Citation: Vladimir Kaminskii, Elena Kossovich, Svetlana Epshtein, Liudmila Obvintseva, Valeria Nesterova. Activity of coals of different rank to ozone[J]. AIMS Energy, 2017, 5(6): 960-973. doi: 10.3934/energy.2017.6.960
[1] | Speight J (2012) The chemistry and technology of coal. CRC Press, New York. |
[2] | Puente GDL, Iglesias MJ, Fuente E, et al. (1998) Changes in the structure of coals of different rank due to oxidation-effects on pyrolysis behaviour. J Anal Appl Pyrolysis 47: 33–42. doi: 10.1016/S0165-2370(98)00087-4 |
[3] | Nelson MI, Chen XD (2007) Survey of experimental work on the self-heating and spontaneous combustion of coal. Reviews in Engineering Geology. Geological Society of America, 31–83. |
[4] | De SK, Prabu V (2017) Experimental studies on humidified/water influx O2 gasification for enhanced hydrogen production in the context of underground coal gasification. Int J Hydrogen Energ 42: 14089–14102. doi: 10.1016/j.ijhydene.2017.04.112 |
[5] | Pan CX, Liu HL, Liu Q, et al. (2017) Oxidative depolymerization of Shenfu subbituminous coal and its thermal dissolution insoluble fraction. Fuel Process Technol 155: 168–173. doi: 10.1016/j.fuproc.2016.05.017 |
[6] | Boron DJ, Taylor SR (1985) Mild oxidations of coal.1. Hydrogen peroxide oxidation. Fuel 64: 209–211. |
[7] | Yu J, Jiang Y, Tahmasebi A, et al. (2014) Coal oxidation under mild conditions: current status and applications. Chem Eng Technol 37: 1635–1644. doi: 10.1002/ceat.201300651 |
[8] | Hayatsu R, Winans RE, McBeth RL (1984) Oxidative degradation studies and modern concepts of the formation and transformation of organic constituents of coals and sedimentary rocks. Org Geochem 6: 463–471. doi: 10.1016/0146-6380(84)90069-X |
[9] | Wang YG, Wei XY, Yan HL, et al. (2013) Mild oxidation of Jincheng No.15 anthracite. J Fuel Chem Technol 41: 819–825. doi: 10.1016/S1872-5813(13)60035-3 |
[10] | Rozhkova NN, Gorlenko LE, Emelyanova GI, et al. (2009) Effect of ozone on the structure and physicochemical properties of ultradisperse diamond and shungite nanocarbon elements. Pure Appl Chem 81: 2093–2105. |
[11] | Semenova SA, Fedyaeva ON, Patrakov YF (2006) Liquid-phase ozonation of highly metamorphized coal. Chem Sustain Dev 14: 43–48. |
[12] | Semenova S, Patrakov Y, Batina M (2009) Preparation of oxygen-containing organic products from bed-oxidized brown coal by ozonation. Russ J Appl Chem 82: 80–85. doi: 10.1134/S1070427209010157 |
[13] | Obvintseva LA, Sukhareva IP, Epshtein SA, et al. (2017) Interaction of coals with ozone at low concentrations. Solid Fuel Chem 51: 155–159. doi: 10.3103/S0361521917030077 |
[14] | Wu F, Wang M, Lu Y, et al. (2017) Catalytic removal of ozone and design of an ozone converter for the bleeding air purification of aircraft cabin. Build Environ 115: 25–33. doi: 10.1016/j.buildenv.2017.01.007 |
[15] | Guo W, Ke P, Zhang S (2015) Effects of environment control system operation on ozone retention inside airplane cabin. Procedia Eng 121: 396–403. doi: 10.1016/j.proeng.2015.08.1084 |
[16] | Ondarts M, Outin J, Reinert L, et al. (2015) Removal of ozone by activated carbons modified by oxidation treatments. Eur Phys J-Spec Top 224: 1995–1999. doi: 10.1140/epjst/e2015-02516-6 |
[17] | Gorlenko LE, Emelyanova GI, Kharlanov AN, et al. (2006) Low-temperature oxidative modification of lignites and lignite-based cokes. Russ J Phys Chem 80: 878–881. doi: 10.1134/S0036024406060069 |
[18] | Semenova SA, Patrakov YF (2007) Ozonation of coal vitrinites of different metamorphism degrees in gas and liquid phases. Solid Fuel Chem 41: 15–18. doi: 10.3103/S0361521907010041 |
[19] | Patrakov YF, Semenova SA (2012) Chemical composition of various petrographic constituents of brown coal from the Balakhtinskoe deposit. Solid Fuel Chem 46: 1–6. doi: 10.3103/S0361521912010119 |
[20] | Patrakov Y, Fedyaeva O, Semenova S, et al. (2006) Influence of ozone treatment on change of structural-chemical parameters of coal vitrinites and their reactivity during the thermal liquefaction process. Fuel 85: 1264–1272. doi: 10.1016/j.fuel.2005.11.005 |
[21] | Ksenofontova MM, Kudryavtsev AV, Mitrofanova AN, et al. (2005) Ozone application for modification of humates and lignins. In: Perminova IV, Hatfield K, Hertkorn N Editors, Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, Springer Netherlands, 473–484. |
[22] | Lunin VV, Popovich MP, Tkachenko SN (1998) Physical chemistry of ozone, Moscow. Moscow State University Publishing, 480. |
[23] | Batakliev T, Georgiev V, Anachkov M, et al. (2014) Ozone decomposition. Interdiscip Toxicol 7: 47–59. |
[24] | Oyama ST (2000) Chemical and catalytic properties of ozone. Catal Rev 42: 279–322. doi: 10.1081/CR-100100263 |
[25] | Deitz VR, Bitner JL (1973) Interaction of ozone with adsorbent charcoals. Carbon 11: 393–401. doi: 10.1016/0008-6223(73)90079-1 |
[26] | World Health Organization (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. Geneva: World Health Organization: 1–22. |
[27] | Elansky NF (2012) Russian studies of atmospheric ozone in 2007–2011. Izv Atmos Ocean Phy 48: 281–298. doi: 10.1134/S0001433812030024 |
[28] | Epshtein SA, Kossovich EL, Kaminskii VA, et al. (2017) Solid fossil fuels thermal decomposition features in air and argon. Fuel 199: 145–156. doi: 10.1016/j.fuel.2017.02.084 |
[29] | Korovushkin VV, Epshtein SA, Durov NM, et al. (2015) Mineral and valent forms of iron and their effects on coals oxidation and self-ignition. Gornyi Zhurnal 2015: 70–74. |
[30] | Epshtein SA, Kossovich EL, Dobryakova NN, et al. (2016) New approaches for coal oxidization propensity estimation. XVIII International Coal Preparation Congress. Springer International Publishing, Cham, 483–487. |
[31] | Epshtein SA, Gavrilova DI, Kossovich EL, et al. (2016) Thermal methods exploitation for coals propensity to oxidation and self-ignition study. Gornyi Zhurnal 2016: 100–104. |
[32] | Belikov IB, Zhernikov KV, Obvintseva LA, et al. (2008) Analyzer of atmospheric gas impurities based on semiconductor sensors. Instrum Exp Tech 2008: 139–140. |
[33] | Obvintseva LA, Zhernikov KV, Belikov IB, et al. (2008) Semiconductor sensors and sensor containing gas analyzer for ozone monitoring in the atmosphere. Proceedings of the Eurosensors XXII Conference, 1594–1598. |
[34] | Ito O, Seki H, Iino M (1988) Diffuse reflectance spectra in near-i.r. region of coals; a new index for degrees of coalification and carbonization. Fuel 67: 573–578. |
[35] | Maroto-Valer MM, Love GD, Snape CE (1994) Relationship between carbon aromaticities and HC ratios for bituminous coals. Fuel 73: 1926–1928. doi: 10.1016/0016-2361(94)90224-0 |
[36] | Maroto-Valer MM (1998) Verification of the linear relationship between carbon aromaticities and H/C ratios for bituminous coals. Fuel 77: 783–785. doi: 10.1016/S0016-2361(97)00227-5 |
[37] | Gan H, Nandi SP, Walker PL (1972) Nature of the porosity in American coals. Fuel 51: 272–277. doi: 10.1016/0016-2361(72)90003-8 |
[38] | Nie B, Liu X, Yang L, et al. (2015) Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel 158: 908–917. doi: 10.1016/j.fuel.2015.06.050 |
[39] | Mavor MJ, Owen LB, Pratt TJ (1990) Measurement and evaluation of coal sorption isotherm data. Proceedings of SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 20728. |
[40] | Rodrigues CF, Sousa MJLD (2002) The measurement of coal porosity with different gases. Int J Coal Geol 48: 245–251. doi: 10.1016/S0166-5162(01)00061-1 |