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Abstract. We consider coupling conditions for the “Aw–Rascle” (AR) traffic
flow model at an arbitrary road intersection. In contrast with coupling condi-
tions previously introduced in [10] and [7], all the moments of the AR system
are conserved and the total flux at the junction is maximized. This nonlinear
optimization problem is solved completely. We show how the two simple cases
of merging and diverging junctions can be extended to more complex junctions,
like roundabouts. Finally, we present some numerical results.

1. Introduction. Traffic flow models have been under investigation for a long
time. We are particularly interested in macroscopic traffic flow models based on
hyperbolic conservation laws. Models of this type have been considered for example
in [14, 6, 15, 2, 1, 8]. In the following, we focus on the “Aw–Rascle” (AR) model.
This (class of) “second–order” model(s) consists of a nonlinear, coupled system
of conservation laws, introduced in [2] and independently in [16]. Those models
describe the behavior of traffic density and velocity where different cars can have
a different response to local traffic situations, e.g., the model distinguishes trucks
and cars. Recently, first extensions of theses models to a traffic network have
been proposed [7, 10]. The crucial point is the modelling of coupling conditions at
junctions. Typically, one has to introduce further assumptions to show that the
problem is well-defined and admits a unique solution, see also the discussion in the
scalar case [4, 11, 9]. In this paper we propose new coupling conditions for the AR-
system. In contrast with [7], those conditions conserve all moments of the system
and in contrast with [10] the derived conditions maximize the flux at the junctions
without any further constraint. Furthermore, we present a numerical algorithm
to solve the problem and to construct the intermediate states of the homogenized
solution.
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2. Preliminary discussion. We first give a brief summary of the properties of
the AR–model and advise the reader to consult [2, 10] for more details.

A road network is modelled as a finite, directed graph (I,N ) (with |I| = I and
|N | = N) wherein each arc i = 1, . . . , I corresponds to a road and each vertex
n ∈ N to a junction. For a fixed junction n the set δ−n contains all the indices k
of incoming roads to n. Similarly, δ+

n denotes the indices j of outgoing roads. We
skip the subindex n whenever the situation is clear. Each road i is modelled by an
interval Ii := [ai, bi] where we allow either ai = −∞ or bi = +∞ for incoming or
outgoing roads in the whole network. We require the AR–equations (1) to hold on
each arc i ∈ I of the network:

∂tρi + ∂x(ρivi) = 0 (1a)

∂t(ρiwi) + ∂x(ρiviwi) = 0 (1b)

wi = vi + pi(ρi) (1c)

where, for each i, ρi 7→ pi(ρi) is a known function (“traffic pressure”) with the
following properties

∀ρi, ρip
′′
i (ρi)) + 2p′i(ρi) > 0 and e.g. pi(ρi) ∼ ργ

i at ρi = 0, (2)

and where γ > 0. ρi and vi respectively, describe the density and velocity of traffic
on road i.

The conservative form of (1) is

∂t

(

ρi

yi

)

+ ∂x

(

yi − ρipi(ρi)
(yi − ρipi(ρi))yi/ρi

)

= 0, (3)

where yi := ρiwi = ρi(vi + pi(ρi)).
We now recall some basic facts on the solution of the Riemann Problem for (1),

i.e. to the initial value problem with constant data for ±x > 0.
The system is strictly hyperbolic if ρi > 0. The eigenvalues are

λ1,i(U) = vi − ρip
′
i(ρi) and λ2,i(U) = vi (4)

The first characteristic field is genuinely nonlinear. The second one is linearly
degenerate and therefore associated with a contact discontinuity. Moreover, the 1–
shock and 1–rarefaction curves coincide, see [5, 2]. We recall that of course they are
associated with braking and acceleration waves, respectively. For each fixed i, the
Riemann invariants are

wi(U) = vi + pi(ρi) and vi(U) = vi. (5)

We refer to [10, 7, 11] for a derivation of the necessary conditions at the junction, i.e.
the coupling conditions. First, we define weak solutions of the network problem in
the following sense. A set of functions {Ui = (ρi, ρivi)}i∈I is called a weak solution
of (1) if and only if

I
∑

i=1

∫ ∞

0

∫ bi

ai

(

ρi

ρiwi

)

· ∂tφi +

(

ρivi

ρiviwi

)

· ∂xφidxdt

+

∫ bi

ai

(

ρi,0

ρi,0wi,0

)

· φi(x, 0)dx = 0 (6)

holds for any set of smooth functions {φi}i∈I : [0, +∞[×Ii → R
2 having compact

support and also smooth across a junction n, i.e.

φk(bk) = φj(aj) ∀k ∈ δ−n and ∀j ∈ δ+
n . (7)
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Herein, Ui,0(x) =
(

ρi,0(x), (ρi,0vi,0)(x)
)

is the initial data. Furthermore, the set of
functions Ui satisfies for all i the relation

wi(x, t) = vi(x, t) + p†i (ρi(x, t)), (8)

where the function p†i (·) is initially unknown. On an outgoing road its explicit form

depends on the mixture of the cars. On any incoming roads k ∈ δ− it holds p†k ≡ pk.
From now on, we consider a single junction. Then, from (6), (8) we derive the

Rankine–Hugoniot condition for piecewise smooth solutions
∑

k∈δ−

(ρkvk)(b−k , t) =
∑

j∈δ+

(ρjvj)(a
+
j , t), (9a)

∑

k∈δ−

(ρkvkwk)(b−k , t) =
∑

j∈δ+

(ρjvjwj)(a
+
j , t). (9b)

These properties, respectively, correspond to conservation of mass and (pseudo)-
“momentum”. Note that in [7] the pseudo-“momentum” is not conserved and the
proposed solution is not a weak solution in the above sense.

In the remaining part we consider the case of initial data constant on each road:
{

(ρk,0, ρk,0vk,0) = Uk,0 = constk, ∀ k ∈ δ−,

(ρj,0, ρj,0vj,0) = Uj,0 = constj , ∀ j ∈ δ+.
(10)

We discuss the construction of weak solutions in the sense of (6) for initial data
constant on each road. For each vertex or junction (say located at x = x0), we
consider the Riemann problem

∂t

(

ρi

ρiwi

)

+ ∂x

(

ρivi

ρiviwi

)

= 0, Ui(x, 0) =

(

U−
i x < x0

U+
i x > x0

)

, (11)

for each i ∈ δ− ∪ δ+.
Depending on the road, only one of the Riemann data is defined for t = 0:

If i ∈ δ− : U−
i = Ui,0 , x0 = bi and if i ∈ δ+ : U+

i = Ui,0 , x0 = ai. (12)

We construct an (entropy) solution to (11-8) such that all generated waves have
non-positive ( if x < x0 i.e. i ∈ δ−) or non-negative ( if x > x0 i.e. i ∈ δ+) speed.
For each road the remaining unknown state U+

i when i ∈ δ− (resp. U−
i when

i ∈ δ+) has to be determined in such way that the coupling conditions (9a) and
(9b) are satisfied. Then we solve each of the problems (11-8) and obtain a weak
solution in the sense of (6). This solution (Ui(x, t)) is restricted to Uk(x, t) with
k ∈ δ−, when x < x0 and Uj(x, t) with j ∈ δ+, if x > x0.

Summarizing, depending on the road, we only know a part of the initial data
for (11), namely (12).

First, we denote by αjk the percentage of cars on road k willing to go (and
actually going, see below) to road j. The corresponding matrix A := (αjk)j∈δ+,k∈δ−

is assumed to be known, see [4, 7, 10]. By definition we have
∑

j∈δ+

αjk = 1 ∀k ∈ δ−. (13)

Next, let

qk(t) := ρkvk(bk−, t), qj(t) := ρjvj(aj+, t)

denote the (initially unknown) total first component of the flux (i.e. the mass–
flux) on the incoming road k (resp. on the outgoing road j). Furthermore, let us
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introduce the (initially unknown) flux qjk of cars actually going from road k to
road j and let βjk := qjk/qj , which is also initially unknown. Then, by the above
definitions,

αjk =
qjk

qk

and
∑

k∈δ−

βjk = 1.

As a final preparation, we describe the construction of the demand and supply
functions (on an arbitrary road) for a given level curve of {w(U) = c}, c ≥ 0.
Recall, w(U) = v + p(ρ) and its level curve is a concave function in the (ρ, ρv)-
plane with a unique maximum. As in the case of first-order models, e.g. [13, 7],
in the (ρ, ρv) plane the demand function d(ρ;w, c) is an extension of the non–

decreasing part of this level curve {w(U) = c} for ρ ≥ 0 and the supply function
s(ρ;w, c) is an extension of the non–increasing part of this curve {w(U) = c} and
ρ ≥ 0. We denote by dk := d(ρk;w, ck) the demand on an incoming road k and by
sj := s(ρj ,w, cj) the supply on an outgoing road j.

3. Solving the problem at a junction. We first recall the following results of
[10]: The Riemann invariant of (1), {v(Ui) = vi} is a straight line with slope
vi passing through the origin. Consider the curve {w(Ui) := vi + pi(ρi) = wi},
where wi ∈ R denotes a constant. By assumption (2) on pi this curve is strictly
concave and passes through the origin. Furthermore, if wi > 0, then the curve
{w(Ui) = wi} lies in the first quadrant of the (ρi, ρivi) plane for ρi between 0 and
a maximal value ρ̄i ∈]0, 1]. The maximal value ρ̄i depends on wi and pi(·). Due
to the strict concavity, there exists a unique point (i.e. the “sonic point”) σ(w, wi)
(with 0 < σ(w, wi) ≤ 1, depending on wi and the function pi(·)) which maximizes
the flux ρivi on {w(Ui) = wi}. Moreover, we introduce the functions ri(ρi;w, wi)
and ui(ρi;w, wi) below. Assume wi > 0. Then for all ρi ∈ [0, ρ̄i] there exists a
unique vi such that w(ρi, ρivi) = wi. Moreover, there exists a unique pair (ri, ui)
such that

w(ri, ri ui) = w(ρi, ρi vi), (14a)

ri ui = ρi vi, (14b)

ri 6= ρi except for ρ = σ(w, wi). (14c)

Therefore, for each curve {w(Ui) = wi} with wi > 0 there exists two unique func-
tions ρi → ri(ρi;w, wi) and ρi → ui(ρi;w, wi) satisfying (14) for all ρi ∈ [0, ρ̄i].

Proposition 1. Let U− = (ρ−, ρ−v−) 6= (0, 0) be the initial value on an incoming
road. Let the 1-curve through U− be w(U) = v + p(ρ) = w− with w− := w(U−).
Then the “admissible” states U+ = (ρ+, ρ+v+) for the Riemann problem (11) must
belong to that curve, i.e., w(U+) = w− and ρ+v+ ≥ 0. Depending on U− we
distinguish two cases:

1. ρ− < σ(w, w−) : U+ is admissible if and only if ρ+ > r(ρ−;w, w−) or if
U+ ≡ U−.

2. ρ− ≥ σ(w, w−) : U+ is admissible if and only if σ(w, w−) ≤ ρ+ ≤ 1.

If U− = (0, 0) then the admissible state is U+ ≡ U−.
In all cases the maximal possible flux associated with any admissible state U+ is

d(ρ−;w, w−).

Proposition 2. Consider the initial state U+ 6= (0, 0) on an outgoing road and
the level curve of the first Riemann invariant {w(U) = c} with an arbitrary non–
negative constant c.
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Let U † = (ρ†, ρ†v†)be the point of intersection, if it exists, of the two Riemann
invariants {v(U) = v+} and {w(U) := v + p(ρ) = c} with ρ > 0 and v > 0. Then
the “admissible” states U− for the Riemann problem (11) satisfying w(U−) = c
and ρ−v− ≥ 0 are given by the two cases:

1. ρ† ≤ σ(w, c) : U− is admissible if and only if 0 ≤ ρ− ≤ σ(w, c).
2. ρ† > σ(w, c) : U− is admissible if and only if 0 ≤ ρ− < r(ρ†;w, c) or if

U− ≡ U †.

Note that the set of admissible states U− depends on the existence of the point U †.
Now assume that either U+ = (0, 0) or there is no such point U † with ρ†, v† > 0.
Then we set U † = (0, 0) and as in Case 1, U− is admissible, if and only if 0 ≤
ρ− ≤ σ(w, c).

In all cases the maximal possible flux associated with any “admissible” state U−

is s(ρ†;w, c).

An example is given in Figure 3 for incoming and in Figure 2 for outgoing roads,

respectively. In the latter case the constant c is given by c = w2(U
†
2 ) = w2(U

∗
2 ).

                                                  

d1

q1

U−
1

U+
1

d1(ρ1; w1;w1(U
−
1 ))

w1 = w1(U
−
1 )

ρ1

ρ1v

     

U−
1

U+
1

1 − s/r
t

x
Incoming Road

Figure 1. (Half-)Riemann Problem on an incoming road.
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ρ2

ρ2v

s(ρ2; w2;w2(U
∗
2 ))

s∗2

q2

U−
2

U+
2

U∗
2

v = v+
2

w2 = w2(U
∗
2 )

1 − s/rt

x0

U−
2

U+
2

U∗
2

Outgoing Road

2 − cd

Figure 2. (Half-)Riemann Problem on an outgoing road.

Next, we describe how to construct a solution for a single junction and constant
initial data (Uk,0, Uj,0)k∈δ−, j∈δ+ . We assume that the weak solution in the sense

of (6) satisfies the already imposed condition,

qj ≡ (ρjvj)(aj+, t) =
∑

k∈δ−

qjk =
∑

k∈δ−

αjk(ρkvk)(bk−, t) ∀j ∈ δ+. (15)

As already noted in [10, 7] the condition (15) is not sufficient to construct a unique
solution {Ui}i∈δ−∪δ+ to (11-8). In [10] we introduced a further assumption on the
distribution of the cars. Here, and in contrast with [10] and with [7] we present
a new approach to solve the problem: We prove that solving the maximization
of the total incoming (mass) flux

∑

k∈δ− ρkvk(bk−, t) =
∑

k∈δ− qk (or equivalently
total outgoing (mass) flux

∑

j∈δ+ ρjvj(aj+, t) =
∑

j∈δ+ qj) is sufficient to obtain

a unique solution. Furthermore, this solution will satisfy assumptions (15) for
a given matrix A with the property (13). In contrast with [7], no additional
assumptions on A is needed. However, we maximize the total (mass) flux on a



OPTIMIZATION CRITERIA IN TRAFFIC MODELLING 281

smaller set of admissible states. On the other hand, in contrast with [10], no

additional assumption on βji (i.e. the mixture of the cars) has to be imposed.
At this point, using Theorem 7.1 in [10] we want to define admissible solutions

for a general junction.

Definition 1. Consider a junction with m incoming and n outgoing roads, with
constant initial data Ui,0 = (ρi,0, ρi,0vi,0)i∈δ−∪δ+ under assumptions (13).
We say that the family {Ui(x, t)}i∈δ−∪δ+ is an admissible solution of the Riemann
problems (11-12) if and only if it satisfies:

(C1) ∀ i ∈ δ− ∪ δ+, Ui(x, t) is a weak entropy solution in the sense of (6) of the

network problem (11-8), where p†i ≡ pi, ∀i ∈ δ−.
On an outgoing road j ∈ δ+, the solution Uj(x, t) is constructed as in [10]:

in the triangle {(x, t); aj < x < aj + tvj,0}, Uj is the homogenized solution

defined below with p†j ≡ p∗j , whereas for x > aj + tvj,0, p†j ≡ pj .

(C2) The flux distribution satisfies (15).
(C3) The sum of the incoming fluxes

∑

k∈δ− ρkvk(bk−, t) =
∑

k∈δ− qk (or equiva-
lently the sum of outgoing fluxes

∑

j∈δ+ ρjvj(aj+, t) =
∑

j∈δ+ qj) is maximal

subject to (C1) and (C2).

Remark 1. We recall that in [7] the maximization problem involves different cost
functions and mostly a larger set of admissible states, since relation (9b) is not
imposed. In contrast, in [10] no such maximization criterion is imposed, but the
proportions between all the incoming fluxes are fixed.

Next, we describe the homogenization to define p∗j . For a motivation and a

detailed discussion of the homogenization, see [3] and Section 6 in [10]. Recall that

for each k ∈ δ−, p†k ≡ pk and wk(U) = v + pk(ρ) are well-defined. First, we define
the (initially unknown) homogenized value for each outgoing road j ∈ δ+

w̄j :=
∑

k∈δ−

βjkwk(Uk,0). (16)

Then, for each j ∈ δ+, p∗j (·) is defined as in [10]. Namely, we first define the function

Pj(τ) := pj(1/τ), (17)

where τ = 1
ρ

is the specific volume, see [1, 3].

Now, we consider the function:

v 7−→ τ :=
∑

k∈δ−

qjk

qj

P−1
j (wk(Uk,0) − v) =

∑

k∈δ−

βjkP−1
j (wk(Uk,0) − v). (18)

Then, we choose to define a new invertible function P ∗
j by rewriting (18) under the

form
τ :=

(

P ∗
j

)−1
(w̄j − v) , (19)

which we only use with the particular value w̄j defined by (16), see [3] for more
details.

Finally, we set

p†j(ρ) := p∗j (ρ) := P ∗
j (1/ρ), (20a)

w
†
j(U) := v + p†j(ρ). (20b)

This construction is perfectly well–defined once the proportions βjk = qjk/qj are
known. In [10] we have assumed that we knew these proportions a priori, see also



282 M. HERTY, S. MOUTARI AND M. RASCLE

Remark 1. Here, in contrast, we show that the proportions βjk can be determined
by solving a maximization problem stated below. Unfortunately, so far, the problem
is only tractable for particular types of junctions. With all the previous remarks
in mind, we conclude: there exists a unique solution {Ui}i∈δ−∪δ+ in the sense of
Definition 1 if the following maximization problem:

max
∑

j∈δ+

qj subject to (21a)

∀k ∈ δ−, 0 ≤ qk ≤ dk(ρk,0,wk,wk(Uk,0)), (21b)

∀j ∈ δ+, 0 ≤ qj ≤ sj(ρj,0,w
†
j , w

∗
j ), (21c)

∀k ∈ δ−, ∀j ∈ δ+, βjk =
qjk

qj

, (21d)

∀k ∈ δ−, ∀j ∈ δ+, αjk =
qjk

qk

, (21e)

∀j ∈ δ+,
∑

k∈δ−

βjk = 1, (21f)

∀j ∈ δ+, qj =
∑

k∈δ−

αjkqk, (21g)

∀j ∈ δ+,
∑

k∈δ−

qjk = qj , (21h)

∀k ∈ δ−,
∑

j∈δ+

qjk = qk, , (21i)

∀k ∈ δ−, ∀j ∈ δ+, 0 ≤ βjk ≤ 1. (21j)

has a unique solution, with w
†
j(U) ≡ v + p†j(ρ) and w∗

j ≡
∑

k∈δ− βjkwk(Uk,0)

Remark 2. The functions wk for k ∈ δ− and the values wk(Uk,0) and αjk are
initially known. As already noted, βjk is initially unknown and depends on the

solution {Uk, Uj}k∈δ−,j∈δ+ , as well as the function w
†
j and the fluxes qjk and qj .

In particular the maximization problem contains the implicit constraints (21c), for
all j ∈ δ+.

In (21) some equations are redundant and a more compact equivalent reformu-
lation is:

max
∑

j∈δ+

qj subject to (22a)

∀k ∈ δ−, 0 ≤ qk ≤ dk(ρk,0;wk,wk(Uk,0)), (22b)

∀j ∈ δ+, 0 ≤ qj ≤ sj(ρj,0,w
†
j , w

∗
j ), (22c)

∀k ∈ δ−, ∀j ∈ δ+, βjkqj = αjkqk, (22d)

∀j ∈ δ+,
∑

k∈δ−

βjk = 1, (22e)

∀k ∈ δ−, ∀j ∈ δ+, 0 ≤ βjk ≤ 1. (22f)

We now move to the first type of junctions considered here (a merge).

4. Two incoming roads and one outgoing road. We write k = 1, 2 for in-
coming roads, j = 3 for the outgoing road and give simplifications for (22) in this
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case. Furthermore, let β1 := β31 and β2 := β32 and d1 := d(ρ1,0;w1,w1(U1,0)) and
d2 := d(ρ2,0;w2,w2(U2,0)). By assumption (13), α31 = α32 = 1.

The crucial point in solving (22) is to determine the supply sj . We briefly describe
the homogenization leading to sj , before describing the solution.

Let U := (ρ, ρv). In this particular case, the homogenization process described
in Section 3 can be rewritten as follows.

First, on each incoming road k = 1, 2, the curve {wk(U) = wk(Uk,0)} becomes
in Lagrangian coordinates:

{U(τ, v); v + Pk(τ) = wk(Uk,0)}.

Now, on the outgoing road 3, the general equations (16) to (20) become

w̄ = β1w1(U1,0) + (1 − β1)w2(U2,0) (23)

and

τ = β1P
−1
1 (w1(U1,0) − v) + (1 − β1)P

−1
2 (w2(U2,0) − v), (24)

where β1 is still unknown.
As a prototype, we treat the case where pi(ρ) = ργ (or Pi(τ) = 1/τγ) for i =

1, 2, 3, with γ = 1. Then, (24) becomes

τ3 =
β1

w1 − v
+

(1 − β1)

w2 − v
, (25)

where wk is the constant wk := wk(Uk,0), k = 1, 2.
This homogenized relation (25) implies

ρ3v =
(w2 − v)(w1 − v)v

β1(w2 − w1) + w1 − v
. (26)

Combining (26), (25), problem (22) is equivalent to solving the following maximiza-
tion problem

max q3 subject to (27a)

0 ≤ q3 ≤
d1

β1
; (27b)

0 ≤ q3 ≤
d2

(1 − β1)
; (27c)

0 ≤ q3 ≤ s3(U3,0,w
†
3,w

∗
3); (27d)

0 ≤ β1 ≤ 1. (27e)

We set v3 := v3,0. Then, for each given β1, we denote by vc the velocity corre-
sponding to the maximal flux on the outgoing road, according to the supply i.e, vc

is obtained by solving d(ρ3v)
dv

= 0 for any fixed β1. The supply s3(U3,0,w
†
3,w

∗
3) is

then:

s3 =















(w2 − v3)(w1 − v3)v3

β1(w2 − w1) + w1 − v3
if v3 ≤ vc;

(w2 − vc)(w1 − vc)vc

β1(w2 − w1) + w1 − vc

if v3 > vc.
(28)

For any fixed v3, we note that the function β1 7−→ s3(v3, β1) is non–decreasing
if w1 > w2, non–increasing if w1 < w2 and constant if w1 = w2, in which case the
homogenization problem is trivial.
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Now, we can solve the maximization Problem (27). Since the problem is sym-
metric with respect to the incoming roads, it suffices to consider the case w1 ≥ w2,
see below.

4.1. The case w1 > w2. The optimal solution of the Problem (27) is reached only
in one of the following cases:

4.1.1. Case 1: q3 < s3(v3, β1).
Subcase 1.1. In this case the constraint (27d) is not saturated. Therefore two con-
straints (27b) and (27c) must be saturated.

{

q1 = d1;

q2 = d2;
⇔

{

q3 = d1

β1
;

q3 = d2

1−β1
;

An example of optimal solution of the problem (27) in the (β1, q3) plane is shown
in Figure 4.1.1.

 

q3

q∗3

d1

β1

s3(v3, β1)

d2

1−β1
β1 = 1

β∗
1 β11

Figure 3. Optimal solution (β∗
1 , q∗3) in the (β1, q3) plane (Subcase

1.1 - Casew1 > w2).

4.1.2. Case 2: q3 = s3(v3, β1)..
Subcase 2.1.

{

q1 < d1;

q2 < d2;
⇔

{

q3 < d1

β1
;

q3 < d2

1−β1
;

We draw in Figure 4 an example of optimal solution of the problem (27) in the
(β1, q3) plane.
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q3

q∗3

d1

β1

s3(v3, β1)

d2

1−β1

β1 = 1

β∗
1 β1

Figure 4. Optimal solution (β∗
1 , q∗3) in the (β1, q3) plane (Subcase

2.1 - Case w1 > w2).

Subcase 2.2.
{

q1 = d1;

q2 < d2;
⇔

{

q3 = d1

β1
;

q3 < d2

1−β1
;

An example of optimal solution of the problem (27) is drawn is Figure 5.
Subcase 2.3.

{

q1 < d1;

q2 = d2;

In this subcase q1 < d1. Then, since w1 > w2, the drivers on road 1 are “more
agressive” than those on road 2, so the flux on road 1 would strictly increase while
the road 3 is not saturated (i. e. q3 = s3(v3, β1)). So, in this case we have necessarily
β1 = 1, i.e. q2 = (1 − β1)q3 = 0 =. Since q2 = d2 then d2 = 0. Therefore the road
2 is empty. This situation is in fact the case of one road with two different traffic
conditions [2].
Subcase 2.4.

{

q1 = d1;

q2 = d2;
⇔

{

q3 = d1

β1
;

q3 = d2

1−β1
;

In this subcase, the problem (27) has a unique solution. We give in Figure 6 an
example of optimal solution of the problem (27).

4.2. The case w1 = w2. The optimal solution of the problem (27) is reached only
in one of the following cases:
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q3

q∗3

d1

β1

s3(v3, β1)

d2

1−β1
β1 = 1

β∗
1 β11

Figure 5. Optimal solution (β∗
1 , q∗3) in the (β1, q3) plane (Subcase

2.2 - Case w1 > w2).

q3

q∗3

d1

β1

s3(v3, β1)

d2

1−β1 β1 = 1

β∗
1 β11

Figure 6. Optimal solution (β∗
1 , q∗3) in the (β1, q3) plane (Subcase

2.4 - Case w1 > w2)).

4.2.1. Case 1: q3 < s3(v3, β1).
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Subcase 1.1.
{

q1 = d1;

q2 = d2;
⇔

{

q3 = d1

β1
;

q3 = d2

1−β1
;

In this subcase the problem (27) has a unique solution.
An example of optimal solution of the problem (27) is drawn is Figure 7.

q3

q∗3

d1

β1

s3(v3, β1)

d2

1−β1
β1 = 1

β∗
1 β11

Figure 7. Optimal solution (β∗
1 , q∗3) in the (β1, q3) plane (Subcase

1.1 - Case w1 = w2).

4.2.2. Case 2: q3 = s3(v3, β1).
Subcase 2.1.

{

q1 = d1;

q2 = d2;
⇔

{

q3 = d1

β1
;

q3 = d2

1−β1
;

As in the subcase 1.1 above, the problem (27) has a unique solution.
An example of optimal solution of the problem (27) is drawn is Figure 8.
Subcase 2.2.











q1 ≤ d1;

q2 ≤ d2;

with(q1, q2) 6= (d1, d2)

In this subcase the problem (27) has an infinity of solutions.
An example of optimal solution of the problem (27) is drawn is Figure 9.
In the Appendix we give a numerical algorithm which solves (27) when the

solution is unique. There, for simplicity, when there is no uniqueness, we fix
β1 = β∗∗

1 := d1

d1+d2
as additional assumption.

Finally, we summarize the discussion above in the following proposition.
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q3

q∗3

d1

β1

s3(v3, β1)

d2

1−β1 β1 = 1

β∗
1 β11

Figure 8. Optimal solution (β∗
1 , q∗3) in the (β1, q3) plane (Subcase

2.1 - Case w1 = w2).

     

q3

q∗3

d1

β1

s3(v3, β1)

d2

1−β1 β1 = 1

β∗
1 β11

Figure 9. Optimal solution (β∗
1 , q∗3) in the (β1, q3) plane (Subcase

2.2 - Case w1 = w2).

Proposition 3. Consider two incoming roads 1, 2 and one outgoing road 3 with
a1 = a2 = −∞, b1 = b2 = a3 and b3 = ∞ and constant initial data Ui,0 =
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(ρi,0ρi,0vi,0), i = 1, 2, 3. Assume w1(U1,0) 6= w2(U2,0). Then there exists a unique
solution {Ui(x, t)}i=1,2,3 of the Riemann problem at the junction (11) and (12) with
the following properties:

1. {Ui(x, t)}i=1,2,3 is a weak solution (in the sense of (6)) of the network prob-

lem (11-8), where p†i ≡ pi for the incoming roads i = 1, 2.

For the outgoing road i = 3, we obtain two different expressions for p†3, de-
pending on the position (x, t):
In the x − t plane, in a triangle near the junction, we consider the homog-

enized solution described above. Therefore, p†i (·) := p∗i (·) is given by the
general relations (16), (18), (19) and (20)and more precisely by formulas
(23)–(26). The triangle is bounded at any fixed time t > 0 by x = a3 and

x = a3 + tv3,0. In the remaining part of the outgoing road we have p†3 ≡ p3.
2. The Rankine-Hugoniot conditions (9a-9b) are satisfied, with ρi(x, t)vi(x, t) ≥

0 , 1 ≤ i ≤ 3. In particular U3(a
+
3 , t) satisfies

w
†
3(U3(a

+
3 , t)) := w∗

3(U3(a
+
3 , t)) := v3(a

+
3 , t) + p∗3(ρ3(a

+
3 , t)) = w̄,

where w̄ is the homogenized value given by (16).
3. The incoming fluxes are maximal subject to the other conditions.

We now consider a second type of junction (a diverge).

5. One incoming road and two outgoing roads. Here, we follow the presen-
tation of [10]. The results are also recovered by the presentation in [7]: they are
just recalled for sake of completeness.

In this case, k = 1 for the incoming road and j = 2, 3 for the outgoing roads.
For notational convenience we set α21 = α and α31 = (1− α). Furthermore, we set
w1 := w1(U1,0).

Again, we simplify the general maximization problem (21). From equation (22d),
we obtain

βj1 =
αj1q1

qj

, j = 2, 3.

Since there is only one incoming road, qj = αj1q1, j = 2, 3 and therefore β21 =
β31 = 1.

Obviously, here, no homogenization is needed, since there is a single incoming
road: all the cars have kept the same value w1 (“color”) when passing the junction.

Hence, p†j ≡ pj for j = 2, 3 and

wj(U) = v + pj(ρj) = v + Pj(τj) = w1 j = 2, 3. (29)

As above, we assume that for each i = 1, 2, 3, pi(ρ) = ργ (or equivalently Pi(τ) =
1/τγ) and γ = 1.

Now, we discuss the possible supplies sj(Uj,0) and then finally solve (21). By
equation (29) we have

ρjvj = vj(w1 − vj), j = 2, 3.

Let vj,c the velocity corresponding to the maximal flux on the outgoing road j, i.e.,

vjc = {vj;
d(ρjvj)

dvj

= 0} =
w1

2
j = 2, 3
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Therefore, the supplies sj(Uj,0;wj , w1) are

sj(Uj,0;wj , w1) =

{

vj,0(w1 − vj,0) if vj,0 ≤ w1

2 ;
w1

2
(w1 −

w1

2
) if vj,0 >

w1

2
.

(30)

Finally, problem (22) reduces to

max q1 subject to (31a)

0 ≤ q1 ≤ d1, (31b)

0 ≤ αq1 ≤ s2(U2,0;w2, w1), (31c)

0 ≤ (1 − α)q1 ≤ s3(U3,0;w3, w1), (31d)

and its optimal solution is q∗1 = min{d1,
s2(U2,0;w2,w1)

α
,

s3(U3,0;w3,w1))
1−α

}.
As before, the above discussion can be summarized in the following proposition,

c.f. Proposition 4.1 [10].

Proposition 4. Consider three roads i = 1, 2, 3 with a1 = −∞, b1 = a2 = a3

and b2 = b3 = ∞ and constant initial data Ui,0 = (ρi,0, ρi,0vi,0), i = 1, 2, 3. Let
0 ≤ α ≤ 1 be given. Then there exists a unique solution {Ui(x, t)}i=1,2,3 of the
Riemann problem at the junction (11) and (12) with the following properties:

1. {Ui(x, t)}i=1,2,3 is a weak solution (in the sens of (6)) of the network prob-

lem (11-8) with p†i ≡ pi. Therefore, the Rankine-Hugoniot conditions (9a-9b)
are satisfied, and

ρi(x, t)vi(x, t) ≥ 0, i = 1, 2, 3.

2. For all t > 0 the flux is distributed in proportions α and 1 − α between roads
2 and 3, c.f. equations (21e):

α(ρ1v1)(b
−
1 , t) = (ρ2v2)(a

+
2 , t), (32a)

(1 − α)(ρ1v1)(b
−
1 , t) = (ρ3v3)(a

+
3 , t), (32b)

3. The flux (ρ1v1)(b
−
1 , t) is maximal at the interface, subject to the above condi-

tions, c.f. equation (21a).

6. Extensions and numerical results. So far, we have presented a model to
deal with a general junction with n incoming and m outgoing roads. Due to the
strong non–linearities arising in particular in equation (21c), the general maximiza-
tion problem (21) is rather complex. However, most of the traffic intersections with
n incoming and m outgoing roads can be seen and (in fact are designed) as round-
abouts. For this type of junctions, see Figure 6, all the conflict points (i.e. points
of intersections of roads) are either 2 7→ 1 or 1 7→ 2 junctions. Therefore, we can
model a general junction with a combination of these two types of junctions, for
which we have explicitly solved the maximization problem in Sections 4 and 5.

Now, we present an example of numerical results for a 2 7→ 1 junction. We use
the algorithm presented in the Appendix to solve the maximization problem (27)
with constant initial data U−

k (for incoming roads) and U+
j (for outgoing roads) and

in particular to obtain the optimal β1. The numerical simulation uses a standard
first–order relaxation scheme [12], with a fixed discretization size ∆x = 1/800 and
the time step is chosen according to the CFL condition. With U = (ρ, ρv), we
set initial data U−

1 = (3, 5), U−
2 = (2, 3) and U+

3 = (3, 7) with the same function
pi(ρ) = p(ρ) on all roads i = 1, 2, 3. For these initial data, the optimal value of β1

is β∗ = 1 and the maximal flux at the interface is q∗3 = 49/9. Since q∗3 = q∗1 + q∗2
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and q∗1 = β∗q∗3 , we have U+
1 = (7/3, 49/9) ≈ (2.33, 5.44), U+

2 = (7/2, 0) = (3.5, 0)
and U−

3 = U∗
3 = (7/3, 49/9). The corresponding values of the Lagrangian marker w

on the incoming roads are: w1(U
−
1 ) = 14/3 and w2(U

−
2 ) = 7/2. In other words, the

drivers on road 1 are assumed to be more “aggressive”, in the sense that w1(U
−
1 ) >

w2(U
−
2 ). Furthermore, the supply on road 3 is not sufficient to accept both inflows

but is exactly sufficient for road 1. Hence, the flux on road j = 2 vanishes, whereas
the maximal flux on road j = 1 passes through the junction: q+

1 = q−3 . In fact, in
this very particular case, we have

d1(U
−
1 ,w1,w1(U

−
1 )) = s3(U

∗
3 ,w∗

3,w
∗
3(U

∗
3 )) = s3(U

∗
3 ,w1,w1(U

−
1 )),

since there is no mixture of the incoming fluxes: β1 = β∗ = 1. Therefore q−3 =

q∗3 = d1

β1
= d1. This situation corresponds to the Subcase 2.2 of the Section 4.1.2,

in the very particular case where the intersection of the curves s3(v3, β1) and d1

β1

corresponds exactly to β1 = 1.
On the incoming road j = 1 we have U−

1 connected to U+
1 with a 1–rarefaction

wave of negative speed, see Figure 6. Here, since the drivers are more “aggressive”
than those on road j = 2, they accelerate to enter the intersection and take all the
available supply on road j = 3.

Furthermore, on the other incoming road j = 2 we connect U−
2 and U+

2 with a
1–shock wave of negative speed, see Figure 6. This 1–shock wave corresponds to a
braking of the cars on road j = 2, which are here completely stopped: q+

2 = 0.
On the outgoing road, we have q−3 = q∗3 = q+

1 therefore U−
3 = U∗

3 , we only
connect U∗

3 and U+
3 through a 2–contact discontinuity. The flux has increased

up to the maximal possible flux on this road due to the maximization (27). The
corresponding solution on the outgoing road is depicted in Figure 6.

Figure 10. Roundabouts for a 4–4 junction

Note that the flux ρ+
2 v+

2 = q+
2 = q∗2 = 0. Due to the numerical diffusion of (the

used) first order scheme [12], the shock is smoothed out, and even appears like a
rarefaction fan, on the top figure. Obviously, a second order scheme would give
sharper results, but that was not our main concern in this work.

7. Summary. We have extended the results in [10] and obtained a general formu-
lation for suitable coupling conditions at an intersection, without imposing a fixed
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Figure 11. Plots of the level curves of the flux ρ1v1 on road 1 in
the (x, t) plane (right) and snapshots of the corresponding flux for
different times tn (left).
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Figure 12. Plots of the level curves of the flux ρ2v2 on road 2 in
the (x, t) plane (right) and snapshots of the corresponding flux for
different times tn (left).

mixture principle. The solution conserves mass and (pseudo-)momentum and addi-
tionally maximizes the total (mass) flux at an intersection. This problem has been
completely solved in the case of 1 7→ 2 (diverge) and 2 7→ 1 (merge) junctions and
we have given an example of numerical results for (the more interesting) latter case.

Of course, the algorithm allows to solve all the cases described in Section 4.
Moreover, as we already said, in principle any roundabout can be reduced to a
combination of 1 7→ 2 and 2 7→ 1 junction, see Figure 6.

Naturally, due to the strong non-linearity in the homogenized supply, solving the
optimization problem is more complicated than for a first order model, but it is still
tractable even in the more difficult case of 2 7→ 1 junction (merge). A sketch of the
optimization algorithm is given in the Appendix.

Appendix
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Figure 13. Plots of the level curves of the flux ρ3v3 on road 3
in the (x, t) plane (right) and snapshots of the corresponding flux
ρ3v3 for different times tn (left).

Algorithm for solving (27)

Begin
If w1 > w2 then

If s3(v3, 1) ≤ d1 then
q∗3 := s3(v3, 1);
β∗

1 := 1;
Else

β∗∗

1 := {β1/
d1

β1
= d2

1−β1
}; (β∗∗

1 := d1

d1+d2
)

β∗

1 := {β1/ s3(v3, β1) = d1

β1
};

If β∗

1 ≥ β∗∗

1 then
q∗3 := s3(v3, β

∗

1 );
Else

q∗3 := s3(v3, β
∗∗

1 );
β∗

1 := β∗∗

1 ;
EndIf

EndIf
Else (w1 ≤ w2)

If w1 < w2 then
If s3(v3, 0) ≤ d2 then

q∗3 := s3(v3, 0);
β∗

1 := 0;
Else

β∗∗

1 := {β1/
d1

β1
= d2

1−β1
}; (β∗∗

1 := d1

d1+d2
)

β∗

1 := {β1/ s3(v3, β1) = d2

1−β1
};

If β∗

1 ≤ β∗∗

1 then
q∗3 := s3(v3, β

∗

1 )
Else

q∗3 := s3(v3, β
∗∗

1 );
β∗

1 := β∗∗

1 ;
EndIf

EndIf
Else (w1 = w2)

β∗∗

1 := {β1/
d1

β1
= d2

1−β1
};(β∗∗

1 := d1

d1+d2
)

If s3(v3, β
∗∗

1 ) > d1

β∗∗

1

then (or s3(v3, β
∗∗

1 ) > d2

1−β∗∗

1

)

β∗

1 := β∗∗

1 ;

q∗3 := d1

β∗∗

1

; (or q∗3 := d2

1−β∗∗

1

)

Else
β∗

1 := β∗∗

1 ;
q∗3 := s3(v3, β

∗∗

1 )
EndIf

EndIf
EndIf
RETURN(q∗3 , β∗

1)
End
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