Citation: Frantisek Franek, W. F. Smyth, Xinfang Wang. The Role of The Prefix Array in Sequence Analysis: A Survey[J]. AIMS Medical Science, 2017, 4(3): 261-273. doi: 10.3934/medsci.2017.3.261
[1] | Iliopoulos CS, Mouchard L (1999) Quasiperiodicity and string covering. Theoret Comput Sci 218: 205-216. doi: 10.1016/S0304-3975(98)00260-6 |
[2] | Smyth WF (2013) Computing regularities in strings: a survey. Europ J Combinatorics 34: 3-14. doi: 10.1016/j.ejc.2012.07.010 |
[3] | Aho AV, Hopcroft JE (1974) The design and analysis of computer algorithms. Pearson Education India. |
[4] | Knuth DE, Morris, Jr JH, Pratt VR (1977) Fast pattern matching in strings. SIAM J Computing 6: 323-350. doi: 10.1137/0206024 |
[5] | Fredkin E (1960) Trie memory. Commun Assoc Comput Mach 3: 490-499. |
[6] | Weiner P (1973) Linear pattern matching algorithms. In: Switching and Automata Theory, 1973, SWAT'08. IEEE Conference Record of 14th Annual Symposium on. IEEE: 1-11. |
[7] | McCreight EM (1976) A space-economical suffix tree construction algorithm. JACM 23: 262-272. doi: 10.1145/321941.321946 |
[8] | Farach M (1997) Optimal su x tree construction with large alphabets. In: Proceedings of the 38th Annual Symposium on the Foundations of Computer Science, FOCS: 97. |
[9] | Apostolico A (1985) The myriad virtues of subword trees. In: Combinatorial algorithms on words. Springer Berlin Heidelberg: 85-96. |
[10] | Manber U, Myers GW (1990) Suffix arrays: a new method for on-line string searches, Proc. First Annual ACM-SIAM Symp. Discrete Algs: 319-327. |
[11] | Manber U, Myers G (1993) Suffix arrays: a new method for on-line string searches. SIAM J Comput 22: 935-948. doi: 10.1137/0222058 |
[12] | Kärkkäinen J, Sanders P (2003) Simple linear work suffix array construction. In: International Colloquium on Automata, Languages, and Programming. Springer Berlin Heidelberg: 943-955. |
[13] | Ko P, Aluru S (2003) Space efficient linear time construction of suffix arrays. In: Annual Symposium on Combinatorial Pattern Matching. Springer Berlin Heidelberg: 200-210. |
[14] | Kim DK, Sim JS, Park H, et al. (2003) Linear-time construction of suffix arrays. In: Annual Symposium on Combinatorial Pattern Matching. Springer Berlin Heidelberg: 186-199. |
[15] | Puglisi SJ, Smyth WF, Turpin AH (2007) A taxonomy of suffix array construction algorithms. acm Computing Surveys (CSUR) 39: 4. doi: 10.1145/1242471.1242472 |
[16] | Nong G, Zhang S, Chan WH (2009) Linear time suffix array construction using D-critical substrings. In: Annual Symposium on Combinatorial Pattern Matching. Springer Berlin Heidelberg: 54-67. |
[17] | Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms 2: 53-86. doi: 10.1016/S1570-8667(03)00065-0 |
[18] | Smyth B (2003) Computing patterns in strings. Pearson Education. |
[19] | Fischer MJ, Paterson MS (1974) String-matching and other products (No. MAC-TM-41). Massachusetts Inst. of Technology. |
[20] | Blanchet-Sadri F (2007) Algorithmic combinatorics on partial words. CRC Press. |
[21] | Abrahamson K (1987) Generalized string matching. SIAM J Comput 16:1039-1051. |
[22] | Holub J, Smyth WF (2003) Algorithms on indeterminate strings. 36-45. |
[23] | Holub J, Smyth W F, Wang S (2008) Fast pattern-matching on indeterminate strings. J Discrete Algorithms 6: 37-50. doi: 10.1016/j.jda.2006.10.003 |
[24] | Smyth WF, Wang S (2009) A new approach to the periodicity lemma on strings with holes. Theoret Comput Sci 410: 4295-4302. |
[25] | Main MG, Lorentz RJ (1984) An O (n log n) algorithm for finding all repetitions in a string. J Algorithms 5: 422-432. |
[26] | Crochemore M, Hancart C, Lecroq T (2001) Algorithmique du texte. Paris: Vuiber: 347. |
[27] | Crochemore M, Hancart C, Lecroq T (2007) Algorithms on strings. Cambridge University Press: 383. |
[28] | Smyth WF, Wang S (2008) New perspectives on the prefix array. In: International Symposium on String Processing and Information Retrieval. Springer Berlin Heidelberg: 133-143. |
[29] | Bland W, Kucherov G, Smyth WF (2013) Prefix table construction and conversion. In: International Workshop on Combinatorial Algorithms. Springer Berlin Heidelberg: 41-53. |
[30] | Gusfield D (1997) Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge university press. |
[31] | Clément J, Crochemore M, Rindone G (2009) Reverse engineering prefix tables. In: 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009. IBFI Schloss Dagstuhl: 289-300. |
[32] | Alatabbi A, Rahman MS, Smyth WF (2015) Inferring an indeterminate string from a prefix graph. J Discrete Algorithms 32: 6-13. |
[33] | Christodoulakis M, Ryan PJ, Smyth WF, et al. (2015) Indeterminate strings, prefix arrays & undirected graphs. Theoret Comput Sci 600: 34-48. |
[34] | Blanchet-Sadri F, Bodnar M, De Winkle B (2017) New bounds and extended relations between prefix arrays, border arrays, undirected graphs, and indeterminate strings. Theory of Computing Systems 60: 473-497. doi: 10.1007/s00224-016-9668-2 |
[35] | Helling J, Ryan PJ, Smyth WF, et al. (2017) Constructing an indeterminate string from its associated graph. Theoret Comput Sci. Available from: http://www.sciencedirect.com/science/article/pii/S0304397517301494 |
[36] | Beal R, Adjeroh DA, Smyth WF (2017) A prefix array for parameterized strings. J Discrete Algorithms 42: 23-34. doi: 10.1016/j.jda.2016.11.002 |
[37] | Barton C, Iliopoulos CS, Pissis SP, et al. (2014) Fast and simple computations using prefix tables under hamming and edit distance. In: International Workshop on Combinatorial Algorithms. Springer International Publishing: 49-61. |
[38] | Apostolico A, Ehrenfeucht A (1993) Efficient detection of quasiperiodicities in strings. Theoret Comput Sci 119: 247-265. |
[39] | Apostolico A, Farach M, Iliopoulos CS (1991) Optimal superprimitivity testing for strings. Inform Process Lett 39: 17-20. |
[40] | Breslauer D (1992) An on-line string superprimitivity test. Inform Proces. Lett 44: 345-347. |
[41] | Moore D, Smyth WF (1994) An optimal algorithm to compute all the covers of a string. Inform Process Lett 50: 239-246. doi: 10.1016/0020-0190(94)00045-X |
[42] | Moore D, Smyth WF (1995) A correction to "An optimal algorithm to compute all the covers of a string". Inform Process Lett 54: 101-103. doi: 10.1016/0020-0190(94)00235-Q |
[43] | Li Y, Smyth WF (2002) Computing the cover array in linear time. Algorithmica 32: 95-106. doi: 10.1007/s00453-001-0062-2 |
[44] | Iliopoulos CS, Moore DWG, Park K (1996) Covering a string. Algorithmica 16: 288-297. doi: 10.1007/BF01955677 |
[45] | Christodoulakis M, Iliopoulos CS, Park K, et al. (2005) Approximate Seeds of Strings. J Automata Languages & Combinatorics 10: 609-626. |
[46] | Iliopoulos CS, Smyth WF (1998) On-line algorithms for k-covering. Proc. 9th Australasian Workshop on Combinatorial Algs: 107-116. |
[47] | Cole R, Ilopoulos CS, Mohamed M, et al. (2005) The complexity of the minimum k-cover problem. J Automata Languages & Combinatorics 10: 641-653. |
[48] | Iliopoulos CS, Mohamed M, Smyth WF (2011) New complexity results for the k-covers problem. Inform Sci 181: 2571-2575. |
[49] | Kociumaka T, Pissis SP, Radoszewski J, et al. (2015) Fast algorithm for partial covers in words. Algorithmica 73: 217-233. doi: 10.1007/s00453-014-9915-3 |
[50] | Kociumaka T, Pissis S P, Radoszewski J, et al. (2016) Efficient algorithms for shortest partial seeds in words. Theoret Comput Sci Available from: http://www.sciencedirect.com/science/article/pii/S0304397516307034 |
[51] | Flouri T, Iliopoulos CS, Kociumaka T, et al. (2013) Enhanced string covering. Theoret Comput Sci 506: 102-114. |
[52] | Bari MF, Rahman MS, Shahriyar R (2009) Finding All Covers of an Indeterminate String in O (n) Time on Average. In: Stringology: 263-271. |
[53] | Aho AV, Corasick MJ (1975) Efficient string matching: an aid to bibliographic search. Commun Assoc Comput Mach 18: 333-340. |
[54] | Alatabbi A, Rahman MS, Smyth WF (2016) Computing covers using prefix tables. Discrete Appl Math 212: 2-9. |
[55] | Alatabbi A, Islam AS, Rahman MS, et al. (2016) Enhanced covers of regular & indeterminate strings using prefix tables. J Automata Languages & Combinatorics: 41-46. |