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Abstract. We present a control approach for large systems of interacting

agents based on the Riccati equation. If the agent dynamics enjoys a strong
symmetry the arising high dimensional Riccati equation is simplified and the

resulting coupled system allows for a formal mean–field limit. The steady–

states of the kinetic equation of Boltzmann and Fokker Planck type can be
studied analytically. In case of linear dynamics and quadratic objective func-

tion the presented approach is optimal and is compared to the model predictive

control approach introduced in [2].

1. Introduction. Many mathematical models of self-organized systems of inter-
acting agents have been introduced in the recent literature. Representative examples
in biology, engineering, economy and sociology can be found in [7, 8, 14, 15, 16, 19,
27, 42, 32, 33, 6, 31]. We refer the reader to the recent surveys in [38, 39, 43], to
the book [40] and the collection of papers [36] for an extensive introduction to the
subject.

Most of the models start by describing a microscopic agents dynamic on the
basis of a system of ordinary differential equations. Due to the possibly large num-
ber of interacting agents a mesoscopic and even macroscopic description can be
derived to study the qualitative behavior as well as to present efficient numeri-
cal algorithms. The mesoscopic and macroscopic models are partial differential
equations of kinetic and fluid–dynamic type, respectively. The relation between
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the microscopic dynamics and the partial differential equations through the cor-
responding kinetic and hydrodynamic description has been studied for example in
[4, 6, 11, 19, 21, 24, 28, 29, 32, 31, 35, 42, 17].

Control mechanisms of self-organized systems have been studied for macroscopic
models in [12, 13] and for kinetic and hydrodynamic models in [4, 22, 33]. Re-
cently, the control of emergent behaviors in multiagent systems has been studied
in [15, 26, 25] where the authors develop the idea of sparse optimization at the
microscopic and kinetic level. We refer also to [9] for general results concerning
the control of mean-field systems. A different approach has been proposed in [20]
where by time–scale separation local mean–field games enter a macroscopic dynam-
ics. In [2] a control problem for an opinion formation model has been studied,
where the control is obtained by an instantaneous control algorithm. This is a
special case of model predictive control strategy which allows to explicitly express
the control in terms of the state dynamics and to derive the corresponding kinetic
description. Model predictive control for Fokker-Planck equations has been applied
recently also in [23]. In the recent papers [20, 18, 2] on control strategies for the
microscopic particle interactions typically the control strategy is obtained solving
an auxiliary problem (implicit or explicit) and the resulting expression for the con-
trol is substituted back into the original dynamics leading to a possibly modified
and new dynamics. The later is studied using either a Boltzmann or a macroscopic
approximation. This requires the action of the control to be local in time. This is
an approximation to the optimal control that in general is obtained solving back-
wards in time the corresponding Hamilton–Jacobi Bellmann equation (HJB). The
limit for large number of agents of the (HJB) equation is studied in [34] for Nash
games.

Here, we want to combine the advantage in terms of computational costs and
analysis of longtime behavior of kinetic and macroscopic equations for controlled
dynamics where the control is not localized in time. The applied control still
contains information on the backwards dynamics. In general, it is not possible to
obtain explicit formulas in this case.

More precisely, we investigate problems where the collective behavior corresponds
to the process of alignment, like in the opinion consensus dynamic [28, 42], in a
constrained setting. In the case of a single population, the external intervention
is introduced as an additional control subject to certain bounds, representing the
limitations, in terms of economic resources, media availability, etc., of the opinion
maker [2, 26, 25]. In the presence of multiple populations the control can be intro-
duced as hierarchical leaderships where one population of leaders aims at controlling
the populations of followers through a suitable cost function which characterizes the
leaders’ strategy in trying to influence the followers [5, 10].

We start the investigation using a simplified constrained alignment model with
a single population. In order to decrease the complexity of the model when the
number of agents is large, we follow the idea to rely on a kinetic description for the
fully controlled process extending the existing approach [2] where the control action
is only local. To this end the backwards dynamics have to be analyzed and restated
in terms where a kinetic description is applicable. We derive the corresponding
mean-field and Boltzmann description together with a Riccati equation. Further,
we derive the Fokker-Planck model in the so called quasi-invariant opinion limit and
show that it corresponds to the mean-field limit of the system. Several numerical
results confirm the robustness of the present approach.
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2. Constrained models for alignment dynamics. The starting point is a gen-
eral framework which embeds several types of models describing the process of
alignment. We consider the evolution of N agents, each of which is identified by
its state pi = pi(t) ∈ Rd, d ≥ 1, at time t. The state pi may account for opin-
ion, wealth, velocity, or other attributes of agent i. Each agent adjusts its state
according to the states of his neighbors [38, 40]

dpi
dt

=
α

N

N∑
j=1

aij(pj − pi), aij ≥ 0. (1)

Here, α > 0 is a scaling parameter and the coefficients aij , named communication
rates, quantify the way the agents influence each other, independently of their total
number N . In particular, the aij ’s themselves are allowed to depend on the states of
the agents i and j through a given function Φ(pi, pj). Most models for self-organized
dynamics in social, biological and physical science assume that the dependence of
aij decreases as a function of the distance |pi−pj |, where | · | is a problem-dependent
metric, reflecting the common tendency to align with those who think or act alike.

The model (1) is also known as Krause–Hegselmann model and has been studied
for example in [30].

In the case where the individuals are assumed to freely interact, one can distin-
guish between two main classes of self-alignment models. In the global case, the
rules of engagement are such that every agent is influenced by every other agent,
aij > ε > 0. The dynamics in this case is driven by global interactions. Global in-
teractions which are sufficiently strong lead to unconditional consensus in the sense
that all initial configurations of agents concentrate around an emerging limit state
pi(t) → p∞. In more realistic models, however, interactions between agents are
limited to their local neighbors, like in bounded confidence models in the case of
opinion dynamics [28]. The behavior of local models where some of the aij may
vanish, is more difficult to analyze. In the general scenario for such local models,
agents tend to concentrate into one or more separate clusters. The particular case
in which agents concentrate into one cluster, that is the emergence of a consensus,
depends on the propagation of uniform connectivity of the underling (weighted)
graph associated with the adjacency matrix {aij} [38].

Different to the classical approach, we are interested in such problems in the
constrained case. The general setting consists of a control problem where both the
evolution of the state and the objective functional of each agent are influenced by
the collective behavior of all other agents. In our setting agents obey the dynamical
system

dpi
dt

=
α

N

N∑
j=1

aij(pj − pi) + u, aij ≥ 0, (2)

where the control u = u(t) is given as the solution of the following optimal control
problem

u = argmin {J(u, p1, . . . , pN )} , (3)

for J being a suitable objective functional.
This can be used to study the exterior influence of the system dynamics to enforce

emergence of non spontaneous desired asymptotic states. Classical examples are
given by persuading voters to vote for a specific candidate, by influencing buyers
towards a given good or asset or by forcing animals to follow a specific path or to
reach a desired zone.
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In order to derive non–local optimal controls we simplify the problem first to
allow for explicit computations. In particular, we focus on the case where the
desired state is a solution to the alignment dynamics in the un-controlled case, i.e.,
u ≡ 0. Then, the problem (3) corresponds to a control action which under minimal
costs drives the system towards the desired state for arbitrary initial configuration of
the agents. This approach may also be viewed as a stabilization action of the control
since for a suitable cost functional J any initial perturbation of the desired state
will be damped over time. The extension of the presented approach to problems
with general desired states and nonlinear dynamics are detailed in Section 5.

To exemplify, let us consider the dynamic of N agents where each agent has an
opinion wi = wi(t) ∈ I, I = [−1, 1], i = 1, . . . , N and this opinion can change over
time according to

dwi
dt

=
1

N

N∑
j=1

P (wi, wj)(wj − wi) + u, wi(0) = w0i, (4)

where the control u = u(t) is given by the minimization of the cost functional over
a certain time horizon T

u = argmin

∫ T

0

1

N

N∑
j=1

(
1

2
(wj − wd)2 +

ν

2
u2

)
ds. (5)

In the formulation (5) the value wd is the desired state and ν > 0 is a regularization
parameter. Typically, the function P (w, v) is such that 0 ≤ P (w, v) ≤ 1 and
represents a measure of the inclination of the agents to change their opinion.

As already outlined, we are interested in the study of the behavior of the system
where the number of agents is large, namely in the limit N → ∞. To this goal we
simplify problem (4) by assuming further

P (w, v) = P with 0 < P < 1 and ν > 0. (6)

Under assumption (6) problem (4) may be rewritten as

d

dt
~w = A~w +Bu, A ∈ Rn×n, Aij =

(
ao i 6= j
ad i = j

)
, B ∈ RN×1 (7)

where ~w = (wi)
N
i=1 and the cost functional in problem (5) is given by

J :=

∫ T

0

(
1

2
(~w − ~wd)

TM(~w − ~wd) +
ν

2
u2

)
ds, M ∈ RN×N . (8)

The coefficients are

ao =
P

N
, ad = P

1−N
N

, Bi,1 = 1, Mij =
1

N
δij , (~wd)i = wd, (9)

where δij denotes the Kronecker Delta.
We are interested in the stabilization of the given dynamics (4) for a given desired

state ~wd as solution to the uncontrolled dynamics. According to equation (9) and
equation (7) we obtain

(A~wd)i = wd ((N − 1)ao + ad) = 0.

Therefore, in the uncontrolled case and for initial data wi(0) = wd we obtain wi(t) =
wd for all i = 1, . . . , N. Thus, we assume in the following that the desired state wd
is constant

wd = constant. (10)
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Perturbations of the stable state wd may be due to initial conditions. Under as-
sumption (10) we may rewrite problem (7)–(8) introducing ~x = ~w − ~wd

min

∫ T

0

1

2
~x TM~x +

ν

2
u2ds subject to

d

dt
~x = A~x +Bu, ~x (0) = ~w (0)− ~wd(0).

(11)
The minimization problem (11) is a convex quadratic problem since M is positive

definite. Therefore, Pontryagins maximum principle is necessary and sufficient for
optimality. Compared with general problems of this type the microscopic modeling
introduces symmetry in the dynamics which is reflected in the special structure of
the matrix A. Under suitable regularity assumptions on the solution it is known
that the optimal control is given by

u(t) = −1

ν
BTK(t)~x (t) (12)

where K(t) ∈ RN×N fulfills the Riccati equation

− d

dt
K = KA+ATK − 1

ν
KBBTK +M, K(T ) = 0 ∈ RN×N . (13)

Hence, the controlled dynamics are given by (13) and

d

dt
~x = A~x − 1

ν
BBTK(t)~x , ~w = ~x + ~wd. (14)

We are thus interested in considering the limit when N →∞. To this aim we need
to analyze the structure of BBTK(t) and rewrite the previous equations in terms
of (binary) particle interactions.

We discretize in time using a discrete time–step ∆t and denote by ~x n = ~x (tn)
for n = 1, . . . , nT and such that T = nT∆t. The dynamics are then given by

~x n = ~x n−1 + ∆t

(
A~x n−1 − 1

ν
BBTKn−1~x n−1

)
(15)

and equation (13) yields

Kn−1 = Kn + ∆t

(
KnA+AT (Kn)− 1

ν
KnBBTKn +M

)
, KnT = 0. (16)

For the discrete dynamics (16) we have the following result.

Proposition 1 (Structure of BBTKn). Consider the iteration (16) for n = 0, . . . ,
nT and assume the coefficients of A,B and M are given by (9). Then, for any n
the term (BBTKn)ij is independent of i and j, i.e.,

(BBTKn)ij = Kn

Proof. Note that (BBT )ij = 1 for all i, j independent of n and (BBTM)ij = 1
N for

all i, j. Next, we show that Kn has a similar structure as A, i.e., for all n we have

Kn =

(
kno i 6= j
knd i = j

)
. This is clearly fulfilled for n = nT . Then by induction from n
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to n− 1 :

R := (KnBBTKn)ij = ((N − 1)kno + knd )
2 ∀i, j

Kn−1
ij = Kn

ij +
∆t

N
δij + ∆t

(
N∑
m=1

Kn
imAmj +AmiK

n
mj

)
− ∆t

ν
R

= −∆t

ν
R+

kno + ∆t (2(N − 2)kno ao + 2kno ad + 2knd ao) i 6= j

knd + ∆t
N + ∆t (2(N − 1)kno ao + 2knd ad) i = j


This proves that Kn has the same structure as A, but with time–dependent coeffi-
cients. A simple computation yields that(

BBTKn
)
ij

= (N − 1)kno + knd =: Kn.

This ends the proof.
We rewrite the particle dynamics using the new variable Kn. As a consequence

of the proof of Proposition 1 we obtain

Kn−1 = (N − 1)kn−1
o + kn−1

d

= −N∆t

ν
(Kn)2 +Kn +

∆t

N
+ 2∆tadKn + 2∆t(N − 1)aoKn

Kn−1 = Kn −N∆t

ν
(Kn)2 +

∆t

N
(17)

The previous dynamics is an explicit (backwards) Euler discretization of the ordi-
nary differential equation

− d

dt
K(t) =

1

N
− N

ν
K2(t), K(T ) = 0. (18)

The above modified Riccati equation allows for an explicit solution given by

K(t) =

√
ν

N
tanh

(
T − t√
ν

)
.

The time evolution of K(t) is depicted in Figure 1.
Summarizing, the N particles model is given by equation (17) and (15), which

written for each component i reads

xni = xn−1
i +

∆t

N

N∑
j=1

P (xn−1
j − xn−1

i )− ∆t

ν
Kn−1

N∑
j=1

xn−1
j , (19)

where xi ∈ Id = [−1 − wd, 1 − wd], ∀ i. Several possibilities to derive a kinetic
equation for a particle density f(x, t) for the coupled system (17) and (19) exist
and will be explored in the following sections.

Remark 1. Proposition 1 yields the structure of K after discretization. It is also
possible to prove directly that if K(t) ∈ RN×N is a solution to equation (13), then
we have for (i, j) with i, j = 1, . . . , N

(BBTK(t))i,j = K(t),

where K(t) ∈ R is the solution to equation (18): Obviously, we have at terminal time
K(T ) = 0. We have (BBT )i,j = 1, (BBTBBT )i,j = N, A = AT and BBTA = 0.
Multiplying equation (13) by BBT we obtain

− d

dt

(
BBTK

)
= BBTKA+ 0− 1

ν
BBTK BBT K +

1

N
BBT .
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Figure 1. Analytical (red) and numerical solution (blue) of equa-
tion (18) for ν = 1

10 and N = 2 obtained by equation (17).

Hence, BBTK(t) = K(t)BBT is the solution to equation (13) provided that K
fulfills

− d

dt
K = −1

ν
NK2 +

1

N
.

The previous equation coincides with equation (18).

3. Mean-field Riccati description. We are interested in a description of the
meanfield corresponding to the controlled dynamics (19) and (17) for large number
of agents. First, we consider the full dynamics (19) written in differential form.
In order to obtain the limiting equation we introduce the new re–scaled Riccati
variable

k(t) := NK(t) ≡
√
ν tanh

(
T − t√
ν

)
. (20)

The equivalent system to (19) reads then

dxi(t)

dt
=

1

N

N∑
j=1

P (xj(t)− xi(t))−
1

νN
k(t)

N∑
j=1

xj(t),

(21)

−dk(t)

dt
= 1− 1

ν
k2(t).

To formulate the evolution of the probability density f(x, t) with
∫
f(x, t)dx = 1

we introduce the empirical measure f(x, t) of unit mass for each time t as

f(x, t) :=
1

N

N∑
i=1

δ(x− xi(t)),
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we obtain in weak form for φ = φ(x) sufficiently smooth

∂t

∫
Id
φ(x)f(x, t)dx =

1

N2

∑
i,j

(
φx(xi)P (xj − xi)−

k(t)

ν
φx(xi)xj

)
=

∫
Id

∫
Id
Pφx(x)(y − x)f(x, t)f(y, t)dxdy

− k(t)

ν

∫
Id

∫
Id
φx(x)yf(x, t)f(y, t)dxdy.

Hence, the formal limiting equation for the evolution of the probability density
f(x, t) on t ∈ [0, T ] is given by the equation

∂tf(x, t) + ∂x

(∫
Id
P (y − x)f(x, t)f(y, t)dy

)
− ∂x

(
1√
ν

tanh

(
T − t√
ν

)∫
Id
yf(y, t)f(x, t)dy

)
= 0,

(22)

where we replaced k(t) by its analytical solution.

3.1. Evolution of moments. We consider moments of equation (22) by looking
at the average deviation from the desired opinion. This is measured by m(t) =∫
xf(x, t)dx and we obtain

d

dt
m(t) = −k(t)

ν
m(t) = − 1√

ν
tanh

(
T − t√
ν

)
m(t). (23)

The previous ordinary differential equation has the solution for t ∈ [0, T ] as

m(t) =
m(0)

cosh
(
T√
ν

) cosh

(
T − t√
ν

)
, (24)

with initial data m(0). For T >> 1 sufficiently large we observe that m(t) decays
exponentially fast to m(0)/cosh(T/

√
ν). This latter term tends to zero for T →

∞. The convergence rate is 1/
√
ν where small values of ν correspond to a strong

influence of the cost functional.
The second order moment E(t) =

∫
1
2x

2f(x, t)dx fulfills the following equation

d

dt
E(t) = P

(
m2(t)− 2E(t)

)
− k(t)√

ν
m2(t).

From the previous computations we observe that m(t) is bounded for T suffi-
ciently large by 2m(0) exp(−t/

√
ν). Therefore, also E(t) tends to zero as t tends

to infinity at rate 2P provided that P > 0 and T is sufficiently large. As a conse-
quence, the large time behavior of the solution is the steady–state f∞(x) = δ0(x).
Hence, the average and the individual deviation from the desired opinion wd tends
to zero using the optimal control provided that T >> 1.

Proposition 2 (Long–term behavior). Assume T >> 1 and let f0(x) be some
initial probability distribution of opinions. Let f be the solution to equation (22).
Then, the average opinion m(t) =

∫
xf(x, t)dx and the second order moment E(t) =∫

x2f(x, t)dx decay exponentially fast to zero, i.e., f → f∞ = δ(x).

Remark 2. Due to the linear transformation between x and w introduced in prob-
lem (11) we also obtain convergence for the original dynamics (4). Consider the
associated kinetic equation in F (w, t) to problem (4) under assumptions (6) and
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(10). Then, for any initial data F (w, 0) we obtain convergence for T sufficiently
large towards F∞(w) = δ(w − wd).

3.2. Comparison with instantaneous control approaches. We may compare
the resulting control action with the instantaneous control approach in [2, Section
4]. In the Fokker–Planck equation therein we obtain an equation for the probability

density f̃ as

∂tf̃ + ∂x

(∫
Id
P (y − x)f̃(x, t)f̃(y, t)dy

)
−

(25)

∂x

(
1

κ

∫
Id

x+ y

2
f̃(y, t)f̃(x, t)dy

)
= 0,

where κ = ν/ε is a scaled weight of the control and ε is the scaling of time, i.e.,
t′ = εt. The instantaneous control is independent of the current time t and the
terminal time T . The Riccati control of equation (21) acts only on the average
deviation from the desired opinion, i.e.,

∫
yf(y, t)dy, compared with an action on

the average opinion
∫

(x+ y)f(y)dy/2 in the other case. The corresponding average

opinion m̃(t) =
∫
xf̃(x, t)dx fulfills

d

dt
m̃(t) = − 4

κ
m̃(t). (26)

In the derivation of [2] the scaling ε corresponds to a discrete time–step ∆t. Es-
timating the solution m to equation (23) by 2m(0) exp(−t/

√
ν) we observe that

the relation of the rates between instantaneous and Riccati are −4∆t/ν and 2/
√
ν,

respectively. This implies that the action of the instantaneous control is weighted
by ∆t compared with the Riccati based control. We will exemplify this behavior in
the numerical results where we simulate both control strategies on the same time–
scale. Note that in the case ν → ∞ both kinetic equations coincide yielding the
uncontrolled systems dynamics.

4. Boltzmann-Riccati description. In this section we discuss an approximation
of equations (19) and (17) as binary interaction model. This is motivated by the
fact that exchange of opinions is often considered as a binary process [11, 28, 42]
and that, as shown in [3], this permits to obtain efficient numerical simulations
algorithms for the original dynamic.

In order to derive the corresponding Boltzmann description we proceed as follows.
Consider the discretized dynamics (17) and (19) and use as before k = NK to obtain

kn−1 = kn − ∆t

ν
(kn−1)2 + ∆t,

xni = xn−1
i +

∆t

N

N∑
j=1

P (xn−1
j − xn−1

i )− ∆t

ν
kn−1 1

N

N∑
j=1

xn−1
j .

Now, we consider two (out of N) agents i and j with states xi and xj and post
interaction states x∗i and x∗j , respectively. We propose as interaction mechanism
the following relation involving only two agents i and j as well as the control action
kn

x∗i = (1− τP )xi +
(
τP − τ

ν
kn−1

)
xj ,

x∗j = (1− τP )xj +
(
τP − τ

ν
kn−1

)
xi,
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kn−1 = kn − ∆t

ν
(kn−1)2 + ∆t.

Here, τ = ∆t is the interaction strength and we let the control act only on the other
agent. If we let the control act on both particles then a similar term as in Section
3.2 is obtained, i.e., in the corresponding equation the control action is applied to
the average of the opinions.

Let us briefly sketch the derivation of the Boltzmann model [40]. For a rate γ we
assume that there are γ∆t interactions within the time interval (tn−1, tn−1 + ∆t).
Hence, the probability to change from any state X = (x1, . . . , xN ) to any state
Y = (y1, . . . , yN ) within ∆t is given by

P(Y,X) =(1− γ∆t)δ(Y −X)

+
γ∆t

N(N − 1)

N∑
i,j=1, i 6=j

δ(yi − x∗i )δ(yj − x∗j ) N∏
m=1,m 6=i,j

δ(ym − xm)

 ,

(27)

where x∗i and x∗j are defined above and dependent on xi and xj . Clearly,∫
P(Y,X)dY = 1

so that P is a probability distribution in Y. The Boltzmann equation for f(X, t) is
given by

f(X, t+ ∆t) =

∫
P(X,Y )f(Y, t)dY. (28)

If at time t we have
∫
f(X, t)dX = 1 we obtain due to the property of P, that∫

f(X, t + ∆t)dX = 1. Therefore, f remains a probability distribution in the full
space X. Under the chaos assumption we may decompose

f(X, t) =

N∏
i=1

f(xi, t).

Upon integration against dx2 . . . dxn and renaming x1 to x, we obtain the dynamics
of the single particle distribution f(x, t). Carrying out the integration we obtain for
a sufficiently smooth test function φ(x) the weak form of the Boltzmann-Riccati
system

d

dt

∫
Id
φ(x)f(x, t)dx =

2γ

N

∫
Id

∫
Id

(φ(x∗)− φ(x)) f(x, t)f(y, t)dxdy,

− dk(t)

dt
= 1− 1

ν
k2(t), k(T ) = 0.

(29)

Next, we determine an interaction rate γ such that (29) can be approximated
by the corresponding Vlasov–Fokker–Planck model and show that this coincides
with the mean field model (22). This asymptotic procedure is usually referred to
as quasi-invariant opinion limit, we refer to [40, 42] for more details and here we
report directly the result. Using Taylor expansion of the test function at state x we
obtain

φ(x∗)− φ(x) = φx(x)
(
τP (y − x) +

τ

ν
k(t)y

)
+O(τ2).
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Substituting the above expression in (29) in strong form we get

∂tf(x, t) +
2γ

N
τ∂x

((∫
Id
P (y − x)f(x, t)f(y, t)dy

)
−
∫
Id

1

ν
k(t)yf(y)f(x)dy

)
= O(τ2)

2γ

N
.

(30)

Hence, if we scale

γ =
N

2τ
and let τ → 0 (and N → ∞ such that γ = 1) we formally obtain again the
strong form of the kinetic equation (22). Since τ = ∆t, this scaling corresponds
to infinitesimal time scales for the discrete particle dynamics. Note that k(t) =
NK =

√
ν tanh ((T − t)/

√
ν) is independent of N and therefore the previous limit

is well–defined even in the limit N →∞.

5. Extensions of the present approach. The presented approach may be ex-
tended to various other problems. We state some of the possible extensions below.

• The Riccati equation can only be derived in the case of linear dynamics and
quadratic objective functions leading to strong assumptions on the underlying
dynamics as present for example in assumption (6) and (10). In case of a
nonlinear function P (w, v) the feedback linearization [41, Definition 5.3.2]
may be used, see also [41] for more details. Consider the general problem (4)
and (5) and a given state wd. Then, we linearize P (w, v)(w − v) at (wd, wd)
to get

P (w, v)(w − v) = P (wd, wd)(w − wd)− P (wd, wd)(v − wd) + . . .

where the dots denote higher order terms. This leads to the approximate
dynamics

dwi
dt

=
1

N

N∑
j=1

P (wd, wd)(wj − wi) + u, wi(0) = w0i. (31)

Note that, the last equation is used for determining the control law only, but
not for the agents interaction where the full dynamic (4) is solved. The deriva-
tion of the mean-field and Boltzmann Riccati descriptions follow straightfor-
wardly and we omit the details.

• Backstepping can be employed if the dependence on the control is nonlinear
in the system dynamics, e.g., if P in equation (4) additionally depends on
the control variable u as P = P (wi, wj , u). Then, backstepping control intro-
duces an artificial new variable q and replaces P = P (wi, wj , q) and adds the
additional equation

dq

dt
= u.

This changes the action of u to be an integral action, however, under general
assumptions it can be shown that stabilization of the original and the extended
system are equivalent. We refer to [41] for a general discussion.

• If we need to treat time–dependent desired states wd = wd(t), then an ap-
proach similar to [2] may be used. This approach is called model–predictive
control [37]. The time–horizon will be split into a finite number of slices where
on each slice one assumes that wd is constant. Then, the obtained control is
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applied to the dynamics on this time slice only. When switching between
different slices the initial position will be updated to accommodate for the
changing desired state and the procedure is reapplied.

• Terminal costs may be added to the objective functional J to measure mis-
match at time T and prevent end–time–effects in the control as for example
present now since u(T ) = 0. Provided we have symmetric terminal cost of the
type (c/2)~x T~x , the terminal condition for the evolution of K in equation (13)
is modified to K(T ) = c.

• The problem discussed in Section 2 and used to illustrate the control ap-
proaches has a very particular structure. However, it also part of second order
alignment models as for example Cucker–Smale type models. For a discussion
of general second–order flocking models we refer to [38]. The prototype of
such models are agents having two states (xi, vi) where xi typically denotes
the position and vi the velocity. The resulting model is the given by

ẋi = vi and v̇i =
1

N

N∑
j=1

Ha(xi, xj)(vj − vi) + u.

In the Cucker–Smale model the function Ha fulfills Ha(x, y) 6= Ha(y, x). As-
sume that the objective function only depends on (vi)

N
i=1 and some desired

state vd but not on (xi)
N
i=1. Then, the introduced derivation of Riccati based

control can be applied by considering the dynamics in vi only treating xi as a
parameter. Thus obtaining a Riccati feedback control with parameter depen-
dent function P . In the framework of model predictive controls this procedure
has been applied in [1, Chapter 4.7.2] and [10].

6. Numerical results. In this section we report some numerical test obtained by
solving the kinetic equation (22). In the numerical simulations we use a Monte Carlo
methods for the corresponding kinetic model as described in [40, Chapter 4]. In
order to efficiently simulate equation (22) we consider the derivation using binary
interactions leading to the equivalent equation (30) provided that γ = N/(2τ).
Equation (30) is obtained from the weak form of the Boltzmann equation (29)
repeated here for convenience

∂t

∫
Id
φ(x)f(x, t)dx =

2γ

N

∫
Id

∫
Id

(φ(x∗)− φ(x)) f(x, t)f(y, t)dxdy,

x∗ = (1− τP )x+ (τP − τ

ν
k(t))y.

(32)

Using the definition of γ we rewrite the equation as

∂t

∫
Id
φ(x)f(x, t)dx =

1

τ

(∫
Id

∫
Id
φ(x∗)f(x, t)f(y, t)dxdy −

∫
Id
φ(x)f(x, t)dx

)
.

(33)

Hence, in strong form equation (32) is equivalent to

∂tf(x, t) =
1

τ

(
Q+(f, f)(x, t)− f(x, t)

)
, (34)
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where the gain term of the interaction operator is defined by
∫
φ(x)Q+(f, f)dx :=∫ ∫

φ(x∗)f(x, t)f(y, t)dxdy. An explicit forward Euler discretization in time of equa-
tion (34) with time–step ∆t and by denoting f(x, tn) = fn(x) for tn = n ∆t gives

fn+1(x) =

(
1− ∆t

τ

)
fn(x) +

∆t

τ
Q+(fn, fn)(x, tn).

We note that Q+ ≥ 0 is also a probability density. Therefore, the previous formula-
tion allows for a probabilistic interpretation for any 0 < ∆t ≤ τ . We sample f0(x)
by a pointwise measure with discrete states x0

i . Then, the change of state for the
discrete sample occurs with probability ∆t/τ and is described by the probability P
given in equation (27). For any fixed xni the new state xn+1

i is obtained by eval-
uation of the interactions described in x∗i and x∗j . This implies at each time–step
to randomly select two particles (xi, xj) and perform a single interaction on both
of them. A simulation for a stochastic initial condition and different values of ν

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Figure 2. Numerical simulation of f given by equation (30) for
an initial condition (blue) up to terminal time T = 5 for ν = 100
(red) and ν = 1 (green). The simulation uses N = 5000 particles.

is depicted in Figure 2. As expected the convergence depends on the control pa-
rameter ν where large values of ν correspond to the uncontrolled case. Due to the
decay in second moment E, the solution in both cases (controlled and uncontrolled)
converges to a Dirac distribution, however, in the uncontrolled case it concentrates
at the mean of the initial distribution compared with the controlled case where
convergence towards x = 0 is observed. The convergence of m(t) and E(t) and its
dependence on ν is shown in Figure 3. Therein, we observe the expected exponential
decay with rate depending on

√
ν.

Next we compare the results with a Monte Carlo simulation of the model predic-
tive approach described by equation (25). Here, we choose κ = ν and set wd = 0 to
present the convergence of m(t) and E(t) in Figure 4. Compared with the Riccati
based approach the expected rate using the same parameters is smaller since the
control in the model predictive framework of [2] acts on a different time scale. For
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Figure 3. Numerical simulation of f given by equation (30) for
an initial condition up to terminal time T = 5 for different values
of ν = 100, ν = 10, ν = 1 and ν = 0.1 in the colors red, green,
yellow and black. The simulation uses N = 5000 particles. Left:
Time evolution of the mean m(t). Right: Time evolution of the
second moment E(t). All plots are in log−scale in y.

wd = 0 the control obtained in [2, Equation 3.6] at any binary interaction between
particle i and j at time t is given by

ũ(t) = −1

2

(∆t)2

κ+ (∆t)2
(xi(t) + xj(t)) ,

whereas in the present approach the control is given by

u(t) = −∆t

κ
k(t)xi(t).

The associated cost in objective functional is given by
∫ T

0
ν
2 ũ

2ds and
∫ T

0
ν
2u

2ds,
respectively. The total objective function includes the additional term

1

2

∫ N∑
i=1

x2
i (s)ds

for both cases. We presented for varying ν the total control costs associated with
the simulations for Figures 3 and 4. The results are given in Table 1. The costs of
control using the model-predictive framework in [2] scales as ≈ 1/ν and compared
with the approach based on Riccati equations. However, the latter costs scale
like tanh((T − t)/ν). Hence, even if both control strategies converge the Riccati
approach yields a lower value of the objective functional.

7. Conclusions. We derived a control approach for large systems of interacting
multi–agents based on the Riccati equation. We investigated problems where the
collective behavior corresponds to the process of alignment, like in the opinion con-
sensus dynamic, in a constrained setting. In contrast to [2] where an instantaneous
control strategy has been used, here we derived mean field and Boltzmann descrip-
tion when the control is not localized in time. In order to do this we restrict
our analysis to linear agent interactions and derived the corresponding kinetic de-
scriptions together with a Riccati equation. Extensions of the method to more
general nonlinear interactions are also discussed. Several numerical results confirm
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Figure 4. Numerical simulation of f given by equation (25) for
an initial condition up to terminal time T = 5 for different values
of ν = 100, ν = 10, ν = 1 and ν = 0.1 in the colors red, green,
yellow and black. The simulation uses N = 5000 particles. Left:
Time evolution of the mean m(t). Right: Time evolution of the
second moment E(t). All plots are in log−scale in y. Compared
with Figure 3 the y-axis ranges here only to 10−0.5.

ν Riccati (control) Riccati (total) MPC (control) MPC (total)
100.00 0.00 445.45 0.00 515.57
10.00 0.00 201.58 0.00 503.53
1.00 0.04 59.21 0.04 454.18
0.10 0.14 20.95 0.14 189.48

Table 1. Values of the objective functional (8) denoted by (total)
for the control action based on the Riccati equation (12) and the
model predictive control framework (MPC) presented in [2]. The
part of the cost related to the control part is denoted by (control)
in both cases. Other parameters are as in results associated with
Figures 4 and Figure 1, respectively.

the optimality of the present approach for linear dynamics and quadratic objective
functionals.
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