Loading [MathJax]/jax/output/SVG/jax.js

Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2

  • Received: 01 August 2006 Revised: 01 February 2007
  • Primary: 35B27, 35B40; Secondary: 35C20, 35K20, 74K30.

  • We consider a perturbed initial/boundary-value problem for the heat equation in a thick multi-structure Ωε which is the union of a domain Ω0 and a large number N of εperiodically situated thin rings with variable thickness of order ε=O(N1). The following boundary condition νuε+εαk0uε=εβgε is given on the lateral boundaries of the thin rings; here the parameters α and β are greater than or equal 1. The asymptotic analysis of this problem for different values of the parameters α and β is made as ε0. The leading terms of the asymptotic expansion for the solution are constructed, the corresponding estimates in the Sobolev space L2(0,T;H1(Ωε)) are obtained and the convergence theorem is proved with minimal conditions for the right-hand sides.

    Citation: Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk. Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2[J]. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255

    Related Papers:

    [1] Ciro D’Apice, Umberto De Maio, T. A. Mel'nyk . Asymptotic analysis of a perturbed parabolic problem in a thick junction of type 3:2:2. Networks and Heterogeneous Media, 2007, 2(2): 255-277. doi: 10.3934/nhm.2007.2.255
    [2] Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić . Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2(3): 397-423. doi: 10.3934/nhm.2007.2.397
    [3] S. E. Pastukhova . Asymptotic analysis in elasticity problems on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(3): 577-604. doi: 10.3934/nhm.2009.4.577
    [4] V. V. Zhikov, S. E. Pastukhova . Korn inequalities on thin periodic structures. Networks and Heterogeneous Media, 2009, 4(1): 153-175. doi: 10.3934/nhm.2009.4.153
    [5] Nils Svanstedt . Multiscale stochastic homogenization of monotone operators. Networks and Heterogeneous Media, 2007, 2(1): 181-192. doi: 10.3934/nhm.2007.2.181
    [6] Leonid Berlyand, Giuseppe Cardone, Yuliya Gorb, Gregory Panasenko . Asymptotic analysis of an array of closely spaced absolutely conductive inclusions. Networks and Heterogeneous Media, 2006, 1(3): 353-377. doi: 10.3934/nhm.2006.1.353
    [7] T. A. Shaposhnikova, M. N. Zubova . Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3(3): 675-689. doi: 10.3934/nhm.2008.3.675
    [8] Juraj Földes, Peter Poláčik . On asymptotically symmetric parabolic equations. Networks and Heterogeneous Media, 2012, 7(4): 673-689. doi: 10.3934/nhm.2012.7.673
    [9] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [10] Catherine Choquet, Ali Sili . Homogenization of a model of displacement with unbounded viscosity. Networks and Heterogeneous Media, 2009, 4(4): 649-666. doi: 10.3934/nhm.2009.4.649
  • We consider a perturbed initial/boundary-value problem for the heat equation in a thick multi-structure Ωε which is the union of a domain Ω0 and a large number N of εperiodically situated thin rings with variable thickness of order ε=O(N1). The following boundary condition νuε+εαk0uε=εβgε is given on the lateral boundaries of the thin rings; here the parameters α and β are greater than or equal 1. The asymptotic analysis of this problem for different values of the parameters α and β is made as ε0. The leading terms of the asymptotic expansion for the solution are constructed, the corresponding estimates in the Sobolev space L2(0,T;H1(Ωε)) are obtained and the convergence theorem is proved with minimal conditions for the right-hand sides.


  • This article has been cited by:

    1. T. A. Mel’nik, G. A. Chechkin, T. P. Chechkina, Convergence theorems for solutions and energy functionals of boundary value problems in thick multilevel junctions of a new type with perturbed neumann conditions on the boundary of thin rectangles, 2009, 159, 1072-3374, 113, 10.1007/s10958-009-9431-1
    2. Aleksandra G. Chechkina, Ciro D’Apice, Umberto De Maio, Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition, 2020, 376, 03770427, 112802, 10.1016/j.cam.2020.112802
    3. G. A. Chechkin, C. D'Apice, U. De Maio, On the rate of convergence of solutions in domain with periodic multilevel oscillating boundary, 2010, 33, 01704214, 2019, 10.1002/mma.1311
    4. T. A. Mel’nyk, Iu. A. Nakvasiuk, Homogenization of a parabolic signorini boundary value problem in a thick plane junction, 2012, 181, 1072-3374, 613, 10.1007/s10958-012-0708-4
    5. T. P. Chechkina, Averaging in Cascade Junctions with a “Wide” Transmission Domain, 2013, 190, 1072-3374, 157, 10.1007/s10958-013-1251-7
    6. Antonio Gaudiello, Olivier Guibé, Homogenization of an evolution problem with $$ L\log L$$ L log L data in a domain with oscillating boundary, 2018, 197, 0373-3114, 153, 10.1007/s10231-017-0673-0
    7. Yu. A. Kazmerchuk, T. A. Mel’nyk, Homogenization of the signorini boundary-value problem in a thick plane junction, 2009, 12, 1536-0059, 45, 10.1007/s11072-009-0058-4
    8. G.A. Chechkin, T.P. Chechkina, C. D'Apice, U. De Maio, T.A. Mel'nyk, Asymptotic analysis of a boundary-value problem in a cascade thick junction with a random transmission zone, 2009, 88, 0003-6811, 1543, 10.1080/00036810902994268
    9. T. A. Mel'nyk, Iu. A. Nakvasiuk, W. L. Wendland, Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem, 2011, 34, 01704214, 758, 10.1002/mma.1395
    10. T. A. Mel’nyk, D. Yu. Sadovyi, Homogenization of a quasilinear parabolic problem with different alternating nonlinear fourier boundary conditions in a two-level thick junction of the type 3:2:2, 2012, 63, 0041-5995, 1855, 10.1007/s11253-012-0618-0
    11. Taras A. Mel'nyk, Homogenization of a boundary-value problem with a nonlinear boundary condition in a thick junction of type 3:2:1, 2008, 31, 01704214, 1005, 10.1002/mma.951
    12. G. A. Chechkin, T. P. Chechkina, C. D’Apice, U. De Maio, T. A. Mel’nyk, Homogenization of 3D thick cascade junction with a random transmission zone periodic in one direction, 2010, 17, 1061-9208, 35, 10.1134/S1061920810010048
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3604) PDF downloads(85) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog