Globally stable quasistatic evolution in plasticity with softening

  • Received: 01 February 2008
  • Primary: 74C05; Secondary: 28A33, 74G65, 49J45, 35Q72.

  • We study a relaxed formulation of the quasistatic evolution problem in the context of small strain associative elastoplasticity with softening. The relaxation takes place in spaces of generalized Young measures. The notion of solution is characterized by the following properties: global stability at each time and energy balance on each time interval. An example developed in detail compares the solutions obtained by this method with the ones provided by a vanishing viscosity approximation, and shows that only the latter capture a decreasing branch in the stress-strain response.

    Citation: G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening[J]. Networks and Heterogeneous Media, 2008, 3(3): 567-614. doi: 10.3934/nhm.2008.3.567

    Related Papers:

    [1] G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini . Globally stable quasistatic evolution in plasticity with softening. Networks and Heterogeneous Media, 2008, 3(3): 567-614. doi: 10.3934/nhm.2008.3.567
    [2] Gianni Dal Maso, Francesco Solombrino . Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks and Heterogeneous Media, 2010, 5(1): 97-132. doi: 10.3934/nhm.2010.5.97
    [3] Alice Fiaschi . Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks and Heterogeneous Media, 2010, 5(2): 257-298. doi: 10.3934/nhm.2010.5.257
    [4] Antonio DeSimone, Martin Kružík . Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8(2): 481-499. doi: 10.3934/nhm.2013.8.481
    [5] G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini . Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2(1): 1-36. doi: 10.3934/nhm.2007.2.1
    [6] Gilles Pijaudier-Cabot, David Grégoire . A review of non local continuum damage: Modelling of failure?. Networks and Heterogeneous Media, 2014, 9(4): 575-597. doi: 10.3934/nhm.2014.9.575
    [7] Antonio DeSimone, Natalie Grunewald, Felix Otto . A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2(2): 211-225. doi: 10.3934/nhm.2007.2.211
    [8] Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel . Handling congestion in crowd motion modeling. Networks and Heterogeneous Media, 2011, 6(3): 485-519. doi: 10.3934/nhm.2011.6.485
    [9] Peter W. Bates, Yu Liang, Alexander W. Shingleton . Growth regulation and the insulin signaling pathway. Networks and Heterogeneous Media, 2013, 8(1): 65-78. doi: 10.3934/nhm.2013.8.65
    [10] Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli . A rate-independent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6(1): 145-165. doi: 10.3934/nhm.2011.6.145
  • We study a relaxed formulation of the quasistatic evolution problem in the context of small strain associative elastoplasticity with softening. The relaxation takes place in spaces of generalized Young measures. The notion of solution is characterized by the following properties: global stability at each time and energy balance on each time interval. An example developed in detail compares the solutions obtained by this method with the ones provided by a vanishing viscosity approximation, and shows that only the latter capture a decreasing branch in the stress-strain response.


  • This article has been cited by:

    1. Gianpietro Del Piero, The variational structure of classical plasticity, 2018, 6, 2325-3444, 137, 10.2140/memocs.2018.6.137
    2. GIANNI DAL MASO, ANTONIO DESIMONE, QUASISTATIC EVOLUTION FOR CAM-CLAY PLASTICITY: EXAMPLES OF SPATIALLY HOMOGENEOUS SOLUTIONS, 2009, 19, 0218-2025, 1643, 10.1142/S0218202509003942
    3. G. A. Francfort, U. Stefanelli, Quasi-Static Evolution for the Armstrong-Frederick Hardening-Plasticity Model, 2013, 1687-1200, 10.1093/amrx/abt001
    4. Alexander Mielke, Tomàš Roubíček, 2015, Chapter 4, 978-1-4939-2705-0, 235, 10.1007/978-1-4939-2706-7_4
    5. Alice Fiaschi, Quasistatic evolution for a phase-transition model: a Young measure approach, 2011, 34, 09367195, 124, 10.1002/gamm.201110020
    6. Tomáš Roubíček, On certain convex compactifications for relaxation in evolution problems, 2011, 4, 1937-1179, 467, 10.3934/dcdss.2011.4.467
    7. Alice Fiaschi, Young-measure quasi-static damage evolution: The nonconvex and the brittle cases, 2013, 6, 1937-1179, 17, 10.3934/dcdss.2013.6.17
    8. Mach Nguyet Minh, BV solutions constructed using the epsilon-neighborhood method, 2016, 22, 1292-8119, 188, 10.1051/cocv/2015001
    9. Alice Fiaschi, Dorothee Knees, Ulisse Stefanelli, Young-Measure Quasi-Static Damage Evolution, 2012, 203, 0003-9527, 415, 10.1007/s00205-011-0474-3
    10. Ulisse Stefanelli, A variational characterization of rate-independent evolution, 2009, 282, 0025584X, 1492, 10.1002/mana.200810803
    11. Christopher J. Larsen, A new variational principle for cohesive fracture and elastoplasticity, 2014, 58, 00936413, 133, 10.1016/j.mechrescom.2013.10.025
    12. Vito Crismale, Giuliano Lazzaroni, Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model, 2016, 55, 0944-2669, 10.1007/s00526-015-0947-6
    13. Gianpietro Del Piero, A mechanical model for heat conduction, 2020, 32, 0935-1175, 1159, 10.1007/s00161-019-00821-y
    14. Vito Crismale, Globally stable quasistatic evolution for a coupled elastoplastic–damage model, 2016, 22, 1292-8119, 883, 10.1051/cocv/2015037
    15. Luca Minotti, Giuseppe Savaré, Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems, 2018, 227, 0003-9527, 477, 10.1007/s00205-017-1165-5
    16. Gianni Dal Maso, Riccardo Scala, Quasistatic Evolution in Perfect Plasticity as Limit of Dynamic Processes, 2014, 26, 1040-7294, 915, 10.1007/s10884-014-9409-7
    17. J.-F. Babadjian, G. A. Francfort, M. G. Mora, Quasi-static Evolution in Nonassociative Plasticity: The Cap Model, 2012, 44, 0036-1410, 245, 10.1137/110823511
    18. Gianni Dal Maso, Antonio DeSimone, Maria Giovanna Mora, Massimiliano Morini, A Vanishing Viscosity Approach to Quasistatic Evolution in Plasticity with Softening, 2008, 189, 0003-9527, 469, 10.1007/s00205-008-0117-5
    19. Roberto Alessi, Energetic formulation for rate-independent processes: remarks on discontinuous evolutions with a simple example, 2016, 227, 0001-5970, 2805, 10.1007/s00707-016-1636-z
    20. Tomáš Roubíček, Thermodynamics of Rate-independent Processes in Viscous Solids at Small Strains, 2010, 42, 0036-1410, 256, 10.1137/080729992
    21. Alexander Mielke, Riccarda Rossi, Giuseppe Savaré, BV solutions and viscosity approximations of rate-independent systems, 2012, 18, 1292-8119, 36, 10.1051/cocv/2010054
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3839) PDF downloads(71) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog