathbb C}}^*) $. All non-isomorphic irreducible projective representations of $ H $ with the multiplier $ \alpha $ form a $ \mathbb Z $-basis of $ r(H, \alpha) $, whose cardinality is the number of $ \alpha $-regular conjugacy classes by [38, Theorem 6.1.1].

    First, we consider the twisted group algebra of $ K_4 $. There is only one irreducible projective representation with respect to $ \alpha $ up to isomorphism, see, e.g., [39, Appendix D.1]. Hence, $ r(K_4, \alpha) $ is a based module of rank $ 1 $ over $ r(S_4) $ equivalent to $ M_{1, 1} $ defined in (3.8). Namely, the based module $ M_{1, 1} $ can also be categorified by $ {\rm Rep}(K_4, \alpha) $.

    Second, we consider the twisted group algebra of $ D_4 $.

    Theorem 4.9. $ r(D_4, \alpha) = {\rm Gr}({\rm Rep}(D_4, \alpha)) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{2, 3} $ in Table 2.

    Proof. Let

    $ D_4 = \langle r, s\, |\, r^4 = s^2 = (rs)^2 = 1\rangle . $

    Let $ \alpha\in Z^2(D_4, {{\mathbb C}}^*) $ be the 2-cocycle defined by

    $ α(risj,risj)=(1)ji.
    $

    Here, $ i, i'\in {\left \{ 0, 1, 2, 3 \right \} }, \, j, j'\in\left \{ {0, 1} \right \} $. As shown in [40, Section 3.7], this is a unitary 2-cocycle representing the unique non-trivial cohomological class in $ H^2(D_4, {{\mathbb C}}^*) $. According to [35, Section 3], there exist two (2-dimensional) non-isomorphic irreducible projective representations of $ D_4 $ with respect to $ \alpha $, which are given by

    $ πl:D4GL2(C),risjAilBj,
    $

    where

    $ A_l = ((1)l00(1)1l)
    , \; \; \; B = (0110)
    , \; \; \; l = 1, 2. $

    Also, for irreducible representations $ W_0 $–$ W_4 $ of $ D_4 $ mentioned in the proof of Theorem 4.7, we have

    $ W0πl=W1πl=πl,W2πl=W3πl=π3l,W4πl=π1+π2.
    $

    Next, using the previous restriction rule of $ r(S_4) $ on $ r(D_4) $, we get the representation matrices of basis elements of $ r(S_4) $ acting on $ r(D_4, \alpha) $ as follows:

    $ 1E2,Vψ(0110),Vρ1(1111),Vρ2(1221),Vρ3(2112).
    $

    Then, $ r(D_4, \alpha) $ is an irreducible based module over $ r(S_4) $ equivalent to $ M_{2, 3} $ listed in Table 2. In other words, the irreducible based module $ M_{2, 3} $ can be categorified by the module category $ {\rm Rep}(D_4, \alpha) $ over $ {\rm Rep}(S_4) $.

    Remark 4.5. As discussed in Remark 4.1, it follows that the irreducible based module $ M_{2, 2} $ can also be categorified by the module category $ {\rm Rep}(D_4, \alpha) $ over $ {\rm Rep}(S_4) $.

    Next, we consider the twisted group algebras of $ A_4 $ and $ S_4 $. By [38, Theorem 6.1.1], $ A_4 $ has three (2-dimensional) non-isomorphic irreducible projective representations, denoted as $ V_{\gamma _{1}}, V_{\gamma _{2}} $, and $ V_{\gamma _{3}} $, respectively. Similarly, $ S_4 $ has two (2-dimensional) non-isomorphic irreducible projective representations $ V_{\xi_1}, V_{\xi_2} $, and one (4-dimensional) irreducible projective representation $ V_{\xi_3} $. We give the character table for projective representations of $ A_4 $ and $ S_4 $ in Tables 6 and 7, respectively, where primes are used to differentiate between the two classes splitting from a single conjugacy class of $ A_4 $ in its double cover $ \tilde A_4 $, and the same applies to $ S_4 $; subscripts distinguish between the two classes splitting from the conjugacy classes $ (31)^{'} $ and $ (31)^{''} $ in the double cover $ \tilde S_4 $ of $ S_4 $, respectively. For more details, see [41, Section 4].

    Table 6.  The character table for irreducible projective representations of $ A_4 $.
    $ (1^4)^{'} $ $ (1^4)^{''} $ $ (2^2) $ $ (31)^{'}_1 $ $ (31)^{''}_1 $ $ (31)^{'}_2 $ $ (31)^{''}_2 $
    $ \chi_{\gamma _{1}} $ $ 2 $ $ -2 $ $ 0 $ $ 1 $ $ -1 $ $ 1 $ $ -1 $
    $ \chi_{\gamma _{2}} $ $ 2 $ $ -2 $ $ 0 $ $ \omega $ $ -\omega $ $ \omega^2 $ $ -\omega^2 $
    $ \chi_{\gamma _{3}} $ $ 2 $ $ -2 $ $ 0 $ $ \omega^2 $ $ -\omega^2 $ $ \omega $ $ -\omega $

     | Show Table
    DownLoad: CSV
    Table 7.  The character table for irreducible projective representations of $ S_4 $.
    $ (1^4)^{'} $ $ (1^4)^{''} $ $ (2 1^2) $ $ (2^2) $ $ (3 1)^{'} $ $ (31)^{''} $ $ (4)^{'} $ $ (4)^{''} $
    $ \chi_{\xi_1} $ $ 2 $ $ -2 $ $ 0 $ $ 0 $ $ 1 $ $ -1 $ $ \sqrt{2} $ $ -\sqrt{2} $
    $ \chi_{\xi_2} $ $ 2 $ $ -2 $ $ 0 $ $ 0 $ $ 1 $ $ -1 $ $ -\sqrt{2} $ $ \sqrt{2} $
    $ \chi_{\xi_3} $ $ 4 $ $ -4 $ $ 0 $ $ 0 $ $ -1 $ $ 1 $ $ 0 $ $ 0 $

     | Show Table
    DownLoad: CSV

    In Table 6, we denote

    $ \omega = e^{2\pi\sqrt{-1}/3} = \frac{-1+\sqrt{-3}}{2}. $

    Then we have the following theorems.

    Theorem 4.10. $ r(A_4, \alpha) = {\rm Gr}({\rm Rep}(A_4, \alpha)) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{3, 1} $ in Table 3.

    Proof. For the irreducible representations $ N_0, N_1, N_2 $, and $ N_3 $ of $ A_4 $ mentioned in the proof of Theorem 4.6, we obtain the following tensor product rule in $ r^\alpha(A_4) $ by computing the values of products of characters:

    $ N0Vγi=Vγi,N1Vγj=Vγj+1,N1Vγ3=Vγ1;N2Vγ1=Vγ3,N2Vγ2=Vγ1, N2Vγ3=Vγ2; N3Vγi=Vγ1+Vγ2+Vγ3,
    $

    where $ i = 1, 2, 3 $, $ j = 1, 2 $. Next, by combining this with the previous restriction rule of $ r(S_4) $ on $ r(A_4) $, we obtain

    $ 1, V_{\psi} \mapsto E_3, \quad V_{\rho_1} \mapsto (011101110)
    , \quad V_{\rho_2}, V_{\rho_3} \mapsto (111111111)
    . $

    Then $ r(A_4, \alpha) $ is an irreducible based module over $ r(S_4) $ equivalent to $ M_{3, 1} $ listed in Table 3. In other words, the irreducible based module $ M_{3, 1} $ can be categorified by $ {\rm Rep}(A_4, \alpha) $.

    Theorem 4.11. $ r(S_4, \alpha) = {\rm Gr}({\rm Rep}(S_4, \alpha)) $ is an irreducible based module over $ r(S_4) $ equivalent to the based module $ M_{3, 3} $ in Table 3.

    Proof. Let $ \alpha $ be a nontrivial 2-cocycle in $ Z^2(S_4, {{\mathbb C}}^*) $ (see e.g., [42, Section 3.2.4]). By checking products of characters, we get the following tensor product rule in $ r^\alpha(S_4) $:

    $ 1Vξi=Vξi;VψVξj=Vξ3j,VψVξ3=Vξ3;Vρ1Vξj=Vξ3,Vρ1Vξ3=Vξ1+Vξ2+Vξ3;Vρ2Vξj=Vξ3j+Vξ3,Vρ2Vξ3=Vρ3Vξ3=Vξ1+Vξ2+2Vξ3;Vρ3Vξj=Vξj+Vξ3;
    $

    where $ i = 1, 2, 3 $, $ j = 1, 2 $. Thus, we get

    $ 1 \mapsto E_3, \quad V_{\psi} \mapsto (010100001)
    , \quad V_{\rho_1} \mapsto (001001111)
    , \quad V_{\rho_2} \mapsto (011101112)
    , \quad V_{\rho_3} \mapsto (101011112)
    . $

    Then $ r(S_4, \alpha) $ is an irreducible based module over $ r(S_4) $ equivalent to $ M_{3, 3} $ listed in Table 3. In other words, the irreducible based module $ M_{3, 3} $ over $ r(S_4) $ can be categorified by $ {\rm Rep}(S_4, \alpha) $.

    In summary, we have the following classification theorem.

    Theorem 4.12. The inequivalent irreducible based modules over $ r(S_4) $ are

    $ M_{1, 1}, \; \; \; {\left \{ M_{2, i}\right \} } _{i = 1, 2, 3} , \; \; \; {\left \{ M_{3, j}\right \} } _{j = 1, 2, 3} , \; \; \; {\left \{ M_{4, s}\right \} } _{1\le s\le 7} \; \; \; \mathit{\text{and}}\; \; \; {\left \{ M_{5, t}\right \} } _{t = 1, 2}, $

    among which

    $ M_{1, 1} , \; \; \; {\left \{ M_{2, i}\right \} } _{i = 2, 3} , \; \; \; {\left \{ M_{3, j}\right \} } _{j = 1, 2, 3}, \; \; \; {\left \{ M_{4, s}\right \} } _{s = 1, 5, 7} \; \; \; \mathit{\text{and}}\; \; \; {\left \{ M_{5, t}\right \} } _{t = 1, 2} $

    can be categorified by module categories over $ {\rm Rep}(S_4) $; see Table 8.

    Table 8.  Inequivalent irreducible based modules over $ r(S_4) $.
    $ V_{\psi} $ $ V_{\rho _{1}} $ $ V_{\rho _{2}} $ Categorification
    Rank 1 $ M_{1, 1} $ $ 1 $ $ 2 $ $ 3 $ $ {\rm Rep}(\mathbb Z_1) $, $ {\rm Rep}(K_4, \alpha) $
    Rank 2 $ M_{2, 1} $ $ (1001)
    $
    $ (2002)
    $
    $ (1221)
    $
    No
    $ M_{2, 2} $ $ (0110)
    $
    $ (1111)
    $
    $ (2112)
    $
    $ {\rm Rep}(\mathbb Z_2) $, $ {\rm Rep}(D_4, \alpha) $
    $ M_{2, 3} $ $ (0110)
    $
    $ (1111)
    $
    $ (1221)
    $
    $ {\rm Rep}(\mathbb Z_2) $, $ {\rm Rep}(D_4, \alpha) $
    Rank 3 $ M_{3, 1} $ $ (100010001)
    $
    $ (011101110)
    $
    $ (111111111)
    $
    $ {\rm Rep}(\mathbb Z_3) $, $ {\rm Rep}(A_4, \alpha) $
    $ M_{3, 2} $ $ (010100001)
    $
    $ (001001111)
    $
    $ (101011112)
    $
    $ {\rm Rep}(S_3) $
    $ M_{3, 3} $ $ (010100001)
    $
    $ (001001111)
    $
    $ (011101112)
    $
    $ {\rm Rep}(S_3) $, $ {\rm Rep}(S_4, \alpha) $
    Rank 4 $ M_{4, 1} $ $ (1000010000100001)
    $
    $ (0011020010011010)
    $
    $ (0100121101000100)
    $
    $ {\rm Rep}(A_4) $
    $ M_{4, 2} $ $ (1000010000100001)
    $
    $ (2000020000200002)
    $
    $ (0111101111011110)
    $
    No
    $ M_{4, 3} $ $ (1000010000100001)
    $
    $ (1100110000200002)
    $
    $ (0111101111011110)
    $
    No
    $ M_{4, 4} $ $ (0100100000100001)
    $
    $ (1100110000200002)
    $
    $ (1011011111011110)
    $
    No
    $ M_{4, 5} $ $ (0100100000010010)
    $
    $ (1100110000110011)
    $
    $ (0111101111011110)
    $
    $ {\rm Rep}(\mathbb Z_4), \, {\rm Rep}(K_4) $
    $ M_{4, 6} $ $ (0100100000010010)
    $
    $ (1100110000110011)
    $
    $ (0111101111101101)
    $
    No
    $ M_{4, 7} $ $ (0100100000010010)
    $
    $ (1100110000110011)
    $
    $ (1011011111101101)
    $
    $ {\rm Rep}(\mathbb Z_4), \, {\rm Rep}(K_4) $
    Rank 5 $ M_{5, 1} $ $ (0100010000000100010000001)
    $
    $ (0000100001001100011011001)
    $
    $ (0001000100011111011100110)
    $
    $ {\rm Rep}(S_4) $
    $ M_{5, 2} $ $ (0100010000000100010000001)
    $
    $ (1100011000001100011000002)
    $
    $ (0001100101010011000111111)
    $
    $ {\rm Rep}(D_4) $

     | Show Table
    DownLoad: CSV

    The analysis in this paper shows that the classification of the irreducible based modules of rank up to 5 over the complex representation ring $ r(S_4) $. We also showed that any $ \mathbb{Z}_+ $-modules over the representation ring $ r(G) $ categorified by a module category over the representation category $ {\rm Rep}(G) $ must be a based module. At the end, we present the categorification of based modules over $ r(S_4) $ by module categories over the complex representation category $ {\rm Rep}(S_4) $ of $ S_4 $, using projective representations of specific subgroups of $ S_4 $. We expect that the studies developed here will be helpful in investigations of the structures of module categories over fusion categories. Our future study will focus on the existence of any irreducible based module of rank $ \geq 6 $ over $ r(S_4) $ and classifying irreducible $ \mathbb Z_+ $-modules over $ r(S_4) $, especially for high-rank cases. Also, some other small finite groups may be interesting to consider, e.g., the dihedral group $ D_5 $.

    Wenxia Wu: Writing-original draft and editing, conceptualization, software, methodology; Yunnan Li: Topic selection, writing-review and editing, funding acquisition, methodology, supervision. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    We would like to thank Zhiqiang Yu for helpful discussion. This work is supported by Guangdong Basic and Applied Basic Research Foundation (2022A1515010357).

    The authors declare that there are no conflicts of interest.

    [1] Bannerman RL, Milders M, de Gelder B, et al. (2009) Orienting to threat: faster localization of fearful facial expressions and body postures revealed by saccadic eye movements. Proc Biol Sci 276(1662): 1635-1641.
    [2] Simon EW, Rosen M, Ponpipom A (1996) Age and IQ as predictors of emotion identification in adults with mental retardation. Res Dev Disabil 17(5): 383-389.
    [3] Eimer M (2011) The face-sensitive N170 component of the event-related brain potential. Oxford handbook face percept: 329-344.
    [4] Rossion B, Jacques C (2011) 5 The N170: Understanding the time course. Oxford handbook potent components 115.
    [5] Maurer U, Rossion B, McCandliss BD (2008) Category specificity in early perception: face and word N170 responses differ in both lateralization and habituation properties. Front Hum Neurosci.
    [6] Eimer M, Kiss M, Nicholas S (2010) Response profile of the face-sensitive N170 component: a rapid adaptation study. Cerebral Cortex 312.
    [7] Jacques C, Rossion B (2010) Misaligning face halves increases and delays the N170 specifically for upright faces: Implications for the nature of early face representations. Brain Res 13(18): 96-109.
    [8] Itier RJ, Alain C, Sedore K, et al. (2007) Early face processing specificity: It's in the eyes! J Cog Neurosci 19: 1815-1826.
    [9] Itier RJ, Batty M (2009) Neural bases of eye and gaze processing: the core of social cognition. Neurosci Biobehav Rev 33(6): 843-863.
    [10] Dering B, Martin CD, Moro S, et al. (2011) Face-sensitive processes one hundred milliseconds after picture onset. Front Hum Neurosci 5.
    [11] Eimer M (2011) The face-sensitivity of the n170 component. Front Hum Neurosci 5.
    [12] Ganis G, Smith D, Schendan HE (2012) The N170, not the P1, indexes the earliest time for categorical perception of faces, regardless of interstimulus variance. Neuroimage 62(3): 1563-1574.
    [13] Rossion B, Caharel S (2011) ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception. Vision Res 51(12): 1297-1311.
    [14] Dering B, Hoshino N, Theirry G (2013) N170 modulation is expertisedriven: evidence from word-inversion effects in speakers of different languages. Neuropsycholo Trend 13.
    [15] Tanaka JW, Curran T (2001) A Neural Basis for Expert Object Recognition. Psychol Sci 12: 43-47. doi: 10.1111/1467-9280.00308
    [16] Gauthier I, Curran T, Curby KM, et al. (2003) Perceptual interference supports a non-modular account of face processing. Nat Neurosci 6: 428-432. doi: 10.1038/nn1029
    [17] Fan C, Chen S, Zhang L, et al. (2015) N170 changes reflect competition between faces and identifiable characters during early visual processing. NeuroImage 110: 32-38. doi: 10.1016/j.neuroimage.2015.01.047
    [18] Rugg M D, Milner AD, Lines CR, et al. (1987) Modulation of visual event-related potentials by spatial and non-spatial visual selective attention. Neuropsychologia 25: 85-96. doi: 10.1016/0028-3932(87)90045-5
    [19] Schinkel S, Ivanova G, Kurths J, et al. (2014) Modulation of the N170 adaptation profile by higher level factors. Bio Psychol 97: 27-34. doi: 10.1016/j.biopsycho.2014.01.003
    [20] Gong J, Lv J, Liu X, et al. (2008) Different responses to same stimuli. Neuroreport 19.
    [21] Thierry G, Martin CD, Downing P, et al. (2007) Controlling for interstimulus perceptual variance abolishes N170 face selectivity. Nat Neurosci 10: 505-511.
    [22] Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: Evidence from functional neuroimaging. Neuropsychologia 45: 174-194. doi: 10.1016/j.neuropsychologia.2006.06.003
    [23] Munte TF, Brack M, Grootheer O, et al. (1998) Brain potentials reveal the timing of face identity and expression judgments. Neurosci Res 30: 25-34. doi: 10.1016/S0168-0102(97)00118-1
    [24] Eimer M, Holmes A (2007) Event-related brain potential correlates of emotional face processing. Neuropsychologia 45: 15-31. doi: 10.1016/j.neuropsychologia.2006.04.022
    [25] Batty M, Taylor MJ (2003) Early processing of the six basic facial emotional expressions. Cog Brain Res 17: 613-620. doi: 10.1016/S0926-6410(03)00174-5
    [26] Krombholz A, Schaefer F, Boucsein W (2007) Modification of N170 by different emotional expression of schematic faces. Biol Psychol 76: 156-162. doi: 10.1016/j.biopsycho.2007.07.004
    [27] Jiang Y, Shannon RW, Vizueta N, et al. (2009) Dynamics of processing invisible faces in the brain: Automatic neural encoding of facial expression information. Neuroimage 44: 1171-1177. doi: 10.1016/j.neuroimage.2008.09.038
    [28] Hung Y, Smith ML, Bayle DJ, et al. (2010) Unattended emotional faces elicit early lateralized amygdala-frontal and fusiform activations. Neuroimage 50: 727-733. doi: 10.1016/j.neuroimage.2009.12.093
    [29] Pegna AJ, Landis T, Khateb A (2008) Electrophysiological evidence for early non-conscious processing of fearful facial expressions. Int J Psychophysiol 70: 127-136. doi: 10.1016/j.ijpsycho.2008.08.007
    [30] Hinojosa JA, Mercado F, Carretié L (2015) N170 sensitivity to facial expression: A meta-analysis. Neurosci Biobehav Rev.
    [31] Ledoux JE (1996) The emotional brain: The mysterious underpinnings of emotional life. New York: Simon & Schuster.
    [32] Öhman A, Flykt A, Esteves F (2001) Emotion drives attention: Detecting the snake in the grass. J Exper Psychology-General 130: 466-478. doi: 10.1037/0096-3445.130.3.466
    [33] Luo Q, Holroyd T, Jones M, et al. (2007) Neural dynamics for facial threat processing as revealed by gamma band synchronization using MEG. Neuroimage 34(2): 839-847.
    [34] Maratos FA, Mogg K, Bradley BP, et al. (2009) Coarse threat images reveal theta oscillations in the amygdala: a magnetoencephalography study. Cog Affect Behav Neurosci 9(2): 133-143.
    [35] Maratos FA, Senior C, Mogg K, et al. (2012) Early gamma-band activity as a function of threat processing in the extrastriate visual cortex. Cog Neurosci 3(1): 62-68.
    [36] Fox E, Russo R, Dutton K (2002) Attentional bias for threat: Evidence for delayed disengagement from emotional faces. Cog Emotion 16(3): 355-379.
    [37] Gray KLH, Adams WJ, Hedger N, et al. (2013) Faces and awareness: low-level, not emotional factors determine perceptual dominance. Emotion 13(3): 537-544.
    [38] Stein T, Seymour K, Hebart MN, et al. (2014) Rapid fear detection relies on high spatial frequencies. Psychol Sci 25(2): 566-574.
    [39] Öhman A, Soares SC, Juth P, et al. (2012) Evolutionary derived modulations of attention to two common fear stimuli: Serpents and hostile humans. J Cog Psychol 24(1): 17-32.
    [40] Dickins DS, Lipp OV (2014) Visual search for schematic emotional faces: angry faces are more than crosses. Cog Emotion 28(1): 98-114.
    [41] Öhman A, Lundqvist D, Esteves F (2001) The face in the crowd revisited: a threat advantage with schematic stimuli. J Personal Soc Psychol 80: 381-396.
    [42] Maratos FA, Mogg K, Bradley BP (2008) Identification of angry faces in the attentional blink. Cog Emotion 22(7): 1340-1352.
    [43] Maratos FA (2011) Temporal processing of emotional stimuli: the capture and release of attention by angry faces. Emotion 11(5): 1242.
    [44] Simione L, Calabrese L, Marucci FS, et al. (2014) Emotion based attentional priority for storage in visual short-term memory. PloS one 9(5): e95261.
    [45] Pinkham AE, Griffin M, Baron R, et al. (2010) The face in the crowd effect: anger superiority when using real faces and multiple identities. Emotion 10(1): 141.
    [46] Stein T, Sterzer P (2012) Not just another face in the crowd: detecting emotional schematic faces during continuous flash suppression. Emotion 12(5): 988.
    [47] Gratton G, Coles MGH, Donchin E (1983) A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol 55:468-474 doi: 10.1016/0013-4694(83)90135-9
    [48] Kolassa IT, Musial F, Kolassa S, et al. (2006) Event-related potentials when identifying or color-naming threatening schematic stimuli in spider phobic and non-phobic individuals. BMC Psychiatry 6(38).
    [49] Babiloni C, Vecchio F, Buffo P, et al. (2010). Cortical responses to consciousness of schematic emotional facial expressions: A high‐resolution EEG study. Hum Brain Map 31(10): 1556-1569. doi: 10.1002/hbm.20958
    [50] Deffke I, Sander T, Heidenreich J, et al. (2007) MEG/EEG sources of the 170 ms response to faces are co-localized in the fusiform gyrus. Neuroimage 35(4): 1495-1501.
    [51] Luo S, Luo W, He W, et al. (2013) P1 and N170 components distinguish human-like and animal-like makeup stimuli. Neuroreport 24(9): 482-486.
    [52] Mercure E, Cohen Kadosh K, Johnson M (2011) The N170 shows differential repetition effects for faces, objects, and orthographic stimuli. Front Hum Neurosci 5(6).
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7217) PDF downloads(1235) Cited by(5)

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog