Research article Special Issues

Diesel exhaust pollution: chemical monitoring and cytotoxicity assessment

  • Received: 24 January 2015 Accepted: 17 July 2015 Published: 25 January 2015
  • Diesel engines are a significant source of nitrogen oxides (NOx) and particulate matter (PM) which may cause adverse health effects on the cardiovascular and pulmonary systems. There is little consistency between many studies to establish which engine parameter is a key factor to determine the toxicity of diesel exhaust. The aim of this study was to correlate engine operating systems with cytotoxicity using human cells. A dynamic direct exposure system containing human cells grown at the air liquid interface (ALI) was employed to expose human derived cells to diesel exhaust emitted under a range of engine loads. To determine correlation between engine load and cytotoxicity, concentrations of NOx and carbon (organic and elemental) were measured. Comparison between filtered and unfiltered exhaust was also made. To assess cytotoxicity and determine mechanisms responsible for toxic effects, various bioassays measuring a range of endpoints were used including: cell metabolism (MTS), cell energy production (ATP) and cell lysosome integrity (NRU). The human cells selected in this study were lung (A549) and liver (HepG2) derived cells to detect if observed cytotoxicity was basal (i.e. affect all cell types) or organ-specific. Results showed that NOx gas concentrations increased as engine load increased which resulted in significant cytotoxicity to both A549 and HepG2 cells. In contrast carbon measurements remained relatively constant across loads with no observable significant difference in cytotoxicity by filtering diesel exhaust. This result suggests that the gaseous component of diesel exhaust may contribute higher cytotoxicity than the particulate component. Post exposure incubation was an important factor to consider as only gaseous components of diesel exhaust exhibited observable immediate effects. Our findings suggest engine torque as a reliable indicator of cytotoxicity on human cells. The advantages of the dynamic direct exposure method include a more realistic representation of human respiratory toxicity and modularity which would allow for the analyses of pollution other than diesel exhaust.

    Citation: Lucky Joeng, Shahnaz Bakand, Amanda Hayes. Diesel exhaust pollution: chemical monitoring and cytotoxicity assessment[J]. AIMS Environmental Science, 2015, 2(3): 718-736. doi: 10.3934/environsci.2015.3.718

    Related Papers:

    [1] Yaxin Hou, Cao Wen, Yang Liu, Hong Li . A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation. Networks and Heterogeneous Media, 2023, 18(2): 855-876. doi: 10.3934/nhm.2023037
    [2] Jinhu Zhao . Natural convection flow and heat transfer of generalized Maxwell fluid with distributed order time fractional derivatives embedded in the porous medium. Networks and Heterogeneous Media, 2024, 19(2): 753-770. doi: 10.3934/nhm.2024034
    [3] Ming-Kai Wang, Cheng Wang, Jun-Feng Yin . A second-order ADI method for pricing options under fractional regime-switching models. Networks and Heterogeneous Media, 2023, 18(2): 647-663. doi: 10.3934/nhm.2023028
    [4] Yin Yang, Aiguo Xiao . Dissipativity and contractivity of the second-order averaged L1 method for fractional Volterra functional differential equations. Networks and Heterogeneous Media, 2023, 18(2): 753-774. doi: 10.3934/nhm.2023032
    [5] Diandian Huang, Xin Huang, Tingting Qin, Yongtao Zhou . A transformed $ L1 $ Legendre-Galerkin spectral method for time fractional Fokker-Planck equations. Networks and Heterogeneous Media, 2023, 18(2): 799-812. doi: 10.3934/nhm.2023034
    [6] Panpan Xu, Yongbin Ge, Lin Zhang . High-order finite difference approximation of the Keller-Segel model with additional self- and cross-diffusion terms and a logistic source. Networks and Heterogeneous Media, 2023, 18(4): 1471-1492. doi: 10.3934/nhm.2023065
    [7] Jie Gu, Lijuan Nong, Qian Yi, An Chen . Two high-order compact difference schemes with temporal graded meshes for time-fractional Black-Scholes equation. Networks and Heterogeneous Media, 2023, 18(4): 1692-1712. doi: 10.3934/nhm.2023074
    [8] Wen Dong, Dongling Wang . Mittag-Leffler stability of numerical solutions to linear homogeneous time fractional parabolic equations. Networks and Heterogeneous Media, 2023, 18(3): 946-956. doi: 10.3934/nhm.2023041
    [9] Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi . Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003
    [10] Zhe Pu, Maohua Ran, Hong Luo . Effective difference methods for solving the variable coefficient fourth-order fractional sub-diffusion equations. Networks and Heterogeneous Media, 2023, 18(1): 291-309. doi: 10.3934/nhm.2023011
  • Diesel engines are a significant source of nitrogen oxides (NOx) and particulate matter (PM) which may cause adverse health effects on the cardiovascular and pulmonary systems. There is little consistency between many studies to establish which engine parameter is a key factor to determine the toxicity of diesel exhaust. The aim of this study was to correlate engine operating systems with cytotoxicity using human cells. A dynamic direct exposure system containing human cells grown at the air liquid interface (ALI) was employed to expose human derived cells to diesel exhaust emitted under a range of engine loads. To determine correlation between engine load and cytotoxicity, concentrations of NOx and carbon (organic and elemental) were measured. Comparison between filtered and unfiltered exhaust was also made. To assess cytotoxicity and determine mechanisms responsible for toxic effects, various bioassays measuring a range of endpoints were used including: cell metabolism (MTS), cell energy production (ATP) and cell lysosome integrity (NRU). The human cells selected in this study were lung (A549) and liver (HepG2) derived cells to detect if observed cytotoxicity was basal (i.e. affect all cell types) or organ-specific. Results showed that NOx gas concentrations increased as engine load increased which resulted in significant cytotoxicity to both A549 and HepG2 cells. In contrast carbon measurements remained relatively constant across loads with no observable significant difference in cytotoxicity by filtering diesel exhaust. This result suggests that the gaseous component of diesel exhaust may contribute higher cytotoxicity than the particulate component. Post exposure incubation was an important factor to consider as only gaseous components of diesel exhaust exhibited observable immediate effects. Our findings suggest engine torque as a reliable indicator of cytotoxicity on human cells. The advantages of the dynamic direct exposure method include a more realistic representation of human respiratory toxicity and modularity which would allow for the analyses of pollution other than diesel exhaust.


    In this paper, we consider the following two-dimensional multi-term time fractional diffusion equation:

    $ Dαtu(x,y,t)Δu(x,y,t)=f(x,y,t)(x,y,t)Q:=Ω×(0,T],
    $
    (1.1a)
    $ u(x,y,t)|Ω=0                               for t(0,T],
    $
    (1.1b)
    $ u(x,y,0)=u0(x,y)                        for (x,y)Ω,
    $
    (1.1c)

    where $ f\in C(\bar{Q}) $, $ \Omega \subset \mathbb{R}^{2} $. In Eq(1.1a), $ {D}_{t}^{\mathit{\boldsymbol{\alpha}}} u $ denotes the multi-term fractional derivative, which is defined by

    $ Dαtu(x,y,t)=Jm=1bmDαmtu(x,y,t),
    $
    (1.2)

    where $ J $ is a positive integer, $ b_m \geq 0 $, $ \mathit{\boldsymbol{\alpha}}: = (\alpha_1, \cdots, \alpha_J) $ with $ 0 < \alpha_J < \cdots < \alpha_1 < 1 $, and the fractional Caputo derivative $ D_{t}^{\alpha} u (0 < \alpha < 1) $ in Eq (1.2) is defined by

    $ Dαtu(x,y,t)=1Γ(1α)t0(ts)αu(x,y,s)sds,t>0.
    $

    For existence and uniqueness of the exact solution for problem (1.1), one can refer to [15,17]. The initial weak singularity of the solution for problem (1.1) is given in [9]. In recent years, many authors have investigated single-term time-fractional diffusion equations, see, e.g., [16,28,30]. At the same time, multi-term fractional equations [12,22,26] which have been successfully used in application of real life have attracted more and more attention. Among many types of fractional derivatives, some researchers have used Riemann-Liouville derivative [7,25], while others, including this article, choose to use Caputo derivative [13,27,30]. However, most of the previous work assumes that the exact solutions in temporal direction are smooth enough, whereas the solutions typically exhibit some weak singularities at initial time. Alternating direction implicit (ADI) method was first introduced in [18], the advantage of the ADI method is that it can reduce the computational cost by transforming a multi-dimensional problem into sets of 1D problems. Nowadays, there are many researchers using ADI method to solve various types of fractional derivative problems, such as [2,6,14,19,20,21,23,31]. Recently, Huang et al. [11] have presented an ADI scheme for 2D multi-term time-space fractional nonlinear diffusion-wave equations under reasonable solution regularity assumption. Cao and Chen [1] have used ADI difference method on uniform mesh to solve a 2D multi-term time-fractional subdiffusion equation with initial singularity. However, the global accuracy in time direction of [1] is low. It is only $ O(\tau^\alpha) $. So, our current work is on graded mesh to improve the temporal accuracy. More precisely, we investigate a fully discrete ADI method for solving the problem (1.1) with weakly singular solution, where the temporal discretization is based L1 approximation on graded mesh, and finite difference method is used for spatial discretization. We establish the stability and convergence of the fully discrete L1-ADI scheme, both $ L^2 $-norm and $ H^1 $-norm error estimates are obtained, and the final error bounds do not blow up when $ \alpha_1 \to 1^- $.

    The rest of the paper is organized as follows. In Section 2, we construct a fully discrete L1-ADI scheme for problem (1.1). In Section 3, we establish the stability and convergence L1-ADI scheme in discrete $ L^2 $-norm. Then, the sharp $ H^{1} $-norm convergence of L1-ADI scheme is presented in Section 4. Some numerical experiments are given in Section 5. The final part is the conclusion.

    Notation. Throughout the paper, we denote by $ C $ a generic positive constant, which may change its value at different occurrences, but is always independent of the mesh sizes. We call a constant $ C $ $ \alpha $-robust, if it doesn't blow up when $ \alpha_1 \to 1^- $.

    In the whole paper, to simplify the analysis, let us choose $ \Omega = (0, L)\times(0, L) $, where $ L > 0 $ is constant. We use positive integers $ N_{1} $, $ N_{2} $ and $ M $ respectively to define the spatial and temporal partition parameters. Consider the graded temporal grid in $ [0, T]: t_{j} = T(j/M)^r $, $ j = 0, 1, \ldots, M $ and $ r\geq1 $. Denote time step $ \tau_n: = t_n-t_{n-1} $ for $ n = 1, \cdots, M $. Then, we use $ x_{m} = mh_{1} $ for $ m = 0, 1, \ldots, N_{1} $ and $ y_{n} = nh_{2} $ for $ n = 0, 1, \ldots, N_{2} $ to denote the spatial grids, where $ h_{1} = L/N_{1} $, $ h_{2} = L/N_{2} $. Set $ \Omega^{\ast}_{h} = \{(x_{m}, y_{n})\lvert0\leq m \leq N_{1}, 0\leq n \leq N_{2}\} $, $ \Omega_{h} = \Omega^{\ast}_{h}\cap \Omega $, and $ \partial\Omega_{h} = \Omega^{\ast}_{h}\cap \partial\Omega $.

    We approximate the Caputo fractional derivative $ D_{t}^{\alpha_{m}} u\left(\cdot, \cdot, t_{n}\right) $ with $ 0 < \alpha_{m} < 1 $ and $ 1 \leq n \leq M $ on graded mesh by using well-known L1 scheme as follows:

    $ δαmtun:=z(αm)n,1unz(αm)n,nu0n1i=1(z(αm)n,iz(αm)n,i+1)uni,
    $
    (2.1)

    where

    $ z(αm)n,k=1Γ(2αm)(tntnk)1αm(tntnk+1)1αmτnk+1k=1,2,,n.
    $
    (2.2)

    Then, we denote

    $ zn,i:=Jm=1bmz(αm)n,i.
    $
    (2.3)

    Thus one can approximate the multi-term fractional derivative $ D_t^{\mathit{\boldsymbol{\alpha}}} u $ in Eq (1.2) by

    $ δαtun:=zn,1unzn,nu0n1k=1(zn,kzn,k+1)unk.
    $
    (2.4)

    Given a mesh function$ \{v^j\}_{j = 0}^M $, and for $ 0\leq n\leq M $, we define

    $ δxvni12,j=vni,jvni1,jh1   for 1iN1,0jN2,δ2xvni,j=δxvni+12,jδxvni12,jh1   for 1iN11,0jN2,δyδxvni12,j12=δxvni12,jδxvni12,j1h2   for 1iN1,1jN2.
    $

    The notations $ \delta_{y}v^n_{i, j-\frac{1}{2}} $, $ \delta_{y}^{2}v^n_{i, j} $ and $ \delta_{x}\delta_{y}v^n_{i-\frac{1}{2}, j-\frac{1}{2}} $ can be defined similarly. We define the discrete Laplace operator $ \Delta_{h}: = \delta_{x}^{2}+\delta_{y}^{2} $ which is a second-order approximation of $ \Delta $. Let $ u_{i, j}^{n} $ be the numerical approximation of the exact solution $ u(x_{i}, y_{j}, t_{n}) $, so the discrete problem of (1.1) is as follows

    $ δαtuni,jΔhuni,j=fni,j(xi,yj,tn)Q:=Ω×(0,T],
    $
    (2.5a)
    $ uni,j|Ω=0                                       for t(0,T],
    $
    (2.5b)
    $ u0i,j=u0(xi,yj)                             for (xi,yj)Ω.
    $
    (2.5c)

    To solve 2D problem, we want to solve 1D problem at first, after that we solve another 1D problem. If a small term $ \gamma_{n}^{2}\delta_{x}^{2}\delta_{y}^{2}\delta_{t}^{\mathit{\boldsymbol{\alpha}}} u_{i, j}^{n} $ for $ n = 1, \ldots, M $, where $ \gamma_{n} = z_{n, 1}^{-1} $, is added to the left side of Eq (2.5a), one gets

    $ (1+γ2nδ2xδ2y)δαtuni,jδ2xuni,jδ2yuni,j=fni,j(xi,yj,tn)Q:=Ω×(0,T].
    $
    (2.6)

    Thus the purpose is achieved as Eq (2.6) can be rewritten by

    $ (1γnδ2x)(1γnδ2y)uni,j=γn[(1+γ2nδ2xδ2y)(zn,nu0i,j+n1k=1(zn,kzn,k+1)unki,j)+fni,j].
    $

    We set $ u_{i, j}^{*} = (1-\gamma_{n}\delta_{y}^{2})u_{i, j} $. Then, the first 1D problem we need to solve is, for $ 1\leq j\leq N_2-1 $,

    $ {(1γnδ2x)ui,j=γn[(1+γ2nδ2xδ2y)(zn,nu0i,j+n1k=1(zn,kzn,k+1)unki,j)+fni,j]    1iN11,u0,j=(1γnδ2y)un0,j,uN1,j=(1γnδ2y)unN1,j,
    $
    (2.7)

    and the second 1D problem we need to solve is, for $ 1\leq i\leq N_1-1 $,

    $ {(1γnδ2y)uni,j=ui,j                1jN21,uni,0=0,uni,N2=0.
    $
    (2.8)

    Thus, we have the following fully discrete ADI scheme for the problem (1.1):

    $ (1+γ2nδ2xδ2y)δαtuni,jδ2xuni,jδ2yuni,j=fni,j(xi,yj,tn)Q:=Ω×(0,T],
    $
    (2.9a)
    $ uni,j|Ω=0                                                   for t(0,T],
    $
    (2.9b)
    $ u0i,j=u0(xi,yj)                                        for (xi,yj)Ω.
    $
    (2.9c)

    We define the convolution multipliers $ \sigma_{n, j} $, which is positive for $ n = 1, 2, \ldots, M $ and $ j = 1, 2, \ldots, n-1 $ by

    $ σn,n=1,σn,j=njk=11znk,1(zn,kzn,k+1)σnk,j>0.
    $
    (3.1)

    We have the following two lemmas on the properties of the convolution multipliers $ \sigma_{n, j} $.

    Lemma 1. ([10, Corollary 1]) One has

    $ z_{n,1}^{-1}\sum\limits_{j = 1}^n\sigma_{n,j}\leq \sum\limits_{m = 1}^J\frac{t_n^{\alpha_m}}{b_m{\Gamma(1+\alpha_m)}}. $

    Lemma 2. ([10, Corollary 2]) Set $ l_M = 1/\ln M $. Assume that $ M\ge 3 $ so $ 0 < l_M < 1 $. Then

    $ z_{n,1}^{-1}\sum\limits_{j = 1}^n \left(\sum _{m = 1}^Jb_mt_j^{-\alpha_m}\right)\sigma _{n,j}\leq \frac{Je^r\max\limits_{1\leq m\leq J} \Gamma(1+l_M-\alpha_m)}{\Gamma(1+l_M)}. $

    To investigate the stability and convergence of the fully discrete L1-ADI scheme (2.9), we need the following fractional discrete Gronwall inequality.

    Lemma 3. [8, Lemma 5.3] Suppose that the sequences $ \left\{\varepsilon^n\right\}_{n = 1}^{\infty}, \left\{\eta^n\right\}_{n = 1}^{\infty} $ are nonnegative and assume the grid function $ \left\{V^n: n = 0, 1, \ldots, M\right\} $ satisfies $ V_0 \geq 0 $ and

    $ \left(\delta_t^{\boldsymbol{\alpha}} V^n\right) V^n \leq \varepsilon^n V^n+\left(\eta^n\right)^2 \quad for \quad n = 1,2, \ldots, M. $

    Then,

    $ VnV0+z1n,1nj=1σn,j(εn+ηn)+max1jn{ηj}forn=1,2,,M.
    $

    Set

    $ \mathcal{V}_h = \big\{ v\lvert v = \{v_{i,j}\lvert(x_i,y_j)\in \Omega_h \} \quad\text{and} \quad v_{i,j} = 0 \quad\text{if}\quad (x_i,y_j)\in \partial\Omega_h \big\}. $

    For any mesh functions $ u, v \in \mathcal{V}_h $, define the discrete $ L^2 $ inner product $ (u, v) = h_1h_2\sum_{i = 1}^{N_1-1}\sum_{j = 1}^{N_2-1}u_{i, j}v_{i, j} $, and the norm $ \Vert v \Vert = \sqrt{(v, v)} $. We also define a new inner product $ (u, v)_{\gamma_{n}}: = (u, v)+ $ $ \gamma_{n}^2(u, v)_{xy} $, where

    $ (u, v)_{x y} = h_1 h_2 \sum\limits_{i = 1}^{N_1} \sum\limits_{j = 1}^{N_2}\left(\delta_x \delta_y u_{i-\frac{1}{2}, j-\frac{1}{2}}\right) \delta_x \delta_y v_{i-\frac{1}{2}, j-\frac{1}{2}}, $

    and set $ \|u\|_{\gamma_{n}} = \sqrt{(u, u)_{\gamma_{n}}} $.

    Lemma 4. [1, Lemma 3] The inner product $ (u, v)_{\gamma_{n}} $ satisfies

    $ (u,v)γnuγnvγn.
    $

    Lemma 5. For $ n = 1, 2, \ldots, M $, the solution of ADI scheme (2.9) satisfies

    $ unγnu0γn+z1n,1nj=1σn,jfj.
    $

    Proof. On both sides of Eq (2.9a), we take the discrete inner product with $ u^n $. Then, one has

    $ ((1+γ2nδ2xδ2y)(zn,1unn1k=1(zn,kzn,k+1)unkzn,nu0),un)=(δ2xun,un)+(δ2yun,un)+(fn,un).
    $
    (3.2)

    Then, by linear property of the inner product and discrete Green formula, the Eq (3.2) becomes

    $ zn,1un2γnn1k=1(zn,kzn,k+1)(unk,un)γnzn,n(u0,un)γn=(fn,un)δxun2δyun2.
    $

    Using Lemma 4, one has

    $ zn,1un2γnn1k=1(zn,kzn,k+1)unkγnunγn+zn,nu0γnunγn+fnunγn,
    $

    which is equivalent to

    $ (δαtunγn)unγnfnunγn.
    $
    (3.3)

    Then, setting all $ \eta^n = 0 $ in Lemma 3, and applying it to Eq (3.3), the result is proved.

    From [3, Lemmas 2.2 and 2.3], one can easily get that

    Lemma 6. Set $ \sigma \in(0, 1) $. Suppose that $ \left|u^{(k)}(t)\right| \leq C\left(1+t^{\sigma-k}\right) $ where $ k = 0, 1, 2 $. Then, for $ 1\leq n\leq M $, one has

    $ |δαtu(tn)Dαtu(tn)|CJm=1bmtαmnMmin{rσ,2αm}.
    $

    Now we come to the convergence of the fully discrete ADI scheme (2.9).

    Theorem 1. Suppose that {$ \left|u^{(l)}(t)\right| \leq C\left(1+t^{\sigma-l}\right) $} for $ l = 0, 1, 2 $ with $ \sigma \in(0, 1) $. Then the computed solution errors $ e_{i, j}^n: = u\left(x_i, y_j, t_n\right)-u_{i, j}^n $ satisfy:

    $ enC(h21+h22+Mmin{2α1,rσ,2α1}),n=1,2,,M,
    $

    where C is $ \alpha $-robust.

    Proof. From Eqs (2.9a) and (1.1a), we get the following error equation:

    $ (1+γ2nδ2xδ2y)δαteni,jδ2xeni,jδ2yeni,j=ϕni,j  forn=1,2,,M,
    $
    (3.4)

    where $ \phi_{i, j}^n $ is the truncation error. By the well-known simple bound $ |\Delta u-\Delta_h u|\leq C(h_1^{2}+h_2^2) $, $ |\gamma_{n}^2| \leq C M^{-2\alpha_1} $, and Lemma $ 6 $, the truncation error $ \phi_{i, j}^n $ satisfies

    $ |ϕni,j|C(h21+h22+M2α1+Jm=1bmtαmnMmin{rσ,2αm)).
    $

    From Lemma 5, and noting that $ e^0 = 0 $, we have

    $ enγnz1n,1nj=1σn,jϕjCz1n,1nj=1σn,j(h21+h22+M2α1+Jm=1bmtαmnMmin{rσ,2αm)).
    $

    Then, using Lemmas 1 and 2, we can get

    $ enγnC(h21+h22+Mmin{2α1,rσ,2α1}),
    $

    where $ C $ is $ \alpha $-robust. Finally, according to the definition of the norm $ \left\|\cdot\right\|_{\gamma_{n}} $, the proof is completed.

    In order to prove the stability and convergence of the fully discrete ADI scheme (2.9) in $ H^1 $-norm sense in this section, we first define some norms. For any grid functions $ U, V \in \mathcal{V}_h $, define

    $ (U,V)xy2=h1h2M11i=1M2j=1(δxδ2yUi,j12)δxδ2yVi,j12,(U,V)x2y=h1h2M1i=1M21j=1(δ2xδyUi12,j)δ2xδyVi12,j,(U,V)Δh=h1h2M1i=1M2j=1(ΔhUi,j)ΔhVi,j.
    $

    The corresponding seminorms are

    $ δxδ2yU=(U,U)xy2,δ2xδyU=(U,U)x2y,ΔhU=(U,U)Δh.
    $

    For any function $ V \in \mathcal{V}_h $, define

    $ hVn=δxVn2+δyVn2,VnH1=Vn2+hVn2,VnA=hV2+γ2n(δxδ2yVn2+δ2xδyVn2).
    $

    According to the definition of $ \left\|\nabla_h V^n\right\| $ and $ \|V^n\|_A $, we can see that $ \left\|\nabla_h V^n\right\| \leq \|V^n\|_A $. From [31, Lemma 2.2], one has $ \|V^n\| \leq C\left\|\nabla_h V^n\right\| $ for all functions $ V \in \mathcal{V}_h $, then, we have $ \|V^n\|_{H^1} \leq C\left\|\nabla_h V^n\right\| $, hence, $ \|V^n\|_{H^1} \leq C\|V^n\|_A $.

    Lemma 7. [29, Lemma 3.2] For any grid functions $ U, V \in \mathcal{V}_h $, one has

    $ ((Un+γ2nδ2xδ2yUn),ΔhVn)UnAVnA,
    $

    where the equality holds when $ U = V $.

    Next, we denote $ R_t u_{i, j}^n = \left(1+\gamma_{n}^2 \delta_x^2 \delta_y^2\right) \delta_t^{\mathit{\boldsymbol{\alpha}}} u\left(x_i, y_j, t_n\right)-D_t^{\mathit{\boldsymbol{\alpha}}} u\left(x_i, y_j, t_n\right) $, $ R_s u_{i, j}^n = \Delta u\left(x_i, y_j, t_n\right)-\Delta_h u\left(x_i, y_j, t_n\right) $. Then the error equation (3.4) can be written as

    $ (1+γn2δ2xδ2y)δαteni,jΔheni,j=Rtuni,j+Rsuni,j.
    $
    (4.1)

    Besides, we have

    $ (Rtun,Δhen)hRtunhenhRtunenA
    $
    (4.2)

    and

    $ (Rsun,Δhen)RsunΔhenΔhen2+14Rsun2.
    $
    (4.3)

    Theorem 2. Suppose that $ \left|u^{(l)}(t) \right|\leq C\left(1+t^{\sigma-l}\right) $ for $ l = 0, 1, 2 $ with $ \sigma \in(0, 1) $. Then, the computed solution error $ e_{i, j}^n: = u\left(x_i, y_j, t_n\right)-u_{i, j}^n $ satisfy:

    $ enH1C(h21+h22+Mmin{2α1,rσ,2α1})for n=1,2,,M,
    $

    where C is $ \alpha $-robust.

    Proof. Taking discrete $ L^2 $ inner product with $ -\Delta_h e^n $ on both sides of Eq (4.1) and noting that $ e^0 = 0 $, we get

    $ zn,1(en+γ2nδ2xδ2yen,Δhen)+Δhen2=n1k=1(zn,kzn,k+1)(enk+γ2nδ2xδ2yenk,Δhen)+(Rtun+Rsun,Δhen).
    $

    Using Lemma 7, one has

    $ zn,1en2A+Δhen2n1k=1(zn,kzn,k+1)enkAenA+(Rtun+Rsun,Δhen).
    $
    (4.4)

    From Eqs (4.2) and (4.3), we obtain

    $ zn,1en2An1k=1(zn,kzn,k+1)enkAenA+hRtunenA+14Rsun2,
    $

    that is

    $ (δαtenA)enAhRtunenA+14Rsun2.
    $
    (4.5)

    Thus, by Lemma 3, from Eq (4.5) we have

    $ enAz1n,1nj=1σn,j(hRtuj+12Rsuj)+max1jn{12Rsuj}.
    $
    (4.6)

    Then, using Lemmas 1 and 2, we come to the conclusion

    $ enAC(h21+h22+Mmin{2α1,rσ,2α1})for n=1,2,,M
    $
    (4.7)

    by noting that

    $ \left\|R_s u^j\right\|\leq C(h_1^2+h_2^2) $

    and

    $ \left\|\nabla_h R_t u^j\right\| \leq C\left( M^{-2\alpha_1}+\sum\limits_{m = 1}^{J} b_m t_{j}^{-\alpha_{m}} M^{-\min \left\{r \sigma, 2-\alpha_{m}\right)}\right). $

    Finally, the results follow from $ \left\|e^n\right\|_{H^1} \leq C\left\|e^n\right\|_A $ for $ n = 1, 2, \ldots, M $. The proof is completed.

    In this section, some numerical examples are reported to support our theoretical analysis. In this section, we present some 2D numerical examples to illustrate the result of our error analysis and convergence order on the temporal graded mesh. We define $ \max\limits_{1 \leq n \leq M} \left\|u\left(t_n\right)-u^n\right\| $ as temporal global $ L^2 $-norm error and global $ H^1 $-norm error is defined similarly.

    Example 1. In Eq (1.1) take $ \Omega = [0, \pi]\times[0, \pi] $, $ T = 1 $, $ J = 2 $, $ b_1 = b_2 = 1 $. Choose $ u(x, y, t) = t^{\alpha_{1}}\sin x\sin y $ as an exact solution. The force term $ f(x, y, t) = b_1\Gamma(1+\alpha_{1})+b_2\Gamma(1+\alpha_{1})\frac{t^{\alpha_{1}-\alpha_{2}}}{\Gamma(1-\alpha_{2}+\alpha_{1})}\sin x\sin y+2t^{\alpha_{1}}\sin x\sin y $.

    For this example, the regularity parameter $ \sigma $ in Lemma 6 is $ \sigma = \alpha_{1} $. Thus, both the temporal convergence orders in Theorems 1 and 2 are $ O(M^{-\min \left\{ 2\alpha_{1}, r\alpha_1, 2-\alpha_1\right\}}) $. We take $ N_1 = N_2 = 1000 $ to eliminate the contamination of spatial errors. Tables 13 present $ L^2 $-norm errors and orders of convergence for Example 1 with different $ \alpha_1 $, $ \alpha_{2} $ and $ r $. And Tables 4, 6 and 8 present $ H^1 $-norm errors and convergence orders. From these tables, we find that the temporal convergence orders are consistent with our theoretical results. As in [1], we also present the local $ H^1 $-norm errors and orders of convergence at $ t = 1 $ for Example 1 in Tables 5, 7 and 9, which have better convergence rates than the global errors. We next test the spatial accuracy of the fully discrete ADI scheme (2.9). Take $ M = 1000 $ such that the spatial errors are dominant. We using $ \alpha_{1} = 0.6 $, $ \alpha_{2} = 0.4 $ and $ r = 2 $ as an example and the results are presented in Figure 1. The results show that the spatial convergence orders are second order in $ L^2 $ and $ H^1 $-norm sense as is indicated in Theorems 1 and 2.

    Table 1.  Global $ L^2 $-norm errors and orders of convergence for Example 1 with $ \alpha_1 = 0.4 $, $ \alpha_{2} = 0.2 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 4.5097e-02 3.5324e-02 2.7702e-02 2.1696e-02 1.6945e-02
    0.3524 0.3507 0.3526 0.3565 0.4
    $ r=2 $ 1.6555e-02 1.0374e-02 6.4456e-03 3.9727e-03 2.4305e-03
    0.6743 0.6866 0.6982 0.7089 0.8
    $ r=\frac{1}{\alpha_1} $ 1.8950e-02 1.1927e-02 7.4361e-03 4.5963e-03 2.8189e-03
    0.6679 0.6816 0.6941 0.7053 0.8
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 2.5296e-02 1.6072e-02 1.0095e-02 6.2790e-03 3.8718e-03
    0.6544 0.6708 0.6851 0.6975 0.8

     | Show Table
    DownLoad: CSV
    Table 2.  Global $ L^2 $-norm errors and orders of convergence for Example 1 with $ \alpha_1 = 0.6 $, $ \alpha_{2} = 0.4 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 2.1888e-02 1.4954e-02 1.0156e-02 6.8591e-03 4.6113e-03
    0.5495 0.5583 0.5662 0.5728 0.6
    $ r=2 $ 4.3121e-03 2.0043e-03 9.2711e-04 4.2681e-04 1.9546e-04
    1.1053 1.1123 1.1192 1.1267 1.2
    $ r=\frac{1}{\alpha_1} $ 4.6879e-03 2.4428e-03 1.2576e-03 6.4229e-04 3.2626e-04
    0.9404 0.9578 0.9694 0.9772 1.0
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 4.9526e-03 2.3114e-03 1.0727e-03 4.9519e-04 2.2734e-04
    1.0994 1.1076 1.1152 1.1231 1.2

     | Show Table
    DownLoad: CSV
    Table 3.  Global $ L^2 $-norm errors and orders of convergence for Example 1 with $ \alpha_1 = 0.8 $, $ \alpha_{2} = 0.6 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 7.1706e-03 4.2900e-03 2.5403e-03 1.4930e-03 8.7296e-04
    0.7411 0.7560 0.7668 0.7743 0.8
    $ r=2 $ 1.9211e-03 7.5633e-04 2.9814e-04 1.1785e-04 4.6867e-05
    1.3448 1.3430 1.3391 1.3302 1.2
    $ r=\frac{1}{\alpha_1} $ 3.7340e-03 1.9655e-03 1.0233e-03 5.2892e-04 2.7174e-04
    0.9258 0.9417 0.9521 0.9608 1.0
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 2.2479e-03 1.0660e-03 4.9903e-04 2.3116e-04 1.0617e-04
    1.0764 1.0950 1.1102 1.1225 1.2

     | Show Table
    DownLoad: CSV
    Table 4.  Global $ H^1 $-norm errors and orders of convergence for Example 1 with $ \alpha_1 = 0.4 $, $ \alpha_{2} = 0.2 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 4.5098e-02 3.5325e-02 2.7702e-02 2.1696e-02 1.6945e-02
    0.3524 0.3507 0.3526 0.3565 0.4
    $ r=2 $ 1.6555e-02 1.0374e-02 6.4457e-03 3.9728e-03 2.4305e-03
    0.6743 0.6866 0.6982 0.7089 0.8
    $ r=\frac{1}{\alpha_1} $ 1.8950e-02 1.1927e-02 7.4362e-03 4.5963e-03 2.8189e-03
    0.6679 0.6816 0.6941 0.7053 0.8
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 2.5296e-02 1.6072e-02 1.0095e-02 6.2790e-03 3.8718e-03
    0.6544 0.6708 0.6851 0.6975 0.8

     | Show Table
    DownLoad: CSV
    Table 5.  Local $ H^1 $-norm errors and orders of convergence at $ t = 1 $ for Example 1 with $ \alpha_1 = 0.4 $, $ \alpha_{2} = 0.2 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $
    $ r=1 $ 1.1675e-02 7.1582e-03 4.3712e-03 2.6568e-03 1.6067e-03
    0.7057 0.7116 0.7184 0.7255
    $ r=2 $ 1.6555e-02 1.0374e-02 6.4457e-03 3.9728e-03 2.4305e-03
    0.6743 0.6866 0.6982 0.7089
    $ r=\frac{1}{\alpha_1} $ 1.8950e-02 1.1927e-02 7.4362e-03 4.5963e-03 2.8189e-03
    0.6679 0.6816 0.6941 0.7053
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 2.5296e-02 1.6072e-02 1.0095e-02 6.2790e-03 3.8718e-03
    0.6544 0.6708 0.6851 0.6975

     | Show Table
    DownLoad: CSV
    Table 6.  Global $ H^1 $-norm errors and orders of convergence for Example 1 with $ \alpha_1 = 0.6 $, $ \alpha_{2} = 0.4 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 2.1888e-02 1.4955e-02 1.0156e-02 6.8591e-03 4.6113e-03
    0.5495 0.5583 0.5662 0.5728 0.6
    $ r=2 $ 4.3121e-03 2.0043e-03 9.2712e-04 4.2681e-04 1.9546e-04
    1.1053 1.1123 1.1192 1.1267 1.2
    $ r=\frac{1}{\alpha_1} $ 4.6880e-03 2.4428e-03 1.2576e-03 6.4230e-04 3.2627e-04
    0.9404 0.9578 0.9694 0.9772 1.0
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 4.9526e-03 2.3115e-03 1.0727e-03 4.9519e-04 2.2734e-04
    1.0994 1.1076 1.1152 1.1231 1.2

     | Show Table
    DownLoad: CSV
    Table 7.  Local $ H^1 $-norm errors and orders of convergence at $ t = 1 $ for Example 1 with $ \alpha_1 = 0.6 $, $ \alpha_{2} = 0.4 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $
    $ r=1 $ 3.2280e-03 1.5199e-03 7.1441e-04 3.3510e-04 1.5677e-04
    1.0867 1.0891 1.0922 1.0959
    $ r=2 $ 4.3121e-03 2.0043e-03 9.2712e-04 4.2681e-04 1.9546e-04
    1.1053 1.1123 1.1192 1.1267
    $ r=\frac{1}{\alpha_1} $ 3.7184e-03 1.7189e-03 7.9137e-04 3.6280e-04 1.6550e-04
    1.1132 1.1190 1.1252 1.1323
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 4.9526e-03 2.3115e-03 1.0727e-03 4.9519e-04 2.2734e-04
    1.0994 1.1076 1.1152 1.1231

     | Show Table
    DownLoad: CSV
    Table 8.  Global$ H^1 $-norm errors and orders of convergence for Example 1 with $ \alpha_1 = 0.8 $, $ \alpha_{2} = 0.6 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 7.1707e-03 4.2901e-03 2.5403e-03 1.4930e-03 8.7297e-04
    0.7411 0.7560 0.7668 0.7743 0.8
    $ r=2 $ 1.9211e-03 7.5634e-04 2.9814e-04 1.1785e-04 4.6868e-05
    1.3448 1.3430 1.3391 1.3302 1.2
    $ r=\frac{1}{\alpha_1} $ 3.7340e-03 1.9655e-03 1.0233e-03 5.2893e-04 2.7174e-04
    0.9258 0.9417 0.9521 0.9608 1.0
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 2.2479e-03 1.0660e-03 4.9903e-04 2.3116e-04 1.0617e-04
    1.0764 1.0950 1.1102 1.1225 1.2

     | Show Table
    DownLoad: CSV
    Table 9.  Local $ H^1 $-norm errors and orders of convergence at $ t = 1 $ for Example 1 with $ \alpha_1 = 0.8 $, $ \alpha_{2} = 0.6 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $
    $ r=1 $ 1.8988e-03 8.6835e-04 4.0348e-04 1.9000e-04 9.0390e-05
    1.1287 1.1058 1.0865 1.0718
    $ r=2 $ 1.9211e-03 7.5634e-04 2.9814e-04 1.1785e-04 4.6664e-05
    1.3448 1.3430 1.3391 1.3365
    $ r=\frac{1}{\alpha_1} $ 1.6142e-03 6.7476e-04 2.8389e-04 1.2013e-04 5.1015e-05
    1.2584 1.2490 1.2407 1.2357
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 1.6187e-03 6.5123e-04 2.6278e-04 1.0638e-04 4.3129e-05
    1.3136 1.3093 1.3046 1.3025

     | Show Table
    DownLoad: CSV
    Figure 1.  $ L^2 $-norm and $ H^1 $-norm errors and orders of convergence in spatial direction for Example 1 with $ \alpha_1 = 0.6 $, $ \alpha_{2} = 0.4 $ and $ r = 2 $.

    Example 2. In Eq (1.1) take $ \Omega = [0, \pi]\times[0, \pi] $, $ T = 1 $, $ J = 2 $, $ b_1 = b_2 = 1 $. Let $ u_0(x, y) = \sin x\sin y $, the force term $ f(x, y, t) = 0 $.

    The exact solution $ u(x, y, t) $ of Example 2 is unknown. We use the two-mesh principle in [4, p107] to calculate the convergence order of the numerical solution. Let $ u_{i, j}^{n} $ with $ 0 \leq i \leq N_1 $, $ 0 \leq j \leq N_2 $ and $ 0 \leq n \leq M $ be the solution computed by our L1-ADI Scheme 2.6. Then, consider a spatial mesh and the temporal mesh which is defined by $ 0 \leq i \leq N_1 $, $ 0 \leq j \leq N_2 $ and $ t_{n} = T(n /(2M)) {\text { for }} 0 \leq n \leq 2M $. We denote $ W_{h}^{n} $ with $ 0 \leq n \leq 2M $ as the computed solution on this mesh. Then, we define $ D_{h}^{n} = \left\|u_{h}^{n}-W_{h}^{2 n}\right\|_{H^1} $ as the $ H^1 $-norm of the two-mesh differences and the estimated rate of convergence is computed by $ \log _{2} (D_{h}^{n}/D_{h}^{2n}) $.

    To test the temporal convergence of our scheme we set spatial partition parameters $ N_1 = N_2 = 1000 $. Tables 10, 12 and 14 present $ H^1 $-norm errors and convergence orders for Example 2 in the case of $ \alpha_{1} = 0.4, 0.6, 0.8 $ with $ \alpha_{2} = 0.2, 0.4, 0.6 $. The results show that the temporal convergence rates are $ O(M^{-\min \left\{ 2\alpha_{1}, r\alpha_1, 2-\alpha_1\right\}}) $, which, once again, confirm the sharpness of our theoretical analysis. We have also present the local $ H^1 $-norm errors and convergence orders at $ t = 1 $ for Example 2 in Tables 11, 13 and 15, which have better convergence rates than global errors.

    Table 10.  Global $ H^1 $-norm errors and orders of convergence for Example 2 with $ \alpha_1 = 0.4 $, $ \alpha_{2} = 0.2 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 4.2648e-02 3.5832e-02 2.9725e-02 2.4362e-02 1.9747e-02
    0.2512 0.2696 0.2870 0.3030 0.4
    $ r=2 $ 1.7773e-02 1.1198e-02 6.8693e-03 4.1345e-03 2.4556e-03
    0.6664 0.7050 0.7324 0.7517 0.8
    $ r=\frac{1}{\alpha_1} $ 9.6556e-03 5.1889e-03 2.8079e-03 1.4872e-03 9.0857e-04
    0.8959 0.8859 0.9169 0.7109 0.8
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 7.1020e-03 4.6925e-03 3.0434e-03 1.9441e-03 1.2265e-03
    0.5978 0.6247 0.6466 0.6646 0.8

     | Show Table
    DownLoad: CSV
    Table 11.  Local $ H^1 $-norm errors and orders of convergence at $ t = 1 $ for Example 2 with $ \alpha_1 = 0.4 $, $ \alpha_{2} = 0.2 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $
    $ r=1 $ 4.3792e-03 2.6480e-03 1.6045e-03 9.7164e-04 5.8717e-04
    0.7258 0.7228 0.7236 0.7266
    $ r=2 $ 4.9902e-03 3.1856e-03 2.0192e-03 1.2690e-03 7.9068e-04
    0.6475 0.6578 0.6701 0.6825
    $ r=\frac{1}{\alpha_1} $ 5.5605e-03 3.5950e-03 2.2975e-03 1.4521e-03 9.0857e-04
    0.6292 0.6459 0.6619 0.6765
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 7.1020e-03 4.6925e-03 3.0434e-03 1.9441e-03 1.2265e-03
    0.5978 0.6247 0.6466 0.6646

     | Show Table
    DownLoad: CSV
    Table 12.  Global $ H^1 $-norm errors and orders of convergence for Example 2 with $ \alpha_1 = 0.6 $, $ \alpha_{2} = 0.4 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 2.5383e-02 1.7829e-02 1.2380e-02 8.5185e-03 5.8193e-03
    0.5096 0.5262 0.5394 0.5498 0.6
    $ r=2 $ 5.8541e-03 2.8312e-03 1.3301e-03 6.1587e-04 2.8032e-04
    1.0480 1.0899 1.1108 1.1356 1.2
    $ r=\frac{1}{\alpha_1} $ 9.0483e-03 4.9340e-03 2.6263e-03 1.3755e-03 7.1241e-04
    0.8749 0.9097 0.9331 0.9492 1.0
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 4.1839e-03 1.8190e-03 7.6784e-04 3.1629e-04 1.4124e-04
    1.2017 1.2443 1.2796 1.1631 1.2

     | Show Table
    DownLoad: CSV
    Table 13.  Local $ H^1 $-norm errors and orders of convergence at $ t = 1 $ for Example 2 with $ \alpha_1 = 0.6 $, $ \alpha_{2} = 0.4 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $
    $ r=1 $ 3.0946e-03 1.4921e-03 7.2117e-04 3.4892e-04 1.6888e-04
    1.0524 1.0489 1.0475 1.0469
    $ r=2 $ 2.8991e-03 1.3174e-03 5.9939e-04 2.7285e-04 1.2417e-04
    1.1379 1.1361 1.1354 1.1358
    $ r=\frac{1}{\alpha_1} $ 2.6705e-03 1.2034e-03 5.4295e-04 2.4509e-04 1.1062e-04
    1.1500 1.1482 1.1475 1.1477
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 3.2093e-03 1.4709e-03 6.7404e-04 3.0872e-04 1.4124e-04
    1.1256 1.1258 1.1265 1.1282

     | Show Table
    DownLoad: CSV
    Table 14.  Global $ H^1 $-norm errors and orders of convergence for Example 2 with $ \alpha_1 = 0.8 $, $ \alpha_{2} = 0.6 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $ Theoretical order
    $ r=1 $ 1.1164e-02 6.6335e-03 3.9421e-03 2.3268e-03 1.3681e-03
    0.7511 0.7508 0.7606 0.7662 0.8
    $ r=2 $ 3.9574e-03 1.7177e-03 7.3884e-04 3.1639e-04 1.3526e-04
    1.2041 1.2171 1.2235 1.2260 1.2
    $ r=\frac{1}{\alpha_1} $ 7.2913e-03 3.8726e-03 2.0378e-03 1.0644e-03 5.5259e-04
    0.9129 0.9263 0.9370 0.9457 1.0
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 5.2772e-03 2.5404e-03 1.2056e-03 5.6564e-04 2.6297e-04
    1.0547 1.0754 1.0918 1.1050 1.2

     | Show Table
    DownLoad: CSV
    Table 15.  Local $ H^1 $-norm errors and orders of convergence at $ t = 1 $ for Example 2 with $ \alpha_1 = 0.8 $, $ \alpha_{2} = 0.6 $.
    $ M=64 $ $ M=128 $ $ M=256 $ $ M=512 $ $ M=1024 $
    $ r=1 $ 3.5614e-03 1.6739e-03 7.9585e-04 3.8211e-04 1.8495e-04
    1.0892 1.0727 1.0585 1.0468
    $ r=2 $ 3.3083e-03 1.3585e-03 5.5756e-04 2.2938e-04 9.4727e-05
    1.2840 1.2848 1.2814 1.2759
    $ r=\frac{1}{\alpha_1} $ 3.0927e-03 1.3497e-03 5.9116e-04 2.5979e-04 1.1450e-04
    1.1962 1.1910 1.1862 1.1820
    $ r=\frac{2-\alpha_{1}}{\alpha_{1}} $ 3.0053e-03 1.2639e-03 5.3187e-04 2.2422e-04 9.4744e-05
    1.2496 1.2487 1.2462 1.2428

     | Show Table
    DownLoad: CSV

    A fully discrete L1-ADI scheme is investigated for the initial-boundary problem of a multi-term time-fractional diffusion equation. Stability and convergence of the fully discrete L1-ADI scheme are rigorously established. Both $ L^2 $-norm and $ H^1 $-norm error estimates of the fully discrete L1-ADI scheme are obtained, and they are $ \alpha $-robust. Numerical experiments are given to illustrate the sharpness of the theoretical analysis. It should be noted that since the computational cost of numerical methods for time-fractional PDEs will be very time-consuming. One can also use the fast and parallel numerical methods such as [5,24,32] for accelerating the proposed method, which will be the focus of our future work.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The research is supported in part by the National Natural Science Foundation of China under Grant 11801026, and Fundamental Research Funds for the Central Universities (No. 202264006).

    The authors declare there is no conflict of interest.

    [1] Bauer M, Moebus S, Möhlenkamp S, et al. (2010) Urban Particulate Matter Air Pollution Is Associated With Subclinical Atherosclerosis: Results From the HNR (Heinz Nixdorf Recall) Study. J Am Coll Cardiol 56: 1803-1808. doi: 10.1016/j.jacc.2010.04.065
    [2] Glantz SA (2002) Air pollution as a cause of heart diseaseTime for action*. J Am Coll Cardiol 39: 943-945. doi: 10.1016/S0735-1097(02)01709-6
    [3] Krishnan RM, Adar SD, Szpiro AA, et al. Vascular Responses to Long- and Short-Term Exposure to Fine Particulate Matter: MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution). J Am Coll Cardiol 60: 2158-2166.
    [4] Peters A (2005) Particulate matter and heart disease: Evidence from epidemiological studies. Toxicol Appl Pharmacol 207: 477-482. doi: 10.1016/j.taap.2005.04.030
    [5] Pope CA, 3rd, Renlund DG, Kfoury AG, et al. (2008) Relation of heart failure hospitalization to exposure to fine particulate air pollution. Am J Cardiol 102: 1230-1234. doi: 10.1016/j.amjcard.2008.06.044
    [6] Shrey K, Suchit A, Deepika D, et al. (2011) Air pollutants: the key stages in the pathway towards the development of cardiovascular disorders. Environ Toxicol Pharmacol 31: 1-9. doi: 10.1016/j.etap.2010.09.002
    [7] Bernstein JA, Alexis N, Barnes C, et al. (2004) Health effects of air pollution. J Allergy Clin Immun 114: 1116-1123. doi: 10.1016/j.jaci.2004.08.030
    [8] Ghio AJ, Smith CB, Madden MC (2012) Diesel exhaust particles and airway inflammation. Curr Opin Pulm Med 18: 144-150. doi: 10.1097/MCP.0b013e32834f0e2a
    [9] Kunzli N, Kaiser R, Medina S, et al. (2000) Public-health impact of outdoor and traffic-related air pollution: a European assessment. Lancet 356: 795-801. doi: 10.1016/S0140-6736(00)02653-2
    [10] McEntee JC, Ogneva-Himmelberger Y (2008) Diesel particulate matter, lung cancer, and asthma incidences along major traffic corridors in MA, USA: A GIS analysis. Health Place 14: 817-828. doi: 10.1016/j.healthplace.2008.01.002
    [11] Hoek G, Brunekreef B, Goldbohm S, et al. (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360: 1203-1209. doi: 10.1016/S0140-6736(02)11280-3
    [12] Beelen R, Hoek G, van den Brandt PA, et al. (2008) Long-Term Effects of Traffic-Related Air Pollution on Mortality in a Dutch Cohort (NLCS-AIR Study). Environ Health Persp 116: 196-202. doi: 10.1289/ehp.10614
    [13] Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151: 362-367. doi: 10.1016/j.envpol.2007.06.012
    [14] Autrup H (2010) Ambient Air Pollution and Adverse Health Effects. Procedia Soc Behav Sci 2: 7333-7338. doi: 10.1016/j.sbspro.2010.05.089
    [15] Englert N (2004) Fine particles and human health--a review of epidemiological studies. Toxicol Lett 149: 235-242. doi: 10.1016/j.toxlet.2003.12.035
    [16] Simkhovich BZ, Kleinman MT, Kloner RA (2008) Air Pollution and Cardiovascular InjuryEpidemiology, Toxicology, and Mechanisms. J Am Coll Cardiol 52: 719-726. doi: 10.1016/j.jacc.2008.05.029
    [17] Yokota S, Moriya N, Iwata M, et al. (2013) Exposure to diesel exhaust during fetal period affects behavior and neurotransmitters in male offspring mice. J Toxicol Sci 38: 13-23. doi: 10.2131/jts.38.13
    [18] Ema M, Naya M, Horimoto M, et al. (2013) Developmental toxicity of diesel exhaust: A review of studies in experimental animals. Reprod Toxicol 42: 1-17. doi: 10.1016/j.reprotox.2013.06.074
    [19] Folkmann JK, Risom L, Hansen CS, et al. (2007) Oxidatively damaged DNA and inflammation in the liver of dyslipidemic ApoE-/- mice exposed to diesel exhaust particles. Toxicology 237: 134-144. doi: 10.1016/j.tox.2007.05.009
    [20] Danielsen PH, Risom L, Wallin H, et al. (2008) DNA damage in rats after a single oral exposure to diesel exhaust particles. Mut Res 637: 49-55. doi: 10.1016/j.mrfmmm.2007.06.011
    [21] Nemmar A, Al-Salam S, Zia S, et al. (2010) Time-course effects of systemically administered diesel exhaust particles in rats. Toxicol Lett 194: 58-65. doi: 10.1016/j.toxlet.2010.02.001
    [22] Nicoll CS, Russell SM (1992) Animal rights, animal research, and human obligations. Mol Cell Neurosci 3: 271-277. doi: 10.1016/1044-7431(92)90023-U
    [23] Tee LBG, Davies DS, Seddon CE, et al. (1987) Species differences in the hepatotoxicity of paracetamol are due to differences in the rate of conversion to its cytotoxic metabolite. Biochem Pharmacol 36: 1041-1052. doi: 10.1016/0006-2952(87)90412-6
    [24] Valerio Jr LG, Arvidson KB, Chanderbhan RF, et al. (2007) Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol Appl Pharmacol 222: 1-16. doi: 10.1016/j.taap.2007.03.012
    [25] Roggen EL, Soni NK, Verheyen GR (2006) Respiratory immunotoxicity: An in vitro assessment. Toxicol In Vitro 20: 1249-1264. doi: 10.1016/j.tiv.2006.03.009
    [26] Fröhlich E, Salar-Behzadi S (2014) Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies. Int J Mol Sci 15: 4795-4822. doi: 10.3390/ijms15034795
    [27] Steinritz D, Möhle N, Pohl C, et al. (2013) Use of the Cultex® Radial Flow System as an in vitro exposure method to assess acute pulmonary toxicity of fine dusts and nanoparticles with special focus on the intra- and inter-laboratory reproducibility. Chem Biol Interact 206: 479-490. doi: 10.1016/j.cbi.2013.05.001
    [28] Thorne D, Adamson J (2013) A review of in vitro cigarette smoke exposure systems. Exp Toxicol Pathol 65: 1183-1193. doi: 10.1016/j.etp.2013.06.001
    [29] Kawanishi M, Kanno T, Nishida H, et al. (2013) Translesion DNA synthesis across various DNA adducts produced by 3-nitrobenzanthrone in Escherichia coli. Mut Res 754: 32-38. doi: 10.1016/j.mrgentox.2013.04.001
    [30] Bömmel H, Haake M, Luft P, et al. (2003) The diesel exhaust component pyrene induces expression of IL-8 but not of eotaxin. Int Immunopharmacol 3: 1371-1379. doi: 10.1016/S1567-5769(03)00135-8
    [31] Shima H, Koike E, Shinohara R, et al. (2006) Oxidative Ability and Toxicity of n-Hexane Insoluble Fraction of Diesel Exhaust Particles. Toxicol Sci 91: 218-226. doi: 10.1093/toxsci/kfj119
    [32] Courter LA, Luch A, Musafia-Jeknic T, et al. (2008) The influence of diesel exhaust on polycyclic aromatic hydrocarbon-induced DNA damage, gene expression, and tumor initiation in Sencar mice in vivo. Cancer Lett 265: 135-147. doi: 10.1016/j.canlet.2008.02.017
    [33] Koike E, Kobayashi T (2005) Organic extract of diesel exhaust particles stimulates expression of Ia and costimulatory molecules associated with antigen presentation in rat peripheral blood monocytes but not in alveolar macrophages. Toxicol Appl Pharmacol 209: 277-285. doi: 10.1016/j.taap.2005.04.017
    [34] Saei Moghaddam M, Zarringhalam Moghaddam A (2014) Performance and exhaust emission characteristics of a CI engine fueled with diesel-nitrogenated additives. Chem Eng Res Des 92: 720-726. doi: 10.1016/j.cherd.2014.01.009
    [35] Young LH, Liou YJ, Cheng MT, et al. (2012) Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust. J Hazard Mater 199-200: 282-289. doi: 10.1016/j.jhazmat.2011.11.014
    [36] Zhang Z-H, Balasubramanian R (2014) Influence of butanol–diesel blends on particulate emissions of a non-road diesel engine. Fuel 118: 130-136. doi: 10.1016/j.fuel.2013.10.059
    [37] Koc AB, Abdullah M (2013) Performance and NOx emissions of a diesel engine fueled with biodiesel-diesel-water nanoemulsions. Fuel Process Technol 109: 70-77. doi: 10.1016/j.fuproc.2012.09.039
    [38] Ong HC, Masjuki HH, Mahlia TMI, et al. (2014) Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine. Energy 69: 427-445. doi: 10.1016/j.energy.2014.03.035
    [39] Labeckas G, Slavinskas S (2009) Study of exhaust emissions of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends. Energ Convers Manage 50: 802-812. doi: 10.1016/j.enconman.2008.09.026
    [40] Boubel RW, Fox DL, Turner DB, et al. (1994) Fundamentals of Air Pollution. San Diego: Academic Press
    [41] Challen B, Baranescu R (1999) Diesel engine reference book. Oxford, England; Woburn, MA: Butterworth-Heinemann
    [42] Shi JP, Harrison RM, Brear F (1999) Particle size distribution from a modern heavy duty diesel engine. Sci Total Environ 235: 305-317. doi: 10.1016/S0048-9697(99)00214-4
    [43] Stevenson R (1982) The morphology and crystallography of diesel particulate emissions. Carbon 20: 359-365. doi: 10.1016/0008-6223(82)90033-1
    [44] Hayes AJ, Bakand S (2014) Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol 10: 933-947. doi: 10.1517/17425255.2014.916276
    [45] Joeng L, Hayes A, Bakand S (2013) Validation of the Dynamic Direct Exposure Method for Toxicity Testing of Diesel Exhaust In Vitro. ISRN Toxicol 2013: 11.
    [46] Standards Australia (1998) AS 3570 - 1998: Automotive diesel fuel. In: Australia S, editor.
    [47] Promega (2007) CellTiter-Glo(R) Luminescent Cell Viability Assay Technical Bulletin, TB288 Promega Corporation. Madison, USA.
    [48] Goodwin CJ, Holt SJ, Downes S, et al. (1995) Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS. J Immunol Methods 179: 95-103. doi: 10.1016/0022-1759(94)00277-4
    [49] Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24: 119-124. doi: 10.1016/0378-4274(85)90046-3
    [50] Kagawa J (2002) Health effects of diesel exhaust emissions--a mixture of air pollutants of worldwide concern. Toxicology 181-182: 349-353. doi: 10.1016/S0300-483X(02)00461-4
    [51] Knebel JW, Ritter D, Aufderheide M (2002) Exposure of human lung cells to native diesel motor exhaust-- development of an optimized in vitro test strategy. Toxicol In Vitro 16: 185-192. doi: 10.1016/S0887-2333(01)00110-2
    [52] Betha R, Pavagadhi S, Sethu S, et al. (2012) Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel. Atmos Environ 61: 23-29. doi: 10.1016/j.atmosenv.2012.06.086
    [53] Sharma M, Agarwal AK, Bharathi KVL (2005) Characterization of exhaust particulates from diesel engine. Atmos Environ 39: 3023-3028. doi: 10.1016/j.atmosenv.2004.12.047
    [54] El_Kassaby M, Nemit_allah MA (2013) Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel. Alex Eng J 52: 1-11. doi: 10.1016/j.aej.2012.11.007
    [55] Szybist JP, Boehman AL, Taylor JD, et al. (2005) Evaluation of formulation strategies to eliminate the biodiesel NOx effect. Fuel Process Technol 86: 1109-1126. doi: 10.1016/j.fuproc.2004.11.006
    [56] Hellier P, Ladommatos N, Yusaf T (2015) The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel 143: 131-143. doi: 10.1016/j.fuel.2014.11.021
    [57] Ponsoda X, Jover R, Núñez C, et al. (1995) Evaluation of the cytotoxicity of 10 chemicals in human and rat hepatocytes and in cell lines: Correlation between in vitro data and human lethal concentration. Toxicol In Vitro 9: 959-966. doi: 10.1016/0887-2333(95)00053-4
    [58] Zhang X, Yang F, Xu C, et al. (2008) Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell. Toxicol In Vitro 22: 1520-1527. doi: 10.1016/j.tiv.2008.05.006
    [59] Herzog F, Clift MJD, Piccapietra F, et al. (2013) Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part Fibre Toxicol 10: 11. doi: 10.1186/1743-8977-10-11
    [60] Barkhordari A, Barzegar S, Hekmatimoghaddam H, et al. (2014) The Toxic Effects of Silver Nanoparticles on Blood Mononuclear Cells. Int J Occup Environ Med 5: 164-168.
    [61] Chen R-M, Chou MW, Ueng T-H (2000) Induction of cytochrome P450 1A1 in human hepatoma HepG2 cells by 6-nitrochrysene. Toxicol Lett 117: 69-77. doi: 10.1016/S0378-4274(00)00242-3
    [62] Durga M, Nathiya S, Rajasekar A, et al. (2014) Effects of ultrafine petrol exhaust particles on cytotoxicity, oxidative stress generation, DNA damage and inflammation in human A549 lung cells and murine RAW 264.7 macrophages. Environ Toxicol Pharmacol 38: 518-530. doi: 10.1016/j.etap.2014.08.003
    [63] Tang M, Li Q, Xiao L, et al. (2012) Toxicity effects of short term diesel exhaust particles exposure to human small airway epithelial cells (SAECs) and human lung carcinoma epithelial cells (A549). Toxicol Lett 215: 181-192. doi: 10.1016/j.toxlet.2012.10.016
    [64] Xiao M, Helsing AV, Lynch PM, et al. (2014) DNA damage caused by inorganic particulate matter on Raji and HepG2 cell lines exposed to ultraviolet radiation. Mut Res 771: 6-14. doi: 10.1016/j.mrgentox.2014.06.004
    [65] Lamy E, Kassie F, Gminski R, et al. (2004) 3-Nitrobenzanthrone (3-NBA) induced micronucleus formation and DNA damage in human hepatoma (HepG2) cells. Toxicol Lett 146: 103-109. doi: 10.1016/j.toxlet.2003.07.001
  • This article has been cited by:

    1. Xin Shen, Xuehua Yang, Haixiang Zhang, The High-Order ADI Difference Method and Extrapolation Method for Solving the Two-Dimensional Nonlinear Parabolic Evolution Equations, 2024, 12, 2227-7390, 3469, 10.3390/math12223469
    2. Wang Xiao, Xuehua Yang, Ziyi Zhou, Pointwise-in-time $ \alpha $-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients, 2024, 16, 2836-3310, 53, 10.3934/cam.2024003
    3. Adel Al-rabtah, Salah Abuasad, Effective Modified Fractional Reduced Differential Transform Method for Solving Multi-Term Time-Fractional Wave-Diffusion Equations, 2023, 15, 2073-8994, 1721, 10.3390/sym15091721
    4. Pradip Roul, Trishna Kumari, Sameer N. Khandagale, A graded mesh technique for numerical approximation of a multi-term Caputo time-fractional Fokker-Planck equation in 2D space, 2025, 178, 08981221, 92, 10.1016/j.camwa.2024.11.031
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7161) PDF downloads(1386) Cited by(3)

Figures and Tables

Figures(11)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog