Loading [Contrib]/a11y/accessibility-menu.js

Mean--field control and Riccati equations

  • Received: 01 October 2014 Revised: 01 January 2015
  • Primary: 35Q93, 91A23, 82C40; Secondary: 92D25.

  • We present a control approach for large systems of interacting agents based on the Riccati equation. If the agent dynamics enjoys a strong symmetry the arising high dimensional Riccati equation is simplified and the resulting coupled system allows for a formal mean--field limit. The steady--states of the kinetic equation of Boltzmann and Fokker Planck type can be studied analytically. In case of linear dynamics and quadratic objective function the presented approach is optimal and is compared to the model predictive control approach introduced in [2].

    Citation: Michael Herty, Lorenzo Pareschi, Sonja Steffensen. Mean--field control and Riccati equations[J]. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699

    Related Papers:

    [1] Michael Herty, Lorenzo Pareschi, Sonja Steffensen . Mean--field control and Riccati equations. Networks and Heterogeneous Media, 2015, 10(3): 699-715. doi: 10.3934/nhm.2015.10.699
    [2] Nastassia Pouradier Duteil . Mean-field limit of collective dynamics with time-varying weights. Networks and Heterogeneous Media, 2022, 17(2): 129-161. doi: 10.3934/nhm.2022001
    [3] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang . Uniform stability and mean-field limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13(2): 297-322. doi: 10.3934/nhm.2018013
    [4] Martino Bardi . Explicit solutions of some linear-quadratic mean field games. Networks and Heterogeneous Media, 2012, 7(2): 243-261. doi: 10.3934/nhm.2012.7.243
    [5] András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43
    [6] Fabio Camilli, Italo Capuzzo Dolcetta, Maurizio Falcone . Preface. Networks and Heterogeneous Media, 2012, 7(2): i-ii. doi: 10.3934/nhm.2012.7.2i
    [7] Olivier Guéant . New numerical methods for mean field games with quadratic costs. Networks and Heterogeneous Media, 2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315
    [8] Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269
    [9] Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf . Sparse control of alignment models in high dimension. Networks and Heterogeneous Media, 2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647
    [10] Shengfang Yang, Huanhe Dong, Mingshuo Liu . New wave behaviors and stability analysis for magnetohydrodynamic flows. Networks and Heterogeneous Media, 2024, 19(2): 887-922. doi: 10.3934/nhm.2024040
  • We present a control approach for large systems of interacting agents based on the Riccati equation. If the agent dynamics enjoys a strong symmetry the arising high dimensional Riccati equation is simplified and the resulting coupled system allows for a formal mean--field limit. The steady--states of the kinetic equation of Boltzmann and Fokker Planck type can be studied analytically. In case of linear dynamics and quadratic objective function the presented approach is optimal and is compared to the model predictive control approach introduced in [2].


    [1] G. Albi, Kinetic Approximation, Stability and Control of Collective Behavior in Self-Organized Systems, Ph.D. thesis, Università degli Studi di Ferrara, 2013.
    [2] G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Comm. Math. Sciences, to appear, (2015).
    [3] G. Albi and L. Pareschi, Binary interaction algorithms for the simulation of flocking and swarming dynamics, Multiscale Model. Simul., 11 (2013), 1-29. doi: 10.1137/120868748
    [4] ________, Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics, Appl. Math. Lett., 26 (2013), 397-401.
    [5] G. Albi, L. Pareschi and M. Zanella, Boltzmann-type control of opinion consensus through leaders, Phil. Trans. R. Soc. A, 372 (2014), 20140138, 18pp. doi: 10.1098/rsta.2014.0138
    [6] D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for re-entrant supply chains, SIAM J. Multiscale Modeling and Simulation, 3 (2005), 782-800. doi: 10.1137/030601636
    [7] N. Bellomo, G. Ajmone Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation, Springer Briefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-7242-1
    [8] N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), 1140006, 29pp. doi: 10.1142/S0218202511400069
    [9] A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, Springer Briefs in Mathematics, Springer, New York, 2013. doi: 10.1007/978-1-4614-8508-7
    [10] A. Borzí and S. Wongkaew, Modeling and control through leadership of a refined flocking system, Math. Models Methods Appl. Sci., 25 (2015), 255-282. doi: 10.1142/S0218202515500098
    [11] L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, ESAIM: Math. Mod. Num. Anal., 43 (2009), 507-522. doi: 10.1051/m2an/2009004
    [12] R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770. doi: 10.1137/110854321
    [13] _______, On the control of moving sets: Positive and negative confinement results, SIAM J. Control Optim., 51 (2013), 380-401.
    [14] S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277. doi: 10.1007/s10955-005-5456-0
    [15] I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513-516. doi: 10.1038/nature03236
    [16] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842
    [17] P. Degond, M. Herty and J.-G. Liu, Flow on sweeping networks, Multiscale Modeling & Simulation, 12 (2014), 538-565. doi: 10.1137/130927061
    [18] P. Degond, J. Liu and C. Ringhofer, Evolution of the distribution of wealth in economic neighborhood by local nash equilibrium closure, preprint, 2013.
    [19] P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods and Applications of Analysis, 20 (2013), 89-114. doi: 10.4310/MAA.2013.v20.n2.a1
    [20] P. Degond, J.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115. doi: 10.1007/s00332-013-9185-2
    [21] P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215. doi: 10.1142/S0218202508003005
    [22] B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. A, 465 (2009), 3687-3708. doi: 10.1098/rspa.2009.0239
    [23] A. Fleig, L. Grüne and R. Guglielmi, Some results on model predictive control for the Fokker-Planck equation, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), 2014, 1203-1206.
    [24] M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Physica D, 240 (2011), 21-31. doi: 10.1016/j.physd.2010.08.003
    [25] M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control, Phil. Trans. R. Soc. A, 372 (2014), 20130400, 21pp. doi: 10.1098/rsta.2013.0400
    [26] M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20 (2014), 1123-1152. doi: 10.1051/cocv/2014009
    [27] S. Galam, Y. Gefen and Y. Shapir, Sociophysics: A new approach of sociological collective behavior, J. Math. Sociology, 9 (1982), 1-13.
    [28] J. Gómez-Serrano, C. Graham and J.-Y. Le Boudec, The bounded confidence model of opinion dynamics, Math. Models Methods Appl. Sci., 22 (2012), 1150007, 46pp. doi: 10.1142/S0218202511500072
    [29] S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435. doi: 10.3934/krm.2008.1.415
    [30] R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence, models, analysis and simulation, Journal of Artificial Societies and Social Simulation, 5 (2002), p2.
    [31] M. Herty and L. Pareschi, Fokker-planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179. doi: 10.3934/krm.2010.3.165
    [32] M. Herty and C. Ringhofer, Averaged kinetic models for flows on unstructured networks, Kinet. Relat. Models, 4 (2011), 1081-1096. doi: 10.3934/krm.2011.4.1081
    [33] _______, Feedback controls for continuous priority models in supply chain management, Comput. Methods Appl. Math., 11 (2011), 206-213.
    [34] J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260. doi: 10.1007/s11537-007-0657-8
    [35] D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets, Physica A, 391 (2012), 715-730. doi: 10.1016/j.physa.2011.08.013
    [36] P. Markowich, M. Burger and L. Caffarelli, eds., Partial differential equation models in the socio-economic sciences, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130406, 8pp. doi: 10.1098/rsta.2013.0406
    [37] D. Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems, IEEE Trans. Automat. Control, 35 (1990), 814-824. doi: 10.1109/9.57020
    [38] S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621. doi: 10.1137/120901866
    [39] G. Naldi, L. Pareschi and G. Toscani, eds., Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4946-3
    [40] L. Pareschi and G. Toscani, Interacting Multi-Agent Systems. Kinetic Equations & Monte Carlo Methods, Oxford University Press, 2013.
    [41] E. D. Sontag, Mathematical Control Theory, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4612-0577-7
    [42] G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496. doi: 10.4310/CMS.2006.v4.n3.a1
    [43] T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140. doi: 10.1016/j.physrep.2012.03.004
  • This article has been cited by:

    1. Michael Herty, Dante Kalise, 2018, Suboptimal nonlinear feedback control laws for collective dynamics, 978-1-5386-6089-8, 556, 10.1109/ICCA.2018.8444303
    2. Melanie Harms, Simone Bamberger, Eva Zerz, Michael Herty, On d-Collision-Free Dynamical Systems, 2022, 55, 24058963, 25, 10.1016/j.ifacol.2022.11.303
    3. Fuguo Xu, Qiaobin Fu, Tielong Shen, PMP-based numerical solution for mean field game problem of general nonlinear system, 2022, 146, 00051098, 110655, 10.1016/j.automatica.2022.110655
    4. M. K. Banda, M. Herty, T. Trimborn, 2020, Chapter 7, 978-3-030-50449-6, 133, 10.1007/978-3-030-50450-2_7
    5. Michael Herty, Anna Thunen, 2021, Consistent Control of a Stackelberg Game with Infinitely many Followers, 978-1-6654-3659-5, 918, 10.1109/CDC45484.2021.9682798
    6. Michael Herty, Hui Yu, 2016, Boundary stabilization of hyperbolic conservation laws using conservative finite volume schemes, 978-1-5090-1837-6, 5577, 10.1109/CDC.2016.7799126
    7. Giacomo Albi, Michael Herty, Dante Kalise, Chiara Segala, Moment-Driven Predictive Control of Mean-Field Collective Dynamics, 2022, 60, 0363-0129, 814, 10.1137/21M1391559
    8. Giacomo Albi, Emiliano Cristiani, Lorenzo Pareschi, Daniele Peri, 2020, Chapter 8, 978-3-030-50449-6, 159, 10.1007/978-3-030-50450-2_8
    9. Michael Herty, Sonja Steffensen, Anna Thünen, Multiscale control of Stackelberg games, 2022, 200, 03784754, 468, 10.1016/j.matcom.2022.04.028
    10. Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Mean-field sparse Jurdjevic–Quinn control, 2017, 27, 0218-2025, 1223, 10.1142/S0218202517400140
    11. Bertram Düring, Lorenzo Pareschi, Giuseppe Toscani, Kinetic models for optimal control of wealth inequalities, 2018, 91, 1434-6028, 10.1140/epjb/e2018-90138-1
    12. Yan Ma, Minyi Huang, Linear quadratic mean field games with a major player: The multi-scale approach, 2020, 113, 00051098, 108774, 10.1016/j.automatica.2019.108774
    13. Michael Herty, Mattia Zanella, Performance bounds for the mean-field limit of constrained dynamics, 2017, 37, 1553-5231, 2023, 10.3934/dcds.2017086
    14. Aylin Aydoğdu, Marco Caponigro, Sean McQuade, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, Emmanuel Trélat, 2017, Chapter 3, 978-3-319-49994-9, 99, 10.1007/978-3-319-49996-3_3
    15. Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, Boltzmann Games in Heterogeneous Consensus Dynamics, 2019, 175, 0022-4715, 97, 10.1007/s10955-019-02246-y
    16. Michael Herty, Lorenzo Pareschi, Sonja Steffensen, 2019, Chapter 5, 978-3-030-20296-5, 149, 10.1007/978-3-030-20297-2_5
    17. A. Medaglia, G. Colelli, L. Farina, A. Bacila, P. Bini, E. Marchioni, S. Figini, A. Pichiecchio, M. Zanella, Uncertainty quantification and control of kinetic models of tumour growth under clinical uncertainties, 2022, 141, 00207462, 103933, 10.1016/j.ijnonlinmec.2022.103933
    18. Giacomo Albi, Federica Ferrarese, Chiara Segala, 2021, Chapter 5, 978-3-030-91645-9, 97, 10.1007/978-3-030-91646-6_5
    19. Minyi Huang, Mengjie Zhou, Linear Quadratic Mean Field Games: Asymptotic Solvability and Relation to the Fixed Point Approach, 2020, 65, 0018-9286, 1397, 10.1109/TAC.2019.2919111
    20. Eva Zerz, Michael Herty, Collision-Free Dynamical Systems , 2019, 52, 24058963, 72, 10.1016/j.ifacol.2019.11.029
    21. Giacomo Albi, Michael Herty, Chiara Segala, Robust Feedback Stabilization of Interacting Multi-agent Systems Under Uncertainty, 2024, 89, 0095-4616, 10.1007/s00245-023-10078-2
    22. Xiaoqian Gong, Michael Herty, Benedetto Piccoli, Giuseppe Visconti, Crowd Dynamics: Modeling and Control of Multiagent Systems, 2023, 6, 2573-5144, 261, 10.1146/annurev-control-060822-123629
    23. Christian Fiedler, Michael Herty, Sebastian Trimpe, Mean-Field Limits for Discrete-Time Dynamical Systems via Kernel Mean Embeddings, 2023, 7, 2475-1456, 3914, 10.1109/LCSYS.2023.3341280
    24. Martin Gugat, Michael Herty, Jiehong Liu, Chiara Segala, The turnpike property for high‐dimensional interacting agent systems in discrete time, 2024, 45, 0143-2087, 2557, 10.1002/oca.3172
    25. Michael Herty, Yizhou Zhou, Exponential turnpike property for particle systems and mean-field limit, 2025, 0956-7925, 1, 10.1017/S0956792524000871
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5499) PDF downloads(221) Cited by(25)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog