We consider coupling conditions for the “Aw–Rascle” (AR) traffic
flow model at an arbitrary road intersection. In contrast with coupling conditions previously introduced in [10] and [7], all the moments of the AR system
are conserved and the total flux at the junction is maximized. This nonlinear
optimization problem is solved completely. We show how the two simple cases
of merging and diverging junctions can be extended to more complex junctions,
like roundabouts. Finally, we present some numerical results.
Citation: Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow[J]. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275
Related Papers:
[1]
Michael Herty, S. Moutari, M. Rascle .
Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1(2): 275-294.
doi: 10.3934/nhm.2006.1.275
[2]
Michael Herty, J.-P. Lebacque, S. Moutari .
A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826.
doi: 10.3934/nhm.2009.4.813
[3]
Dirk Helbing, Jan Siegmeier, Stefan Lämmer .
Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210.
doi: 10.3934/nhm.2007.2.193
[4]
Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem .
A dynamical two-dimensional traffic model in an anisotropic network. Networks and Heterogeneous Media, 2013, 8(3): 663-684.
doi: 10.3934/nhm.2013.8.663
[5]
Alberto Bressan, Khai T. Nguyen .
Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10(2): 255-293.
doi: 10.3934/nhm.2015.10.255
[6]
Simone Göttlich, Camill Harter .
A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469.
doi: 10.3934/nhm.2016004
[7]
Adriano Festa, Simone Göttlich, Marion Pfirsching .
A model for a network of conveyor belts with discontinuous speed and capacity. Networks and Heterogeneous Media, 2019, 14(2): 389-410.
doi: 10.3934/nhm.2019016
[8]
Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara .
Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945.
doi: 10.3934/nhm.2023040
[9]
Mohamed Benyahia, Massimiliano D. Rosini .
A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12(2): 297-317.
doi: 10.3934/nhm.2017013
[10]
Michael Herty .
Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97.
doi: 10.3934/nhm.2007.2.81
Abstract
We consider coupling conditions for the “Aw–Rascle” (AR) traffic
flow model at an arbitrary road intersection. In contrast with coupling conditions previously introduced in [10] and [7], all the moments of the AR system
are conserved and the total flux at the junction is maximized. This nonlinear
optimization problem is solved completely. We show how the two simple cases
of merging and diverging junctions can be extended to more complex junctions,
like roundabouts. Finally, we present some numerical results.
This article has been cited by:
1.
Alessia Marigo, Benedetto Piccoli,
A Fluid Dynamic Model for T-Junctions,
2008,
39,
0036-1410,
2016,
10.1137/060673060
Oliver Kolb, Guillaume Costeseque, Paola Goatin, Simone Göttlich,
Pareto-Optimal Coupling Conditions for the Aw--Rascle--Zhang Traffic Flow Model at Junctions,
2018,
78,
0036-1399,
1981,
10.1137/17M1136900
4.
Jennifer Weissen, Oliver Kolb, Simone Göttlich,
A combined first and second order model for a junction with ramp buffer,
2022,
8,
2426-8399,
349,
10.5802/smai-jcm.90
5.
Caterina Balzotti, Maya Briani, Benedetto Piccoli,
Emissions minimization on road networks via Generic Second Order Models,
2023,
18,
1556-1801,
694,
10.3934/nhm.2023030
6.
Jennifer McCrea, Salissou Moutari,
A hybrid macroscopic-based model for traffic flow in road networks,
2010,
207,
03772217,
676,
10.1016/j.ejor.2010.05.018
7.
Luigi Rarità, Ciro D'Apice, Benedetto Piccoli, Dirk Helbing,
Sensitivity analysis of permeability parameters for flows on Barcelona networks,
2010,
249,
00220396,
3110,
10.1016/j.jde.2010.09.006
8.
M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, A. M. Bayen,
A PDE-ODE Model for a Junction with Ramp Buffer,
2014,
74,
0036-1399,
22,
10.1137/130908993
9.
Simone Göttlich, Michael Herty, Salissou Moutari, Jennifer Weissen,
Second-Order Traffic Flow Models on Networks,
2021,
81,
0036-1399,
258,
10.1137/20M1339908
10.
Mauro Garavello, Paola Goatin,
The Cauchy problem at a node with buffer,
2012,
32,
1553-5231,
1915,
10.3934/dcds.2012.32.1915
11.
Zhiyang Lin, S. C. Wong, Xiaoning Zhang, Peng Zhang,
Higher-Order Traffic Flow Model Extended to Road Networks,
2023,
149,
2473-2907,
10.1061/JTEPBS.TEENG-7556
12.
CASCONE ANNUNZIATA, CIRO D'APICE, PICCOLI BENEDETTO, RARITÀ LUIGI,
OPTIMIZATION OF TRAFFIC ON ROAD NETWORKS,
2007,
17,
0218-2025,
1587,
10.1142/S021820250700239X
Georges Bastin, Jean-Michel Coron, Brigitte d'Andrea-Novel,
2008,
Boundary feedback control and Lyapunov stability analysis for physical networks of 2×2 hyperbolic balance laws,
978-1-4244-3123-6,
1454,
10.1109/CDC.2008.4738857
Alberto Bressan, Fang Yu,
Continuous Riemann solvers for traffic flow at a junction,
2015,
35,
1553-5231,
4149,
10.3934/dcds.2015.35.4149
20.
Alberto De Marchi, Matthias Gerdts,
Traffic Flow on Single-Lane Road Networks: Multiscale Modelling and Simulation,
2018,
51,
24058963,
162,
10.1016/j.ifacol.2018.03.028
Florian Siebel, Wolfram Mauser, Salissou Moutari, Michel Rascle,
Balanced vehicular traffic at a bottleneck,
2009,
49,
08957177,
689,
10.1016/j.mcm.2008.01.006
23.
Mauro Garavello, Francesca Marcellini,
The Riemann Problem at a Junction for a Phase Transition Traffic Model,
2017,
37,
1553-5231,
5191,
10.3934/dcds.2017225
24.
M. Garavello, P. Goatin,
The Aw–Rascle traffic model with locally constrained flow,
2011,
378,
0022247X,
634,
10.1016/j.jmaa.2011.01.033
25.
Wen-Long Jin,
A Riemann solver for a system of hyperbolic conservation laws at a general road junction,
2017,
98,
01912615,
21,
10.1016/j.trb.2016.12.007
26.
Oliver Kolb, Simone Göttlich, Paola Goatin,
Capacity drop and traffic control for a second order traffic model,
2017,
12,
1556-181X,
663,
10.3934/nhm.2017027
27.
Mauro Garavello,
The LWR traffic model at a junction with multibuffers,
2014,
7,
1937-1179,
463,
10.3934/dcdss.2014.7.463
28.
Alberto Bressan, Yucong Huang,
Globally optimal departure rates for several groups of drivers,
2019,
1,
2640-3501,
583,
10.3934/mine.2019.3.583
29.
R. M. Colombo, G. Guerra, M. Herty, V. Schleper,
Optimal Control in Networks of Pipes and Canals,
2009,
48,
0363-0129,
2032,
10.1137/080716372
30.
Dirk Helbing, Jan Siegmeier, Stefan Lämmer,
2013,
Chapter 6,
978-3-642-32159-7,
335,
10.1007/978-3-642-32160-3_6
31.
Alberto Bressan, Khai T. Nguyen,
Optima and
equilibria for traffic flow on networks
with backward propagating queues,
2015,
10,
1556-181X,
717,
10.3934/nhm.2015.10.717
32.
R. M. Colombo, M. Herty, V. Sachers,
On 2×2 Conservation Laws at a Junction,
2008,
40,
0036-1410,
605,
10.1137/070690298
33.
CIRO D'APICE, BENEDETTO PICCOLI,
VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS,
2008,
18,
0218-2025,
1299,
10.1142/S0218202508003042
34.
ARVIND KUMAR GUPTA,
A SECTION APPROACH TO A TRAFFIC FLOW MODEL ON NETWORKS,
2013,
24,
0129-1831,
1350018,
10.1142/S0129183113500186
Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper,
2012,
Chapter 7,
978-3-0348-0132-4,
123,
10.1007/978-3-0348-0133-1_7
42.
Michael Herty, Niklas Kolbe,
Data‐driven models for traffic flow at junctions,
2024,
47,
0170-4214,
8946,
10.1002/mma.10053
43.
Paola Goatin, Alexandra Würth,
The initial boundary value problem for second order traffic flow models with vacuum: Existence of entropy weak solutions,
2023,
233,
0362546X,
113295,
10.1016/j.na.2023.113295
44.
Wei Chen, Shumo Cui, Kailiang Wu, Tao Xiong,
Bound-preserving OEDG schemes for Aw–Rascle–Zhang traffic models on networks,
2025,
520,
00219991,
113507,
10.1016/j.jcp.2024.113507
Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow[J]. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275
Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow[J]. Networks and Heterogeneous Media, 2006, 1(2): 275-294. doi: 10.3934/nhm.2006.1.275