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ABSTRACT. We study a relaxed formulation of the quasistatic evolution prob-
lem in the context of small strain associative elastoplasticity with softening.
The relaxation takes place in spaces of generalized Young measures. The no-
tion of solution is characterized by the following properties: global stability at
each time and energy balance on each time interval. An example developed in
detail compares the solutions obtained by this method with the ones provided
by a vanishing viscosity approximation, and shows that only the latter capture
a decreasing branch in the stress-strain response.

1. Introduction. In the study of quasistatic evolution problems for rate indepen-
dent systems a classical approach is to approximate the continuous time solution
by discrete time solutions obtained by solving incremental minimum problems (see
the review paper [14] and the references therein).

In this paper we apply this method to the study of a plasticity problem with
softening, where the new feature is given by the presence of some nonconvex energy
terms. For a general introduction to the mathematical theory of plasticity we refer
to [7], [8], [9], [10], and [12]. To focus on the new difficulty, due to the lack of
convexity, we consider the simplest relevant model, namely small strain associative
elastoplasticity with no applied forces, where the evolution is driven by a time-
dependent boundary condition w(t), prescribed on a portion 'y of the boundary of
the reference configuration Q C R2.

The unknowns of the problem are the displacement u: 2 — R?, the elastic strain
e: 0 — M2x2 (the set of symmetric 2x2 matrices), the plastic strain p: © — M7
(the set of trace free symmetric 2x2 matrices), and the internal variable z: @ — R.
For every given time ¢ € [0,T] they are related by the kinematic admissibility
conditions: Fu = e + p in Q (additive decomposition) and u = w(t) on I'g. The
stress depends only on the elastic part e through the usual linear relation o := Ce,
where C is the elasticity tensor.

Given a sequence of subdivisions of a time interval [0, T]

0=ty <t <--<thit<th=T,

we assume that an approximate solution (u}g_l,e}c_l, p}g_l, z}g_l) is known at time

¢y~ '. The approximate solution (ul,el,ps, 21) at time ¢i is defined as a solution of
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the following incremental minimum problem:

inf  {Q(e) + Hp—py 22 + V() (1.1)
(u,e,p,z)EA(w(t}))

where Q is the stored elastic energy, H is the plastic dissipation rate, V is the

softening potential, while A(w(¢})) is the set of functions (u, e, p, z) such that Fu =

e+pinQ, u=w(ti) on Ty, and z € L' ().

The details of the definition of Q, H, V, together with the technical assumptions
which are needed for our analysis, are given in Section 2. For the present discussion
it is sufficient to know that Q is a quadratic form, H is positively homogeneous of
degree one, and V is strictly concave with linear growth.

Due to the nonconvexity of the functional the infimum in (1.1) is not attained, in
general. To overcome this difficulty, in this paper we consider a relaxed formulation
of this approach (see Proposition 4.11). To preserve the continuity of the energy
terms it is convenient to cast the relaxed problem in the language of Young measures.
An additional difficulty is due to the linear growth of H and V, which may cause
concentration effects. For this reason we formulate the problem in a suitable space
of generalized Young measures (see [1, Section 3]).

The next step in our analysis is the study of the convergence of the relaxed
approximate solutions as the time step t}; — t?l — 0 as k — oo (uniformly with
respect to 7). We prove that, up to a subsequence, these solutions converge to a
solution of a quasistatic evolution problem formulated in the framework of gener-
alized Young measures. This is characterized by the usual conditions considered
in the variational approach to rate independent evolution problems, namely global
stability and energy balance (see Definition 4.6), suitably phrased in the language
of Young measures. The notion of dissipation required for this purpose is quite
delicate and relies on the theory developed in [4].

We also prove that the barycentres of these Young measure solutions define a
function (u(t), e(t), p(t), z(t)), where (u(t), e(t), p(t)) is a quasistatic evolution of a
perfect plasticity problem (see [3]) corresponding to a relaxed dissipation function,
denoted p — Heg(p,0), which can be computed explicitly in terms of H and V.
Some other qualitative properties of the solutions are investigated at the end of
Section 4.

This result allows to compare the globally stable solutions obtained in this paper
with the solutions delivered by the vanishing viscosity approach of [5]. In particular,
we study in Section 5 the globally stable evolution corresponding to the same data
considered in [5, Section 7]. The main differences are the following. While the
globally stable solution involves generalized Young measures, the vanishing viscosity
evolution takes place in spaces of affine functions, since the data in the example are
spatially homogeneous. The stress o (t) corresponding to the vanishing viscosity
solution exhibits a decreasing branch, which accounts for the softening phenomenon.
On the contrary, the stress of the globally stable solution is nondecreasing and, after
a critical time, it becomes constantly equal to the asymptotic value of the stress of
the viscosity solution.

2. Notation and preliminary results.

2.1. Mathematical preliminaries. We refer to [5] for the standard notation
about measures, matrices and functions with bounded deformation. In particular,
for every measure u the symbols p® and p® always denote the absolutely continuous
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and the singular part with respect to Lebesgue measure. The former is always iden-
tified with its density. The symbol || - ||z denotes norm in L2, while || - ||; denotes the
norm in L', as well as in the space M, of bounded Radon measures. The symbol
(-,-) denotes a duality pairing depending on the context.

Generalized Young measures. We refer to [4] for the definition and properties
of generalized Young measures and of time dependent systems of generalized Young
measures. The underlying measure A will always be the two-dimensional Lebesgue
measure £2. In particular we refer to [1, Section 6] for the definition of barycentre
of a generalized Young measure, and to [4, Section 3] for the notion of weak*
convergence on the space GY (U;Z) of generalized Young measures on the closure
of an open subset U of R? with values in a finite dimensional Hilbert space Z.

Given v € M (U), p € LL(U;E), and « € L(U), let awy be the element of
M, (UxZxR) defined by

(f, awl) = /U () ( p(x), 0) dv(z) (2.1)

for every f € C"*™(UxExR). Note that awy, does not belong to GY (U; E) since
it does not satisfy the projection property (3.3) of [4].

Given p € LYU;E), let 7,: UxXExR — UxZExR be the map defined by
Tp(z,&,n) = (x,€ + np(z),n). The translation of u € GY (U;E) by p is the im-
age 7,(p) of p under 7, that is,

(£, To() = (f(x, & +np(x),m), u(z,&,n)) (2.2)
for every f € CM™(UxExR).

Lemma 2.1. Let pp,pn € GY (U;Z). Assume that pup — p weakly* in GY (U;Z).
Then

Ty() = To()  weakly’ in GY (U 5) (2.3
for every p € LY(U;=).

Proof. For every € > 0 there exists p. € CJ(U; E) such that ||p. — p||1 < e. By the
definition of weak* convergence

(f (@, &+ npe (), n), (2, §,m)) — (f (2, €+ npe(x),m), w2, €, m))
for every f € C"*™(UxZxR). By the projection property (3.3) of [4] we have
|<f($7£ + 77]95(30)7 77)7/%(9575777» - <f(.’IJ,§ + 77]9(95)777)7 Nk(‘rugan»l

< (anlpe () — p(@)|, i (. €,) = /U alpe(x) — pla) dz < ac,

whenever |f(z,&1,m)— f(x,&2,m2)| < a(|&1 —&|+|n1 —n2]), and the same inequality
holds for . Since ¢ is arbitrary, under the same hypothesis on f we obtain

<f($7€ + np(‘r)vn)vﬂk(xvgan» - <f($,f + ﬁp($)an)aﬂ($=§an)> .

The conclusion follows from the density result proved in [1, Lemma 2.4]. O
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2.2. Mechanical preliminaries. We now introduce the mechanical notions used
in the paper.

The reference configuration. Throughout the paper 2 is a bounded connected
open set in R? with C? boundary. Let Ty be a nonempty relatively open subset of
09 with a finite number of connected components, and let T'y := 9Q\T.

On I'y we will prescribe a Dirichlet boundary condition. This will be done by
assigning a function w € H'/?(I'y; R?), or, equivalently, a function w € H'(Q;R?),
whose trace on T’y (also denoted by w) is the prescribed boundary value. The set
I'; will be the traction free part of the boundary.

Admissible stresses and dissipation. Let K be a closed strictly convex set in
M2DX2 xR with C! boundary. For every value of the internal variable ¢ € R, the set

K():={oceMy?:(0,¢) € K} (2.4)

is interpreted as the elastic domain and its boundary as the yield surface correspond-
ing to (. We assume that there exist two constants A and B, with 0 < A < B < oo,

such that
{(0,Q) e M xR : |o]* + [¢]* < A’} C K,

K C {(0,¢) e ME*xR : |o]? + [¢|> < B?}.
We assume in addition that
(0,() e K = (0,0) e K, (2.6)
(0,) e K = (0,—¢) €K.
Together with convexity, (2.7) yields
(0,() e K = (0,006 K <<= o0eK(0). (2.8)

Let 7k : MQDX2><R — R be the projection onto R. The hypotheses on K imply that
there exists a constant ax > 0 such that

(2.5)

mr(K) = [~ak, ax]. (2.9)
The support function H : M%XQXR — [0, 400) of K, defined by
H(,0):= sup {o:£+(0}, (2.10)
(o,0)eEK

will play the role of the dissipation density. It turns out that H is convex and

positively homogeneous of degree one on M%XQXR. In particular it satisfies the
triangle inequality

H (& + 82,61 + 02) < H(&1,61) + H(S2,62) . (2.11)

Let ® be the gauge function of K according to [18, Section 4]. Since ®? is

strictly convex and differentiable, and $H? = (3®2)*, by [I18, Theorem 26.3] the

function H? is strictly convex and differentiable, so that the set {(£,0) € ME xR :

H(£,6) < 1} is strictly convex with C! boundary. The same property holds for the
sets
0) € MEZxR: H(E,0) +cf <1 2.12
{(55 D )
for every c € R.
From (2.5) it follows that

AVIEP + 62 < H(E,0) < BVI[E]* + 62, (2.13)
from (2.6) and (2.9) we obtain
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while (2.7) implies

H(E,0) = H(E,—0). (2.15)
It follows from (2.8) and (2.10) that
H(£,0)= sup o:¢, (2.16)
oceK(0)

so that H(-,0) is the support function of K(0) in M%,
Using the theory of _convex functiogs of measures developed in [6], we introduce
the functional H: M; (€ M%?)x My(Q) — R defined by

H(p,z) == ﬁH(%(I), L (1)) dA(x), (2.17)
where \ € Mlj’ (Q) is any measure such that p << X and z << A (the homogeneity
of H implies that the integral does not depend on A). Using [6, Theorem 4] and [19,
Chapter II, Lemma 5.2] we can see that H(p, 2) coincides with the integral over Q of
the measure studied in [19, Chapter II, Section 4], hence H is lower semicontinuous
on My, (Q; M%?) x M, (Q) with respect to weak* convergence of measures. It follows
from the properties of H that H satisfies the triangle inequality, i.e.,

H(pl +p2uzl +22) SH(pluzl) +H(p2722) (218)
for every p1,p2 € My(Q; MQDX2) and every z1,z2 € My(Q).

The elasticity tensor. Let C be the elasticity tensor, considered as a symmetric
positive definite linear operator C: ME;,,% — ME;,,% We assume that the orthogonal
subspaces M2DX2 and RI are invariant under C. This is equivalent to saying that
there exist a symmetric positive definite linear operator Cp: M5 — M7 and a

constant k > 0, called modulus of compression, such that
C¢ :=Cpé&p + k(tré)I (2.19)
for every £ € ngxri Note that when C is isotropic, we have

C& =2pép + K(tré)I, (2.20)

where p > 0 is the shear modulus, so that our assumptions are satisfied.
Let Q: M2X2 — [0, +00) be the quadratic form associated with C, defined by

sym
Q€)= 3C:¢ = LCpép:&p + E(trE)2. (2.21)

It turns out that there exist two constants ac and (¢, with 0 < ac < fc < +o0,
such that

aclé]? < Q(€) < Belél? (2.22)
for every £ € ngxri These inequalities imply
C¢l < 26cl¢] - (2.23)

The softening potential. Let V: R — R be a function of class C?, which will
control the evolution of the internal variable ¢, and consequently of the set K (¢) of
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admissible stresses. We assume that there exist two constants by > 0 and My > 0
such that for every # € R and 6 € R\ {0}

- My <V"(0) <0, (2.24)

9EIPOO V'(0) = — QEIJPOO V'(0) =by, (2.25)
0<by <ag, (2.26)

V) <V(0+6)—V(h), (2.27)

where ag is the constant in (2.9), and V> denotes the recession function of V,
defined by
V(to
V() .= lim ¥ = —by|0)|. (2.28)

t——+o0

Note that (2.25) is satisfied when V is even, while (2.27) is satisfied when V is
strictly concave. From (2.27) it follows that for every R > 0 there exists a constant
cr > 0 such that

V'(0)0 — V() > cr|f) (2.29)

for every 6,0 € R with [f] < R.
From (2.14) and (2.26) it follows that there exists a constant C{f > 0 such that

H(& —&1,00—01) + V(02) — V(61) > CF |& — &| + CF |02 — 64 (2.30)

for every &1, & € M3? and every 601,605 € R (see [5, Subsection 2.2]).

It is convenient to introduce the function V*°: M(£2) — R defined by

Ve (2) = / V(%) dA,
Q

where A € M,"(Q) is any measure such that 2 << A, and the function V: L'(Q2) — R

defined by

V(z) = / V(z(x))dx.
Q
The definition is extended to M;(f2) by setting
V(z) :=V(2%) + V>(2%)

for every z € M(Q2).

The prescribed boundary displacements. For every ¢ € [0, 4+00) we prescribe
a boundary displacement w(t) in the space H'(Q;R?). This choice is motivated by
the fact that we do not want to impose “discontinuous” boundary data, so that, if
the displacement develops sharp discontinuities, this is due to energy minimization.

We assume also that w € AC),.([0, +00); H(Q; R?)), which means, by definition,
that for every T > 0 the function w belongs to the space AC([0,T|; H(£;R?)) of
absolutely continuous functions on [0,7] with values in H'(Q;R?), so that the
time derivative w belongs to L([0,T]; H'(2;R?)) and its strain Fw belongs to
LY([0,T]; L*(Q; M2x2)). For the main properties of absolutely continuous functions
with values in reflexive Banach spaces we refer to [2, Appendix].

Elastic and plastic strains. Given a displacement u € BD()) and a boundary
datum w € H(Q;R?), the elastic strain e € L?(;M2X2) and the plastic strain

sym
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p € My(Q; M%?) satisfy the weak kinematic admissibility conditions
Eu=e+p inQ, (2.31)
p=(w—u)®nH' onTly, (2.32)

where n is the outward unit normal, ® denotes the symmetrized tensor product,
and H! is the one-dimensional Hausdorff measure. The condition on I'y shows, in
particular, that the prescribed boundary condition w is not attained on I'y whenever
a plastic slip occurs at the boundary. It follows from (2.31) and (2.32) that e =
E% — p®* a.e. in Q and p® = E®u in Q. Since trp = 0, it follows from (2.31) that
divu = tre € L?(Q2) and from (2.32) that (w — u)-n = 0 H!'-a.e. on Iy, where the
dot denotes the scalar product in R2.

Given w € H'(;R?), the set A(w) of admissible displacements and strains for
the boundary datum w on I'y is defined by

A(w) = {(u,e,p) € BD(Q)x L*(Q; M2%2)x M, (Q; ME?) = (2.31), (2.32) hold} .

sym

(2.33)
The set Ayeq(w) of reqular admissible displacements and strains is defined as
Apeg(w) := Aw) N (W (QR?)x L2 (Q; M2 ) x L' (Q; M3 ?)) . (2.34)

Equivalently, (u,e,p) € Areg(w) if and only if u € Wl})’cl(Q;Rz) N BD(Q), e €
L2(;M2%2) p e Ll(Q;MQDXQ), Eu=e+pae on, and u=w H'-a.e. on Iy.

sym

The stress. The stress o € L*(Q;M2%2) is given by

sym
0:=Ce=Cpep+r(tre)l, (2.35)
and the stored elastic energy by

Qe) = /QQ(e(:v)) dz = 3(o,€). (2.36)

2X2

It is well known that Q is lower semicontinuous on L2(Q;Msym

weak convergence.
If o € L*(Q;M2;2) and dive € L*(€;R?), then the trace of the normal com-

ponent of o on 99, denoted by [on], is defined as the distribution on 9 such
that

) with respect to

([on], ¥)oq := (divo,¥) + (o, E) (2.37)
for every 1 € H'(;R?). Tt turns out that [on] € H~'/2(9;R?) (see, e.g., [19,
Theorem 1.2, Chapter I]). We say that [on] = 0 on T'y if {[on],¥)sq = 0 for every
Y € HY(;R?) with ¢ = 0 H!-a.e. on I'g.

3. Relaxation of the incremental problems. In this section we study different
forms of relaxation of the incremental minimum problems.

3.1. Convex envelope of the nonelastic part. In this subsection we study the
convex envelope of the function

F(&,0) :== H(§ — &,0 — 60) + V(0), (3.1)

where (&9, 00) € M73* xR is given.
Setting £ = £ —&p and § = 6 — 0 and subtracting the constant V' (6y), it is enough
to study the convex envelope of

G(£,0) := H(E,0) + V(0 +6y) — V(6) . (3.2)
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Let G* be the recession function of G, defined by

G>(&,0) = tiigloo @ .
By the homogeneity of H it follows that
G>(£,0) = H(E,0) +V>=(0). (3.3)
Lemma 3.1. For every (£,0) € M5 xR we have
coG(E,0) = coG*®(E,0), (3.4)

where co denotes the convex envelope in MQDX2><R. In particular, coG does not

depend on 0y and is positively homogeneous of degree 1 in (5, é)

Proof. As 'V is concave, we have V(0 + 6y) — V(6y) > V°°(f), which gives

G >G> and coG > coG™. (3.5)
Since G > 0 by (2.30) and G(0,0) = 0, we have co G(0,0) = 0, so that by convexity
coG < (coG)>, (3.6)
where (coG)® is the recession function of co G, defined by
co G(t€, t0)

(coG)®(£,0) == lim ——>1—2

t—+oo t
On the other hand, since coG < G, we have (coG)*® < G°°, which implies
(coG)>® < coG™. Therefore, (3.6) gives coG < coG*, which, together with
(3.5), yields (3.4). O

Let us define Heog : MQDXQXR — R by
Hets :== coG™. (3.7)

By the previous lemma the convex envelope co F' of the function F introduced in
(3.1) is given by
co F'(§,0) = Hewr(§ — £0,0 — 60) + V(6o) - (3.8)
As H.g is convex and positively homogeneous of degree 1, it can be written in
the form

Heg(§,0) = sup {o:§+ (0}, (3.9)
(0.Q)EKesr
where Ko = {(0,¢) € ME xR : H’3(0,¢) < 0} (see, e.g., [18, Theorem 13.2]), and

H’s = XK., Where for every set E C M%®xR the indicator function xp is defined

by xe(0,¢) = 0if (0,¢) € E, xg(0,() = +00 otherwise. Since Heg = co G, we
have that H; = (G*)*, so that

Ko = {(0,¢) € MEZXR : (G)"(0,) < 0}.

Since V*°(0) = min{by 0, —by 0} by (2.28), the function G*> can be expressed as
the minimum of two convex functions, namely

G™(&,0) = min{H(£,0) + by 0, H(,,0) — by b} . (3.10)
Therefore
(G*)*(0,¢) = max{H" (0, —by),H*(0,{ + by)} .
Since H* = xk, we obtain

XK = (GT)" = maX{XKJr(O,bV)uXKf(O,bV)}7
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which implies

Keg = (K + (0, bv)) N (K - (O, bv)) (311)
Using (2.26), (3.11), and the strict convexity of K, it is easy to check that Keg is a
bounded closed convex set and that

(0,0) € Kegg C Keogp C K. (3.12)
Lemma 3.2. For every (£,60) € M3* xR we have

Heff(gao):Goo(gao) Aand 620
Proof. By (2.10), (3.9), and (3.12) we have
Hor(6,0) < H(E,0)  for every (€,0) £ (0,0). (3.15)
If He(€,0) = G(&,0), by (3.5) and (3.7) we have G(£,0) = G*°(&,0), which gives
Vo (0) =V(0+0y) —V(6y) thanks to (3.2) and (3.3). By (2.27) this implies 6 = 0,
so that Heg(€,0) = G(£,0) = H(£,0). By (3.15) we deduce that & = 0. This
concludes the proof of (3.13).

On the other hand, if Heg(€,0) = G*(&,0), from (3.3) we obtain Heg(£,0) =
H(&,0). By (3.15) we deduce £ = 0, which concludes the proof of (3.14). O

Lemma 3.3. For every (&,60) € M3* xR we have
coG™(&,0) = cogG>(&,0), (3.16)

where cog denotes the conver envelope with respect to 8. Moreover there exist § € R
and o € [3,1], such that

0 =ab+ (1—a)(—0), (3.17)
Heff(§7 9) = GOO(§7 é) . (318)
Proof. Let
A® = {(£,0) e ME xR : 0 <0, H(&0)+byo <1},
A% = {(£,0) e ME xR : 6 >0, H(&0) — by <1},
and A := A° U A® = {G> < 1} (see (3.10)). By (2.15) we have
(£,0) € A® = (£,-0) € A®. (3.19)
Since G*° is positively homogeneous of degree 1, we have co A = {coG*® < 1} and
cogA C {cogG™ < 1}, where cogA is the smallest set containing A, which is convex
with respect to 0, i.e., its intersections with all lines {£ = const.} are convex. To
prove that co A = cogA, it is enough to show that cogA is convex. By (3.19) we
have that (£,0) € copA if and only if there exists 6% € R such that |§] < 6% and
(£,0%) € A®. Since A? is convex, from this property it is easy to deduce that cogA
is convex, hence co A = cogA. It follows that
cogA C {copG™ <1} C {coG™ <1} =coA.

This implies that {co G < 1} = {copG> < 1}. Since both functions co G* and
copG™ are positively homogeneous of degree 1, we conclude that co G™ = cogG™.

By homogeneity, to prove (3.17) and (3.18) it is not restrictive to assume that
Heg(€,0) = 1, so that (£,0) € coA. From the previous discussion it follows that
there exists 6% € R such that |6] < 6% and (£,09) € A®. In particular we have
Heg(&,—0%) < G®(£,—0%) <1 and Heg(&,0%) < G=(&,09) < 1. By convexity we
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have Heg (€, —0%) = Heg(€,0%) = 1, which implies G (&, —0%) = G (£,0%) = 1.

To conclude the proof of (3.17) and (3.18) it is enough to take 6 = 6% if § > 0, and
6 =—0%if 0 <O0. O

Lemma 3.4. Let (£,60p) € MHZxR with (&,600) # (0,0). Assume that
Heg(&0,60) = G*=(&,00). Then 6y # 0 and the common tangent hyperplane to
the graphs of Hegr and G*° at the point (&g, 600, G2 (&0, 6p)) is the graph of the linear
function

L(§,0) := 0:G> (&0, 00)§ + 00G (&0, 00)0 -

Let C = {(&,0) € M5 xR : L(£,0) = G=(£,0)}. Then either C = {(\o, \p) :
A > 0} or C' = {()\50,/\90) A 0} U {()\fo, —)\90) A 0}

Proof. The inequality 6y # 0 follows from (3.14). Therefore G is differentiable at
(€0,00). Using the convexity of Heg and the inequality Heg < G, we deduce that
H.g is differentiable at (&p, 0y) and its partial derivatives coincide with those of G*°.
The formula for the tangent hyperplane follows easily from the Euler identity.

By (2.15) and (2.28) we may suppose 6y > 0. By the homogeneity of the problem
it is not restrictive to assume that Heg(&o,00) = G (&0,00) = 1. Then the set
{L = 1} is the common tangent hyperplane to the hypersurfaces {Heg = 1} and
{G> =1} at the point (§,00). As G>(&,0) = H(&,0) — by d for 6 > 0 and the set
{(&,0) e MR : H(E,0) — by8 < 1} is strictly convex by (2.12), we deduce that
{L=1}n{G>® =1}n{0 > 0} = {(&, bp)}. If theset {L =1}N{G>* =1}Nn{H <0}
is empty, then C' = {(\&), M\dp) : A > 0} by homogeneity.

Suppose {L =1} N{G>® =1} N{0 < 0} # 0. Since L < Heg by convexity, if
(51,91) S {L = 1} n {Goo = 1} N {9 < 0} we have 1 = L(§1,91) < HCH-(§1,91) <
G*(&1,01) = 1. Therefore, the same argument used for (g, fp) shows that

{L=1}n{G*=1}n{0 <0} ={(&,601)}. (3.20)

This implies
{L=1}n{G™ =1} = {(.00), ({1, 61)} - (3.21)
Let us prove that & = & and 6; = —6y. Let S be the open segment with

endpoints (£y,6p) and (£1,61). As L = 1 on the endpoints, it is L = 1 on S. As
H.g = 1 on the endpoints, by convexity we have Heg < 1 on S. On the other
hand, since the graph of L is tangent to the graph of H.g, by convexity we also
have L < Heg. Therefore Heg = 1 on S. By (3.21) we have G™® # 1 on S. As
H.g < G*°, we conclude that Hog =1 < G* on S.

Let us fix (£,0) € S. Then (§,0) € {Hex < 1} =co{G™ < 1}. As G=(£,0) > 1,
by the previous lemma there exist 89 and 0% with §° < 0 < 6%, such that ° < 6 <
6%, (£,0°) € {G>= < 1}, and (£,0%) € {G™ < 1}. As L < H.g by convexity and
Heg < G by definition, we have L(&,09) < 1 and L(£,6%) < 1. Since 6° < 6 < 0%
and L(&,0) = 1, we deduce from the linearity of L that L(£,0°) = L(&,09) = 1.
Using again the inequality L < G*°, we find G*(£,609) > 1 and G*(£,09) > 1.
Since the opposite inequality follows from the definition of §° and 6%, we also
obtain G*(&,09) = G=(£,60%) = 1. Therefore, (3.21) yields & = & = &, 0° = 6y,
and 0% = 60y. This implies that the straight line {(£,0) : 6 € R} belongs to
the hyperplane {L = 1}. Since by (2.15) and (2.28) the point (&), —6y) belongs
to {G* = 1}, we deduce that 6, = —6y by (3.20). This concludes the proof
of the equality {L = 1} N {G*>® = 1} = {(&,00), ({0, —0o)}, which implies that
C ={(Ao, M) : A >0} U{(A&o, —Abp) : A > 0} by homogeneity. O
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Lemma 3.5. Let (£,00) € M3Z?xR with (&,60) # (0,0). Assume that there
exist 0 > |0p| such that Heg(&o,00) = G™(&0,0). Then 6 > 0. Let L: M;* xR —
R be a linear function such that L < Heg and L(&,00) = He(£0,00), and let
C = {(£,0) € ME?xR : L(£,0) = G®(£,0)}. Then C C {(A\&,\0) : A > 0} U
{(\&o, —=A0) : A > 0}.

Proof. 1f § = |6p|, the result follows from the previous lemma. If § > ||, the affine
function 0 — L(&, ) is bounded from above by G™ (&, ) at the endpoints of the
interval [—6, 0] (recall that L < Heg < G™) and coincides with G* (¢0,0) at the

interior point 0. Therefore, L(&p,0) = Hea(£0,0) = G (&, 0) for every 6 € [0, 0)].
The result follows by the previous lemma with 6y replaced by 6. O

3.2. Relaxation with respect to weak convergence. We begin with a result
that can be easily deduced from [1]: every (u,e,p) of the admissible set A(w)
introduced in (2.33) can be approximated by triples (u, ek, px) in the set A,eq(w)
introduced in (2.34), so that uy satisfies the boundary condition uy = w H!-a.e.
on Fo.

Theorem 3.6. Let w € HY(Q;R?) and let (u,e,p) € A(w). Then there exists
a sequence (Ug, €k, Pr) € Areg(w) such that up — u weakly” in BD(Q), e, — e
strongly in L%Q;Mg;ﬁl), pr — p weakly* in My(QM%?), |pelli — lpll, and

lpx — Pl — lIp°[1-

Proof. By [1, Theorem 5.2] for every k there exists a function ¢, € Wh(Q;R?)

such that [[¢][1 < £, Y& = w — u H'-a.e. on Ty, ||div ez < £, and

1Bkl < Z5llw —ullir, + £ = IP°lliro + % -

where || - [|1,r, denotes the norms in L3, (Io;R?) and in M, (T'o; M5 ?). We define
vk 1= u+1 and we note that v, = w H'-a.e. on I'g. By [I, Theorem 5.1] there exists
a sequence v} in BD(Q)NW,>! (Q; R?), with v = vy = w H'-a.e. on Ty, such that
v — vy, strongly in LY(Q;R?), dive® — divuy strongly in L(Q), Ev® — Euy

weakly* in M, (Q; M2%2), and

sym

lim ||Ev' — E% — EvYgll1 = lim ||[Ev)* — E®gll1 = || E® v
m—00 m—00

o=,

where || - |1, denotes the norm in M;(Q;M3?). By approximation it is clear

that we can find a sequence mj — oo such that, setting u, := v.", we have
ur € BD(Q) N WEHQ;R?), u, = w H'-a.e. on Tg, up — u weakly* in BD(S),

divug — divu strongly in L?(€2), and
limsup || Eug — E%ull1 < ||p°]1 - (3.22)

k—oco
Setting ey := ep + %divukl and p = Fuy — e, we clearly have that e, — e
strongly in L?(Q; M2y?) and pp — p weakly™ in M;(€; M%?). Since Euy, — E% =

2 (divuy, — divu) I + py, — p?, from (3.22) it follows that

limsup [|px — p*|l1 < [[p°||1 -

k—o0

By lower semicontinuity this implies that ||px—p®|[1 — [|p®[[1 and ||px|[1 — [Ipll- O

To deal with the inner variable z we need a technical lemma concerning the
approximation of measures on product spaces.
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Lemma 3.7. Let 21 and 25 be finite dimensional Hilbert spaces. Let p; € Mp(€); Z;)
fori = 1,2 and let p¥ be a sequence in L'(Q;Z1) such that p¥ — py weakly* in
My(Q;Z1) and ||p¥|l1 — ||lp1lli. Then, there exists a sequence p& in L' (£2;Zs3) such
that p& — pay weakly* in My(Q;Z2) and ||(p¥,p5)|l1 — ||(p1,p2)|l1, where the norms

are computed in the product Hilbert structure of =1 XZs.

Proof. First of all we observe that [p¥| — [p;| weakly* in M;(Q). We decompose ps
as

P2 = p21 + pa2,
with pa1, poa € My(Q;Z2), [pa1] << [p1], and |pa2| L |pa.
Let us construct a sequence p5, in L'(Q;Z3) such that p§;, — pa; weakly* in

My (2;Z2) and [(pf,p5:) [ — [|(p1, p21)ll1- As [pa1| << |pa], we have pay = |pi|

for a suitable density v € Lllpl‘(ﬁ; Z3). Let 1, be a sequence in C(Q;=,) which

converges to ¢ in L, (%), so that (/T+ [l |pil) = (VIF PR [p]) =

[(p1,p21)[l1; as m — oo. For every m let p5i* := ¢ |pf|, so that p5i* — 1 [p1
weakly* in M,(Q;Zs) and ||(p¥, p57)l1 — (V/1+ [¥m|? |p1]), as k — oco. Let

Br :={p € Mp(%Z2) : |lpll1 < R}, with R > ||pz2|l1. Since 1, converges to 9 in
L‘lm(ﬁ; Zs) we have ¥y,|p1| € Br for m large enough. As |p§| — |p1| weakly* in
M,(9), for these values of m we also have p§7* € By for k large enough. Since the
weak™ convergence is metrizable on Bg, we can construct a sequence my, — oo such
that ph; = pgf“‘ satisfies the required properties.

Using convolutions it is easy to construct a sequence pk, in L'(Q; =) such that
D5 — p22 weakly™ in My(Q;Z5) and [|phy 1 — [Ip22lr-

Let p& := p&, + ph,. Then p§ — po weakly* in M;(2;Z5). It remains to prove
that

lim sup 1T, P5) 11 < Il (p1,p2) 1 - (3.23)
— 00
By the triangle inequality and by the properties of p4; and pk,, we have
limsup [|(pf,p5) [ < lim |[(pf,p50) [ + lim [0, p52)]x
k—00 k—o00 k—o0

= [[(p1, p21)ll1 + 10, p22)[[1 = [[(P1, p2)l1 ,

where the last equality follows from the fact that the measures (p1, p21) and (0, p22)
are mutually singular. O

Let Hegr : My(Q; M3 ?)x My (Q) — R be the functional defined by (2.17) with H
replaced by Hg.

Theorem 3.8. Let ¢g € L*(Q;M2x2), let zg € My(Q0), let w € H(;R?), let

(u,e,p) € A(w), and let_z € My(Q2). Then for every ey, —e weakly in L*(€; M2x2),
Pr — p weakly* in Mb(Q;M%w), 2k — z weakly* in My(Q)), we have

Qeo+e)+Her(p, 2) +V(20) < 1ikﬁigjf{Q(€o+€k)+H(pk,Zk)+V(Zo+2k)}- (3.24)

Moreover, there exist a sequence (uy, ek, pr) € Areg(w) and a sequence zj, € L*(9)
such that uy — u weakly* in BD(Y), e, — e strongly in L*(5M252), pp — p
weakly* in My(Q;M3?), 2, — z weakly* in My (Q), and

Q(eo+e)+Herr(p, 2)+V(20) = lin sup{Q(eo+ex) +H(pk, z1) +V (20 +2x)} . (3.25)
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Proof. Owing to the lower semicontinuity of Q and Hex (see the comments af-
ter (2.17) and (2.36)), inequality (3.24) follows from the inequality Heg(pi, 2x) <
H(pk, zx) + V(20 + zi) — V(20), which is a consequence of (3.4) and (3.7).

We observe that it is enough to prove (3.25) when zo belongs to L'(Q) and is
piecewise constant on a suitable triangulation. Indeed, there exists a sequence zj
of piecewise constant functions which converge to z¢ strongly in L'(Q2). For every
n let (u}, ey, pi, zi) be a sequence satisfying the second statement of the theorem
as k — oo, with zo replaced by z. Then

Qleo+e)+Hea(p, 2) = lim {Qeo+ef) +H(pi, zi;) + V(2 +2¢) = V(zg)} - (3.26)
By (2.25) and by the definition of V we have
V(zi +25) = V(zg) — V(21 + 20) = V(20)) < 2bv|zg — 2611 -
Therefore, for every n

11211 sup{Q(eo + €x) + H(p, 2x) + V(20 + 21) — V(20)} (3.27)
< Q(eo +€) + Hest(p, 2) + 2bv [|25 — 2§12 -

By a standard double limit procedure it is then easy to construct a sequence

(uk, ek, Pk, 21 ) satisfying the second statement of the theorem.

Moreover, we may also assume that (u,e,p) € A,eq(w) and z € L'(Q). In-
deed, in the general case, combining Theorem 3.6 with Lemma 3.7 we can con-
struct a sequence (U, €m, Pm) € Areg(w) and a sequence z,, € L'(Q) such that
U, — u weakly® in BD(2), e,, — e strongly in L*(Q;MZ222), pp — p weakly”
in My(Q; M2DX2), Zm — 2z weakly™ in My(Q), and ||(pm, zm)|l1 — ||(p, 2)|l1. By [17,
Theorem 3] (see also [11, Appendix]) these properties imply that

Qeo + em) + Het(Pms2m)  —  Qeo + €) + Heg(p, 2)

and the conclusion of the theorem can be obtained by a standard double limit
procedure.
Let us fix a piecewise constant function zo € L'(2). Let

Go(,8,0) := H(&,0) + V(0 + 20(x)) = V(20(2)),

let

Gl(x,&@) = g El%fe {)\Go(x €+€1,6‘+91) ( —)\)GQ($,€+§2,6‘+92)},
and let

Go(x,€,0) = inf NG (2, €+ &,0+01) + (1 = NGi(x, €+ &2,0 + 02)},

(A\,€1,€2,01,02) €A
where A is the set of vectors (N, &1,82,01,02) with 0 < X\ < 1, &,& € M%XQ,
01,02 € R, A& + (1 — A& =0, and My + (1 — M) = 0. As G is globally Lipschitz
continuous in (&, #), uniformly with respect to x, it follows that G; and Go satisfy
the same property. Moreover, G; and G5 are piecewise constant in x, uniformly
with respect to (£,0). It is easy to see that

4
CO(g)‘g)Go( f 9) < GQ :E § 9 S Z ;p &7 z

whenever (&,0) = 2?21 Xi(&:,0;) with \; > 0 and Zi:l Ai = 1. By the Carathéo-
dory Theorem we conclude that G2 = co(¢ 9)Go = Hegr-
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To conclude the proof, using a standard double limit procedure, it is enough to
show that for every i = 1,2, (u,e,p) € Apeg(w), z € L1(), and 1 > 0 there exist a
sequence (uy, e, pi) € Apeg(w) and a sequence zx, € L() satisfying the properties
of the second statement of the theorem and such that

Gilp,z) +n = 1i£ﬂj£p Gi1(pr, 21) , (3.28)
where

G.p.2) = [ Gula.p(o). (o) do
fori=0,1,2.

Using the approximation argument introduced in [13] we can also assume z €

C>(Q)NLY(Q), u € C=(Q;R?) N BD(Q), p € C=(Q;M3?) N LY(Q;M5?). Using
the Lagrange interpolation on a locally finite grid composed by isosceles right trian-
gles which becomes finer and finer near the boundary, we can replace these functions
by new functions u, e, p, and z, with (u,e,p) € A,¢y(w), such that u is piecewise
affine on this triangulation 7', while e, p, and z are piecewise constant. Since zq is
piecewise constant, it is not restrictive to assume that G;(-,&, ) is piecewise con-
stant on 7, so that G;(z,£,0) = G, r(&,0) for every x € T and every T € T. We
may assume that every triangle T of the triangulation 7 is relatively compact in .
Let us fix i =1,2 and T € 7. Then

u(x) =&rx +cp foreveryx €T,
where {7 is a 2x2-matrix and ¢r € R%. Moreover, we have

e(x)=er, pla)=pr, z(x)=zr foreveryzeT,

where e € Mﬁ;,,%, pr € M%XQ, and zr € R. Then we have {7 = er + pr + wr,

where wr is a skew symmetric 2x2-matrix.
For every ¢ > 0 there exists (Ar, p, p%, 24, 2%) € A such that

Gir(pr,2r) + € > ArGi1,17(pr + Py 217 + 24)

3.29
+ (1= Ar)Gicvr(pr + pF, 27 + 27) - 529

By an algebraic property of M2DX2 there exist ar,br € R? such that p2. — ph =
ar @ by + qr with gr a skew symmetric 2x2-matrix. Note that this is the only
point where the dimension two is crucial. By a standard lamination procedure with
interfaces orthogonal to by we can construct two sequences vk. € W,5>°(R?; R?) and

2k € L2 (R?) such that v%(0) = 0, vk — pra weakly* in WL>°(R?;R?), 25 — 27
weakly* in L9 (R?), Evk = pr + ph and 25 = zr + 24 on Ak Evk = pr + p2
and 2§ = z7 + 22 on R?\ A% and 1,6 — Ar weakly” in L7 (R?). Let us define
ub () = erx + vh(z) + wrx + er. Recalling our definitions we find that u% — u
weakly* in W1>°(T;R?) and 2% — z weakly* in L>(T).

For every T' € 7 and every & > 0 let Ts be the triangle similar to 7" with the
same centre and similarity ratio 1 — §, and let 9. € C°(T') a cut-off function such

that p% =1 on 75 and 0 < ¢4 < 1 on T. Let us fix a finite subset 7/ C 7T, let

o=, Q= Ts,

TET! TET!

Up 1= Z Sﬁg"u’?"‘F (1— Z wﬁfr)u, Rk = Z ‘P%Z%‘F (1_ Z S05T)Z'

TeT! TET! TET! TET!
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It is clear that u, — u weakly* in BD(Q) and uj, = w H!-a.e. on I'g. We set

pri= Y erEvp+ (1= ) ¢7)p,
TET! TET'
e = FEu, —pp, =e+ Z Vi © (ub —u).
TeT'

Then, py — p weakly* in L>(Q; M%) and e — e strongly in Loo(§; M2x2). For
every T' € 7' we have e, = er a.e. on Ty, pp, = pT—i—plT a.e. on T(;ﬂA?, 2 = zT—i—z}
a.e. on Ts N ALK, pr = pr + p% a.e. on T5\ A% and 2z, = 27 + 22 a.e. on Tj\ AL
Therefore

Gi—1(pr, zi) < Z Gi—1.7(pr + i, 21 + 27) L2 (Ts N A%)

TeT!
+ Z Gi—1,7(pr + P, 21 + 27) L2 (T5\ A%)
TeT!
—|—/ Gi—1(pk, zx) dz + Gi—1(p,z)dz.
N\ Q\Q/

We observe that there exists a constant C(7") such that G;_1(pk, z1) < C(7') a.e.
on Q' for every k. As 1,: — Ap weakly” in L>(T') as k — oo, using (3.29) we
obtain

lillinsup Gio1(pr.2k) < > (Gir(pr, 21) +€)L2(T5)
e TET

+ C(T"L2(Q'\ Q) + / Gi—1(p,z)dx
o\
< Gi(p,2) +eL2(Q) + C(TLAHU\Q) + / Gi—1(p,z)dz,
o\
which gives (3.28) with
0= eL2(Q) + C(T) L2\ +/ Gir(p,2)da.
o\

Passing to the limit first as § — 0, then as e — 0, and finally as ' " §, we can
make 7 arbitrarily small, and this concludes the proof. O

3.3. Relaxation in spaces of Young measures. The following theorem shows
the relationships between the incremental problem in A,.q (@) with H and V, the
same problem in A(w) with Heg, and a similar problem in a suitable space of
generalized Young measures. The statement of the theorem uses the decomposition
w =" + % of [4, Theorem 4.3], the notion of translation introduced in (2.2), and
the homogeneous function {V}: RxR — R defined by

_JnV(0/n) ifn>0,
{V}(&n)-—{vmw) <0, (3.30)

Theorem 3.9. Let wo,w € H'(;R?), let (uo, eo,po) € A(wy), let zo € My(Q), let
po € GY (M52 xR) such that bar(uo) = (po, 20). Assume that iy = (py.20) With
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Po € L' (Q;M%5?) and Zo € L'(Q). Then the following equalities hold:

inf Qleo + &) + H(p, 2) + {VI(01,1), T(5.2 3.31
emen i@ +8) B E) + (VHOL 1), T ()] (3:31)

= min_[Q(e + &) + Hen(p, 2) + ({V}(0o. ), o)) (3.32)
(@,8,p)EA(W), ZE M, ()

= inf_[Q(e) + (H(&1 — &0, 01— 00) + {VI(01,0), phyr,)], (3.33)
(u,e,n)EB

where the measure 7(; (o) acts on the variables (x,&1,01,7n), the measure g
acts on (x,8o,00,m), while the measure p, , acts on (x,&o,00,&1,01,7n). Here B
denotes the class of all triplets (u,e, p), with w € BD(Y), e € L*(Q;M2%2), p €

_ sym
SGY ({to, t1}, G M5 xR), such that p,, = po and (u,e,p) € A(wo + W), where
(p, 2) := bar(p,, ).

Proof. We start by showing that the infimum in (3.31) is less than or equal to

the minimum in (3.32). Let (u,é,p) € A(w) and 2 € My(2) be a minimizer of
(3.32). By Theorem 3.8 there exist a sequence (U, €m,Pm) € Apeg(w) and a
sequence Z,, € L'(Q) such that é,, — é strongly in L*(Q;M2x2), p,, — p weakly*
in M,(Q;ME?), 2, — Z weakly* in M;(Q), and
H(Pm, Zm) +V(Zo + 2m) = V(20) —  Her(p, 2). (3.34)
We claim that

H(Bm» Zm) + AV H0O01,1), L5, 2 (10))  —  Herr (B, 2) + {V }(00,n), 1) -

Indeed, using the definition of 7(; , ), we have

{VHO1,m). T3, 2,.) (o)) — {V (6o, m), o)
= {V}0o + nzm(x),n) — {V} (0o, ), po) -
As {V}(Oy + nZzm(x),n) — {V}(0,n) vanishes for n = 0, we obtain

AV HO1,M), T3, 20 (10)) — LV }(00,m), po)
= <{V}(90 + ngm(x)vn) - {V}(HOa 77)aﬁ3/> .

By the assumption 7y = d(py,20) We find

AV HO1,m), T3, 20 (10)) — LV H 00, m), po) = V(Z0 + Zm) — V(Z0) - (3.35)

From (3.34) and (3.35) we obtain the claim, which, in turn, together with the strong
convergence of é,, to €, shows that the infimum (3.31) is less than or equal to the
minimum (3.32).

Let (u,e, ) € B. By the Jensen inequality for generalized Young measures (see
[4, Theorem 6.5]) we have

Het(p — o, 2 — 20) < (Her(§1 — &0, 01 — 00), ygr,)
< (H (& = &0, 01 — b0) +{V}(01,m) = {V}(00,n); 41, -
Since (u — ug, e — eg,p — po) € A(w), the minimum (3.32) is less than or equal to
the infimum in (3.33).

On the other hand the infimum in (3.31) is greater than or equal to the infimum
in (3.33), since for every (i, &,p) € Ayeq(w) and every Z € L*(Q) we can construct
a triple (u,e, u) € B by setting u := ug + U, e := eg + €, and p, ; = T(;s,z) (10),
where 7% ) : QXML ?XRxR — Qx (M7 ?xR)*xR is defined by

T (5.2 (2, €0, 00,m) := (x, &0, 00, &0 + np(x), 00 + nZ(x), ).
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This concludes the proof of the theorem. O

3.4. Some structure theorems. We prove now two structure theorems for gen-
eralized Young measures whose action on H + {V'} equals the relaxed functional
Heg evaluated on their barycentres.

Theorem 3.10. Let pg € L' (M52, 20 € LY(Q), 1 € GY (M52 xR), let
(pl,zl) := bar(p1), let X be the total variation of the measure (p5,z5), and let
(p3, 23) be the Radon-Nikodym derivative of the measure (p3, z{) with respect to \.
Assume that

(H(&1 —npo(x),01 —nz0(x)) +{V}(01,n), pa(z, &1, 01,m))
= Hem(p1 — Po, 21 — 20) + V(20) -

By Lemma 5.3 there exist 2 € L'(Q2), with 2(2¢—20) > 0 a.e. on Q, and o € L>=(),
with % <a<1ae onf, such that

z2f=a(zo+2)+ (1 —a)(z — 2), (3.37)
He(pf = po, 21 = 20) = H(pt — po, 2) + V= (2) (3-38)

a.e. in Q, and there exist z\ € L}(Q), with 2x27 > 0 A-a.e. on Q, and ay € L(R),
with % < ay <1 Xae onQ, such that

(3.36)

22 = axzn+ (1 —an)(—2y), (3.39)
Hen(py, 20) = H(pys 23) + V() (3.40)
X-a.e. in Q. Then

2

L? L A
H1 = 5(170,20) + AW (pa_py,2) + (1 o a)w(Pi‘—Pm—Z) +anw

(SRR GV

—2z)

that is, according to (2.1),

) = [ Sembe) o)) de+ [ a@)fepi@) - o). 2(0).0) ds
+ [ (1= a@) . (@) = pola). ~2(2).0)da
+ [ ax@f (e (@), 22(2).0)dA@) (3.41)
+ [ (1= ar@) (@)~ (2),0) X

for every f € ngf(ﬁxM%“xRxR) (see [4, Definition 3.14]).

Proof. According to [4, Remark 4.5] there exist A7 € M,;F(Q), a family (47" ) eq of
probability measures on M7,* xR, and a family (u{"*), g of probability measures
on ¥ := {(&0) € ME2xR : |¢]? +]0]? = 1} such that

o) = [ ([ 708000 D77 6 01) o
([ 0.0 dr(600) (@)

e

(3.42)

for every f € Bhom(QxM7*xRxR). According to [, Remark 6.3], we also have

(P (= / 51,91 duy’ (51791)+)\(fo’a(fc)/2(51,91)dﬂf’00(§1,91)
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for £%-a.e. z € Q, where A\]”" is the absolutely continuous part of A3°. This implies
(p1(x) — po(x), 21 (x) — 20())
= / (&1 — po(x), 01 — 20(2)) duy (€1, 61) (3.43)
M2 xR
AT @) [ (60,00 dut (61,00,

Let A7”"* be the singular part of A\{°. By [4, Remark 6.3] we also have that A\ << A\]™*
and "
(@), 22 ) gy (@) = [ (61.00) duf ™ (61,6) (3.44)

for \{”%-a.e. z € Q.
Let G* be defined by (3.3). From (3.36) and (3.42) we obtain
[ Haalot (@) = pole) 38 0) = zo(e)) do + [ Honlodla), 42 dN(o)
Q Q
= ([ (G =po(a).1=s0(a)) + V(61) = Vzo@) dit” (60,6 de
QML xR
+ [ ([ (e, o)A @) do (3.45)

+/_(/ZG°°(§1,91)duf’°°(§1,91))dx;°75(x).

Q
As Her = coG™, using the homogeneity of Heg and the Jensen inequality, we
deduce from (3.43) that for a.e. z € Q we have
Her (p () — po, 21 () — 20())
< [ 676 o). 6 — zofe)) it (.00
M2 xR
AT @) [ 6%(6,00) duf <(6.6)

= / (H(& — polx), 01 — 20(x)) + V(01) — V(20(x))) dui" (&1, 61)
M7 xR

+ A% (g) / G (€1, 00) dp> (61, 01)

where the second inequality follows from (3.5). Analogously, from (3.44) we deduce

that
dA 2,00
Her(p} (o). 2}0) g @) < [ G2(60.00) it (61,00

for A\7*%-a.e. x € Q. Therefore, we deduce from (3.45) that

Het (pf () — po(x), 21 () — 20())
= /M2“ . (H(& —po(x), 01 — z0(x)) + V(61) — V(zo(:v))) duf’y(&, 01)

+ A7 (@) /E G™(&1,01) dpy™ (&1, 61) (3.46)
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for a.e. x € (),
A A dA oo ,00
Herr}(o). @) g (@) = [ 6600 dui (6.0 @47
1

for A"*-a.e. x € Q.
Let us define A := {z € Q: p§(z) = po(z), 28(x) = 20(x)} and Ay = {z € O :
p(z) =0, 27 (x) = 0}. By (3.46) and (3.47) we have that for a.e. x € A

/M (H(fl—po(UC%91—ZO(I))+V(91)—V(ZO@)))dMT’Y(fla91) =0, (3.48)

2X2 xR
AT (@) [ 6 (61.01) duf (61,60 = 0, (3.49)
and for \{""-a.e. z € A
[ =@ dui (6,0 =0, (3.50)

By (2.30) and (3.48) u7"" is concentrated on (po(z), z0(z)), hence
Y = O(po(a),20(z)) for a.e.xz € A. (3.51)

x,00

Since G*° is strictly positive on ¥ and p7"™ are probability measures, we deduce
from (3.49) and (3.50) that

A7 z) =0 forae. xz€A, (3.52)
A (Ay) = 0. (3.53)

Let us consider now the measures /ff’y for x € B:=Q\ A. For every x € B let
L(z,-,-): ME?xR — R be a linear function such that L(z,p§(z) — po(z), 28(z) —
20(@) = Her(pi(x) — pola), 24 (x) — 20(x)) and L{z,€,0) < Hen(€,0) for every
(&,0) € M3 xR. Using (3.43), (3.46), and the linearity of L, for a.e. z € B we
obtain

[ 6= o)~ zale) dit™ (60,60)
MD xR
A7) [ Do 60,00 dul (61,00
= [ (G = (o). 61 = 0(a) + V) = Viao(a)) di? (61,00

AT ) [ 6 (600 (61 6). (3:5)

Using (3.5) we find L(x, & —po(z), 01 — z0(x)) < H(& —po(x), 01 — z0(x)) +V(01) —
V(z0(x)). Therefore, equality (3.54) implies that for a.e. 2 € B we have

L(z,& —po(x), 61 — 20(2)) = H(& — po(x), 01 — z0(x)) + V(61) = V(20(x)) (3.55)
for Y -ae. (€1,61) € ME*xR, and
AT (@) L(, 61, 01) = AT ()G (61, 01) (3.56)

for pi"-a.e. (£1,61) € . As L(z,&1 — po(x), 61 — 20(2)) < Heg(&1 — po(x),01 —
zo(z)) < H(& — po(x),01 — zo(x)) + V(01) — V(20(2)), we deduce from (3.55) and
Lemma 3.2 that (£1,61) = (po(z), 20(x)) for pi -ae. (€1,61) € ME*xR. This
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implies that p"" is concentrated on (po(z), 20(z)). Since p?¥ is a probability
measure, we conclude that
Y
ugf = 5(;00(96))20(1)) for a.e. z € B. (3.57)

We now consider the measures ™. We first observe that z(z) # 0 for a.e.
x € B by (3.37), (3.38), and Lemma 3.5. For every = € B we define

= VIpi(z) —po()? + 2(2)?,
(ﬁ(fﬂ)af(ﬂﬁ)) = (Pl( ) po( ), 2(x))/p(x) .
By (3.56) and Lemma 3.5 for a.e. z € B with A\{”“(x) # 0 we have

(61,01) € {(P(x), 2(2)), (B(x), —2(x))} for py-ae. (§1,61) € X

so that
17 = B(2)0(p(x) 2(2)) + (1= B(2))(p(2),—2(2)) (3.58)
for a suitable §(z) € [0, 1]. Using (3.43) we find that
Pi—po=pATY, A —20=(28-12A" (3.59)
a.e. in B. Since p{ — py = py, the first equality implies that
A7 =¢ ae in{xeB:p(x)#0}. (3.60)

Since z{ — zo = (2a — 1)z = (2a — 1)pZ and £ # 0, the second equality in (3.59)
implies that o = § a.e. in {x € B : p(x) # 0}. Therefore,

,ugf’oo = a(x)é(ﬁ(m)72(w)) —|—(1 —Oé(x))(s(ﬁ(m)7_2(m)) a.e. in {:E € B: 13(:1:) 75 0}. (3.61)
As He(0,0) = G*(0,0) = (ax — by)|d| for every 6 € R by (2.14), if p(x) = 0
we deduce from (3.38) that z(x) = z{(z) — zo(x) and a(z) = 1. Then the second
equality in (3.59) implies that

(26(z) — AT (z) = |2(x)| ae. in {z € B:p(zx) =0}. (3.62)
Therefore, from (3.46) and (3.58) we deduce that
G*(0,2(2)) = Herr (0, 2(2))
= A2 (2) (B@)G= (0, £57) + (1 = B(x)G= (0, —£4)
= 2ﬁ(m)—1GOO(Oa z(z)),
hence f = a =1 ae. in {z € B:p(x) = 0}. By (3.62) we have A\]™" = |z| = ¢ a.e.
in {z € B: p(z) = 0}. Using also (3.58), (3.60), and (3.61) we conclude that

i = al@)0(p(a),2()) + (1= a(2))d(p(a),—2(x))  a-e. in B,
A7 =¢ ae in B.

(3.63)

Let us consider now the properties of the measure u*> for A*°-a.e. z € Q. For
every © € By := 0\ Ay we define

= \/lp?(ﬂc NI+ 2a(2)%,
(ﬁA(fE) (90)) (P (2), 2(2))/oa(@) |
and notice that ¢x(z) > /|pp(x))[2 + 2 (x)2 = 1. As in the previous step we
consider a linear functlon Ly(z,-,-): M2X2><R — R such that Ly(z, p7(z), 2} (z)) =
Heog(p7(z), 27 (z)) and L)\(a:,f,ﬂ) < Hcff(g,ﬂ) for every (£,0) € M3**xR. Using
(3.44), (3.47), and the linearity of Ly, for A\]”*-a.e. x € By we obtain

/ (e, 61,0) it (61, 6,) = / G(61,00) du™ (61,61) (3.64)
> >




GLOBALLY STABLE QUASISTATIC EVOLUTION IN PLASTICITY WITH SOFTENING 587

Since Ly(z,&,0) < G™(&,0), for A\{"%-a.e. z € B we deduce that

L(%,&1,01) = G™(&1,061)

for p">-a.e. (&1,601) € ¥. By Lemma 3.5 for \[”-a.e. € By we have z)(z) # 0
and

(&1,01) € {(Pr(2), A (2)), (Pa (@), —2a(2))}  for p7"™-ace. (&1,01) € 2
so that

1777 = BA(T)0(py (@), 25 (2)) + (1 = Ba(@))0(, (2),— 21 (2)) (3.65)
for a suitable 8y (x) € [0,1]. Using (3.44) we find that
dA dA
A - A .
= —— =(28,—1 3.66
V41 d/\(fo,s DX, 21 d)\(fo,s ( ﬁ)\ )Z)\ ( )
A%®-a.e. in By. Since p} = papa, the first equality implies that
dA
PA s~ 1 A%-ae. in {x € By : pr(x) # 0}. (3.67)
1

Since 27 = (2ay — 1)zx = (2ay — 1) 2y, the second equality in (3.66) implies that
ay = By A7 %-a.e. in {z € By : pa(z) # 0}. Therefore,

x

17% = ax(@)d(py (2,51 (2)) T (1 = ax(2))0(py (2),— 21 (2))

i . (3.68)
A7 %-ace. in {@ € By : pa(x) #0}.

As He(0,0) = G*(0,0) for every 6 € R, if py(x) = 0 we deduce from (3.40) that
zx(z) = 27 (z) and a,(z) = 1. Then the second equality in (3.66) implies that
d\ 0.5 . .
20x(x) — 1= |z>\(:t)|W(:E) A%-ace. in {z € By : pa(z) = 0}. (3.69)
1

Therefore, from (3.47) and (3.65) we deduce that
G>(0,2x(x)) = Herr (0, 2x(2))
= 252 (B (2)G>(0, 257 + (1 = B (@) G (0, —26))
= 251G (0, 2a(2))
hence By = ay =1 A{""-a.e. in {x € By : pa(z) = 0}. By (3.69) we have o) = =
1
Al s =1 AT™%-a.e. in {x € By : pa(z) = 0}. Using also (3.53), (3.65), (3.67),
1
and (3.68) we conclude that

1% = ax (@), (@) 21 (@) T (1= A (@))0(ps (@), 22 () AT “-ave. in Q,
d)

00,5 . = (3.70)
@Am =1 Al -a.e. in €.
It follows that A\7™° << A and that
dAOO,S _
d1>\ =y Aae. inQ. (3.71)
The conclusion follows from (3.42), (3.51), (3.52), (3.57), (3.63), (3.70), and
(3.71), using the homogeneity of f. O

To prove the next theorem we need two technical results.
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Lemma 3.11. Let =1 and Zg be finite dimensional Hilbert spaces and for i = 1,2
let m;: QxZ1xZaxR — QOxZ; xR be the projections defined by m;(z,£1,&2,n) =
(z,&,m). Let p € GY (;E1xE2) and let p € LY (Q;=1). Assume that w1 (p) = 9§,
and let po := ma(u). Then

<f($ 517525 )7 (.I 615527 )> = <f(17aUP(I)afz,W)7N2($7§2,77)> (372)
for every f € B’“’m(qul xEgxR).

Proof. Using [4, Definition 3.16] and standard arguments in measure theory, it is
enough to prove (3.72) for every f € Ch™(QxZ; xZa xR).
By the definition of ps we have

(f (e, np(e), &2, m), pa (2, &2,m)) = (f (2, np(x), E2,m), 12, &1, E2,1)) -
Therefore, to prove (3.72) it is enough to show that

<f($7§15€2577) - f(fl?aWp(x)af%77)7,“(33751,52777» =0

By approximation it suffices to prove this equality when f is Lipschitz continuous
with respect to &1,&2,n with a constant L independent of x (see [4, Lemma 2.4]).
In this case we have

|<f('r7§1a€2a77) - f(IaUP(I)afza77)7#(35751,52777)” < L<|77p(:t) - §1|’/’L(I’€17§25n)> .
As w1 () = dp, we have

(Inp(2) = &l w(, &1, €2,m)) = (Inp(e) = &, 6p(2, €1,m)) = 0,
which concludes the proof. O

Corollary 3.12. Let 2y, =g, w1, 72, i, and p be as in Lemma 3.11, and let
w1 = m(p) and po = w2 (). Assume that iy = 6,. Then

<f( 517527 )a ( 517525 )> = <f(x7np(x)7§27n)aﬁ;/(xa52777»
for every f € B’“’m(qul xEgxR).

Proof. Tt is enough to apply Lemma 3.11 to fi¥, using [4, Lemma 4.8]. O

Theorem 3.13. Let p € SGY ({to,t1}, ;M5 *xR), let (po, z0) := bar(p,,), and
let (p1,21) := bar(p,,). Assume that
(H(&1 = &o,6h — 00) + {V}H01,m) — {V}(00,m); Ko, (2, €0, 00, €1, 01,m))
= Hert (P1 — Po, 21 — 20) (3.73)
and that
Bty = O(py70) (3.74)
with Py € L' (4 M5?) and Zg € L*(Q). Then @y, = &

50150)'

Proof. If py = Py € L' (4 ME?), 20 = Zo € L(Q), and py, = O(py z0), then (3.73)
implies (3.36) by Lemma 3.11 with p1 := p, , and the conclusion follows from
Theorem 3.10.

We consider now the general case. Let ¢(x, &, 00,&1,01,m) = (x,&,00,&1 —
§0,01 — bo,m) and let w(x,&0,00,§,0,n) := (x,&,0,m). We define v := (70 ¢)(p,,4,)
and observe that

bar(v) = (p1 — po, 21 — 20) - (3.75)
) we have

By (3.73
(£,0) + {V} (00 + 0,1m) — {V}00,n), d(tr,1,)) = Her(pr — po, 21 — 20), (3.76)

(H
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where the measure ¢(p, ,, ) acts on the variables (z, &, 6o, .0, n). Moreover, since
v =m(¢(ty,y,)), we have that

(H(E,0),(maye,)) = (H(E.0),v), (3.77)

£,

where the measure v acts on the variables (z 6,0 ,1). We consider the decomposition
)¢
),

(V00 + 8.m) = (VY00 1) Dlptar,))
— (V{60 + 6.1) = {(V} (00, ). Dlpt,)") (3.78)
+ {VH0 +0.0) =V} 00,1). 6Th1,0,))

given by [4, Theorem 4.3]. As p, is the image of the measure ¢(p,; ;) under the

map (z, &, 0o, €, 0, n) — (x,&0,00,7n), by (3.74) we can apply Corollary 3.12 and we
obtain

V100 + 0,m) = {V}(00, 1), 6ty )
= {V}(rZo() + 0, 1) — {V}(nzo (), m), 7")
Since by concavity {V}(6o + 6,1) — {V}(00,1) > V>(8), we have

(V60 + 8.1) = {V}60.1), 8(at1,0,)) = (V=(0), 6lpt, ) )
= (V2 (0), (9{1a1,0,))) = (V(6), ) (3.:80)
= (VY00 (@) + 8.0) — (V3 (7o (z).m). 7).

where the second equality follows from [4, Lemma 4.8], taking into account that
v =m(¢(ty,y,))- By (3.76)~(3.80) we obtain

Her(p1 — o, 21 — 20) = (H(E,0) + {V}(iiZo(x) + 0,m) — {V}(nZo(2),m),v).

By the Jensen inequality for generalized Young measures [4, Theorem 6.5] we deduce
from (3.75) that

Her(p1 — po, 21 — 20) = (H(E,0) + {V}(nZo(x) + 0,n) — {V}(nZo(x),n),v). (3.81)
Let us fix z € Q and let G: M%XQXRXR — R be the function defined by

G(€,0,n) = H(E,0) + {V}(nZo(z) + 0,n) — {V}(nZo(z),n).

It follows from (3.4) and (3.7) that the function Heg(€,0) is the convex envelope
of G(&,60,n) with respect to (£,6,n). Moreover, by (3.13) we deduce that for every
n > 0 the equality

He(€,0) = H(E,0) + {V}(nZo(x) +6,n) — {V}(nZo(x), )

holds if and only if (£,6) = (0,0). Therefore (3.75), (3.81), and [/, Lemma 6.7]
imply that

(3.79)

suppv C {(2,0,0,1) 1z € Q, n >0} U (AxMEFExRx{0}),
and, in particular,
supp?? C {(z,0,0,n): x € Q, n >0},

hence 7V = (0,0
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From the definitions of v and from [4, Lemma 4.8] it follows that

fv pozo) /f ()71)d‘r

= (f (2, +1po (@), 0 + 1Zo(x),m), ") (3.82)
= (f(z,& — & +npo(x), 01 — O + 11Z0(x), 1), 12,1,

for every f € Chom(ﬁxMQDwaxR). By (3.74) we can apply Corollary 3.12 and
we obtain that the last term in the previous formula equals <f(x,§1,91,77),ﬁ}1>.
Therefore, ﬂ%; = O

50720)'
4. Globally stable quasistatic evolution for Young measures.

4.1. Definitions and main result. We begin with the definition of the set of
admissible triples in the Young measure formulation, with boundary datum w on I'y.

Definition 4.1. Given a set © C R and a map w: © — H(Q;R?), we de-
fine AY (0, w) as the set of all triples (u,e,u) with u: © — BD(Q), e: © —
L2(;M22), € SGY (O, Q; M32xR), with the following property: for every fi-
nite sequence t1,...,t, in O, with t; < --- < t,,, and every i =1,...,m there exist
a sequence (ul, el pt) € A(w(t;)) and a sequence z; € M(£2) such that
uf — u(t;) weakly” in BD(Q2),
et — e(t;) strongly in L?(Q;M2%2),

sym

and
S((ph o2l yeo(ppr o)) — Bty .oty Weakly™ in GY (Q; (MHZxR)™). (4.1)

Remark 4.2. Since the weak* convergence in GY (€; (M7?xR)™) implies the
convergence of the norms || - || (see [41, Remark 3.12]), it is not restrictive to assume
that

llekllz < lle(t)lla + 1, [1(0ks zi) 1 < llpae, [l +1

for every i and k. As (ul,el,pl) € A(w(t;)), there exists a constant C;, depending
only on w, t;, [|e(t;)||2, ||, ||+, such that

||y + || Bullly < Ci
for every k.
Remark 4.3. It follows from [4, Remark 6.4] that
ph — p(t;)  weakly™ in My (M%),
zi = z(t;) weakly” in M,(),

where (p(t;), z(t;)) := bar(p,,). As (u, e}, pi) € A(w(t;)), by [3, Lemma 2.1] we
conclude that

(u(ti), e(t:), p(ti) € A(w(ts)). (4.2)

Remark 4.4. The inequalities proved in Remark 4.2 allow to use the metrizability
of the weak™ topology on bounded subsets of the dual of a separable Banach space
and to prove that the set AY (O, w) satisfies the following closure property: if
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u: © — BD(Q), e: © — L2 M2%2), u € SGY (0,0, M5 ?xR), and (uy, e, i)

sym

is a sequence in AY (©, w) such that

ur(t) = u(t) weakly” in BD(Q), (4.3)
er(t) — e(t) strongly in L*(€; MZ)?2) (4.4)
for every t € ©, and
()ty ot = Boyy..p,  Weakly® in GY (O (MB?xR)™) (4.5)
for every finite sequence t1,...,t, in O, with ¢t; < --- < t,,, then (u,e,u) €
AY (0, w).
More in general, we have the following: if u: © — BD(Q), e: © — L*(; MZ)2),

p € SGY (0, 0;M5?xR), and (ug, ex, py) is a sequence in AY (O, wy) such that
(4.3)—(4.5) hold and wg(t) — w(t) strongly in H'(Q;R?) for every t € O, then
(u,e,u) € AY (O, w). This follows from the closure property, observing that (uj —
wy + w, e, — Bwy, + Ew, ;) belongs to AY (0, w).

Remark 4.5. Using Theorem 3.6, Lemma 3.7, and [17, Theorem 3] (see also [11,
Appendix]), it is easy to see that the definition does not change if we replace
A(w(tl)) by Areg(w(ti))-

Given p € SGY ([0, +00), ;M7 2 xR), its dissipation Dy (p;a,b) on the time
interval [a, b] C [0, 400) is defined as

k
sup > (H(& = &1, 05 — 0i1), gyt (2, €0, 00, -, &y Oks)) s (4.6)
=1

where the supremum is taken over all finite families ¢o, %1, ..., t; such that a =ty <
t1 < -+ <t = b. As in the case of the variation Var(u;a,b) considered in [1,
Section 8], we have

k
Dy (p; a,b) = sup Z(H(& —&io1,0i —0i1), vy, (2,621,051, 8, 05,m)), (4.7)
i=1

where the supremum is taken over all finite families ¢o, %1, ..., t; such that a =ty <
t1 <<t =0

In the following definition we use the homogeneous function {V'} defined by (3.30)
and the notion of weakly™ left-continuous system of generalized Young measures
introduced in [4, Definition 7.6].

Definition 4.6. Given w € AC),.([0, +00); H(Q;R?)), a globally stable quasistatic
evolution of Young measures with boundary datum w is a triple

(u,e,p) € AY ([0, +0), w) ,
with u, e, u weakly™* left-continuous, such that the following conditions are satisfied:

(evl) global stability: for every t € [0,+00) we have

Qle(t)) + ({V}(O,n), my(x,€,0,m))
< Q(e(t) +¢&) +H(p, 2) + {VHO +nZ(x),n), uy(z,€,0,m))

for every (@, &,p) € Ayeg(0) and every Z € L1(Q);
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(ev2) energy balance: for every T € (0,400) we have Var(u;0,T) < 400 and
Q(e(T)) + D (p; 0,T) + ({V} (0, 1), (2, €, 6,1m))
T
= Q(e(0)) + {V}(0,m), po(x,€,0,m)) +/0 (o(t), Ew(t)) dt

where o (t) := Ce(t).
We are now in a position to state the main theorem of the paper.

Theorem 4.7. Let w € AC,.([0 + 00); HY(Q;R?)), (ug,e0,p0) € A(w(0)), and

zo € My(S2). Assume that
Q(eo) + V(20) < Qleo + &) +H(p, 2) + V(2o + 2)

for every (0, é,p) € Areg(0) and every zZ € L*(Q). Then there exists a globally stable
quasistatic evolution of Young measures (u, e, p) with boundary datum w such that
u(0) = ug, €(0) = eo, and pg = dpy 2o)-

4.2. The incremental minimum problems. The proof of Theorem 4.7 will be
obtained by time discretization, using an implicit Euler scheme. Let us fix a se-
quence of subdivisions (t});, of the half-line [0, +00), with

0=t <th < - <ti'<ti—+oo asi— oo, (4.8)

7, = sup(th —ti ') =0 ask — oo.
i

For every k let w} := w(t}) for i > 0 and let W} = w(t}) — w(ty") for i > 1.
We define uj, € BD(0), e} € L*(;MZ22), and pj € SGY({t},...,t}},
M%?xR) by induction on i. We set uf) 1= ug, €9 := eg, 19 := 8(py.2,), and for i > 1

we define (u}, e}, i) as a minimizer (see Lemma 4.9 below) of the functional
Qe) + (H(& — &1, 0i — 0ia) + {V}(0i,m), Vg (2,&i1,0i0,&,0:,m))  (4.10)

over the set Aj of all triplets (u,e,v) with u € BD(Q), e € L*(;MZx2), and v €

SGY ({t),...,t},Q; M3?xR), with the following property: there exist a sequence
(Cmy Emy Pm) € Apeg(Wh) and a sequence Z,, € L'(Q) such that

u;:l + Gy — u Weakly* n BD(Q) )

Som) s

e?l +ém — e strongly in L?(Q;M
T oy (5 )9 i) = vig_yi weakly™ in GY (Q; (MBZ xR)™),

(ﬁm)zm)

where 7(; 0 @x (ML xR) xR — Qx (MBPxR)™™ xR is defined by

77(11312) ($7€07 607 e 7€i—17 6i—1777) = (xaé-Ou 907 cee 751'—17 9i—17§i—1+7725(x)7 61_1+772(.’L'),77) .

We note that if (u,e,v) € A}, then

Vg ot = (B g it (4.11)
(u,e,p) € A(wy), (4.12)

where (p, z) := bar(v,; ). Then we define (pi,2L) == bar((u};)t};).
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Remark 4.8. The following equalities hold:
inf  [Q(e) + (H(& — &1, 0 — 0ia) + {V}(0:,m), Vt;'jt;’ﬂ

(u,e,u)EA}c
= inf  [Qeft +é)+
(ﬁ,é,ﬁ)efzeg)(w;)
zeL (©2 i .
+(H (& — &1, 00— 0ia) + {V IO, m), TG 5 (17 g o))
= inf [ Q(ef &)+ H(B, 2) + {VI0i,m), Tipn (1))
(1,6,P)EAreg (W},) k
ze LM (Q)
- (u)&iB)fEBi [Q(e) + (H (& — &1, 0; — 0;0) + {V}(0i,n), utgltiﬂ ,

where Bj, is the class of all triplets (u, e, v), with u € BD(Q), e € L*(Q;M3,?%), v €
SGY ({t),...,ti},Q; M52 xR), such that Vio 4t = (l,l/;;_l)tz.“tz—l and (u,e,p) €
A(w}), where (p, z) := bar(v; ). The first two equalities follow from the definition

of A and the continuity properties of the functional (4.10). On the other hand
the infimum in the last line is greater than or equal to the infimum in the previous
line by Theorem 3.9, and is less than or equal to the infimum in the first line, since
Al C B! by (4.11) and (4.12).

The existence of a minimizer (uf,el, ui) to (4.10) is guaranteed by the following
lemma.

Lemma 4.9. For every i the functional (4.10) has a minimizer on AL, every min-

imizer (uj,, e}, py,) satisfies (p},),; = O(pe za), and
k
Qley) + Mer (P = pi, > 2k — 2 ) < Q&) + Hea(p— Py 12— 25,1)  (4.13)
for every (u,e,p) € A(w(ty)) and every z € My(9).
Proof. The lemma will be proved by induction on 7. Assume that u?l is defined

—v
and (u} ") 4i-t = O(pa za). We shall prove that the functional (4.10) has a minimizer
(u},, e}, puy,) in A}, and

(Né)tz = 6(?8,23) . (4.14)
Thanks to Remark 4.8 there exists a minimizing sequence (w,, €m, ™) in A}

with vji . = T ((H;'C—l)t%“t?l) and (U, €m, Pm) € Areg(0h). By (2.30) we

Lt PmyZm)

have
H(&i—&i1,0i—0i1) + {V}(0i,m) > OF |&—&a| + CF0:—0ia | + {V}(0i1,1)
hence by the compatibility condition (7.2) of [1] the sequence
Q™) + CH(|& — &a| +10; — Oia ], Vitay (@€, 01, &, 0:,m))
+ ({V}(0i1,m), V?}Zfl (x,&i,0i0,m))

is bounded uniformly with respect to m. By (4.11) we have V;’i,l = (uf;l)t?:l, S0
that

Q(e™) + C¥ (& — &l + 10 — 0ia Vit (@6, 0,6, 05,m)) (4.15)

i
k
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is bounded uniformly with respect to m. Since by [1, Remark 2.9 and (7.2)]
lvgille < (&l + 164, fo(x &i,0i,m))
(€] + 16:], vy 1t1 (z,8i1,0i1,8i,0i,m))
(1€ —&al + |91_91*1|7 Vi (@&, 01, 60, 05, m))
+ (€t | + 03], Vi (z,&i1,0i1,8,0i,m))
(|&—&ia| + 10:—0i], Vniltz (7,81, 0:1,8,0i,m))
+ (|l + [Gial, (i) i (@, i, 01, m))
it follows from (2.22) and (4.15) and that e™ is bounded in L?(£2; M2%2) and vyl s

sym
bounded in GY (Q; M%?xR). Using (4.11) and [4, Lemma 7.8] we obtain also that
v . is bounded in GY (Q; (M7 xR)*).
kK
Passing to a subsequence, we may assume that e,, — e weakly in L?(;M2X2)

_ ! sym
and vjs . — v weakly” in GY(; (M2DX2><R)*H). Let v be the system in

SGY ({t),..., 1}, Q; M3 ?xR) associated with vy_; according to [1, Remark 7.9]
and let (p,z) := bar(v;; ). Note that (pj, Tt Py 2+ ) = bar(v tl) — (p,2)
weakly* in M (€; M2X2)><Mb( ) by [4, Remark 6.4]. Since (unm, em, ™) € AL we
have [[Eu™l1 < {le™ (|1 + [[bar(3?) (ti) —u™[l1ry < [ar(w?)[lr- By [19,
Proposition 2.4 and Remark 2.5] it follows that 4™ is bounded in BD(2). Therefore,
passing to a subsequence, we may assume that u™ — u weakly* in BD(Q2). By [3,
Lemma 2.1] it follows that (u,e,p) € A(w},), hence (u,e,v) € Bj.
We claim that

IN

e —e strongly in L(Q;M2X2). (4.16)

sym

Indeed, if not, then we can find a subsequence (not relabelled) such that
Q(e) < lim Q(ey,) . (4.17)

Since the other term in (4.10) is continuous with respect to the weak* convergence
of ™ 1y to Vit s (4.17) would imply that

Q(e) (H(& — &i1,0i — 0i1) +{V} (b5, 1), Vg (2, &1, 05, &,0i,m))
< iI}f s [Q( ) (H(& = &i1,0; — 0i1) + {V}(eian)v ’A/ti’lti” )

(a,é,0)€ A},
which contradicts the equalities in Remark 4.8, since (u,e,v) € B,i. Therefore,
(4.16) is proved.
We deduce from (4.16) that (u,e,v) € A% and that it is a minimizer of (4.10) in
A%, From now on we set (ul, el pui):= (u,e,v). By Remark 4.8 and Theorem 3.9
we obtain

o omin [Qe 4 &) + Herr (B, 2) + ({VI0ia,m), (k) )]
(w,é,p)€A(W}), 2€ My (Q) k
= Qe}) + (H(& &*—1,9' = 0i1) + {V3(05,m), (1),11) (4.18)
> Q(e},) + Het (D), — Pk > 21 — 21 ) + ({V (01, m), (M:l)t;'j%

where the last inequality follows from Jensen inequality. Since (ui — uz 1,ek

e};—l, pi — pz_l) € A(w?), we deduce that the previous inequalities are in fact equali-
ties. Theorem 3.13 now yields (4.14). Finally, (4.13) easily follows from (4.18). O
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Corollary 4.10. For every i and k we have
Q(e;c) +H0ff(p;c _pz—l,o) S Q(e) +Hcﬁ"(p pklvo)
for every (u,e,p) € A(w(tl)).

Proof. Tt is enough to take z = z; ' in (4.13) and to use the inequality Heg (&, 0) >
H.5(€,0), which follows from the fact that 6 — Heg(€,0) is convex and even. O

The following theorem shows that the incremental problems can be considered
as a relaxed version of incremental problems defined on functions. For different
approaches to the relaxation problem in the context of rate-independent processes
we refer to [15] and [16].

Proposition 4.11. Let us fix k. Let (u™,e™,p™) be a sequence in Areq(w(0)) and
let 2™ be a sequence in Ll(Q) For every i > 1 let us consider two sequences (with
respect to the index m) (a>™, 5™, p™) € Ayeq(wh) and Z4™ € LY (). For every
multiindex mq ... m; with i +1 components we define

[ 7
QM0 — g0 Zﬂj»mj , MmO Mo g Zéjvmj ,
Jj=1 Jj=1
[ [
pmo...mi = pmo + Zﬁ]ﬂnj , Zm0~-~mi e Zmo + Zg]»mj .
Jj=1 j=1

Note that
(Mo Mo oy e AL (wy,)

Moreover, we define ™™ € GY (Q; (M52 xR)™*1) by
,um" M — 5((pmo 2M0), (PO ZTOTLY L (PO T Z0 - )) -

Suppose that there exist & € L*(€; M2y %) and e SGY ({19, ... 11}, O ML 2 xR)
such that for every i > 0

lim ... lim e™o-™i = ¢t (4.19)
m;— 00 mo— 00
lim ... lim pmo ™ = uto # (4.20)
m; — 00 mo—00

where in the former formula all limits are with respect to weak convergence in
L2(%; M?;n%) while in the latter they are taken in the weak™ convergence in the

space GY (Q; (M52 xR)™). Then for every i > 1
liminf .. liminf [Q(e™0"™) 4 H(p"™, 2°™) + V(20 ")]

> Q(&") + (H(& — &1, 0; — 0i1) + {V}(0:,m), ﬂi;c—lt;j :

where ﬂthi acts on the variable (x,&1,0;1,&,0:,1m).
k k

(4.21)

Conversely, if ¢ and fi' coincide with the function et and the measure pl ob-
tained in the incremental construction, then there exist two sequences (u™,e™, pm) €
Apeg(w(0)), 2™ € LYQ) and for every i > 1 two sequences ("™, &"™, pb™) €
Apeg(Wh) and 2™ € LY(Q) such that for every i > 0 (4.19) holds with respect to
strong convergence and (4.20) holds with respect to weak® convergence, while

lim ... lim [Q(emo" )+H( sS4, 5lm1)+V(Zm0“'mi)}

= Q(ek) + (H (& — &1, 0 — Oia) +{V}H(0i,m), (b))
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for every i > 1.

Proof. Inequality (4.21) follows from (4.19) and (4.20) by the lower semicontinuity
of Q in the weak topology of L?(Q; M2x?) and the continuity of the duality product
in the weak* topology of GY (€; (M7 *xR)?).

By Theorem 3.6 and Lemma 3.7 there exist a sequence (u™, €™, p™) € Ayeq(w(0))
and a sequence z™ € L*(Q) such that u™ — ug weakly* in BD(f2), e™ — ¢ strongly
in L2(;M252) p™ — po weakly™ in M;(9Q; M2, 2™ — 25 weakly* in M,(Q), and
[[(p™, 2™)|l1 — ||(po,20)||1. Using [17, Theorem 3] (see also [11, Appendix]) we
obtain that §(ym m) — 0(py,z,) Weakly” in GY (Q; M52 xR). _ _ .

For every i > 1, by definition of A} there exist a sequence (a"™,é&"™,p"™) €
Apeg (i) and a sequence 4™ € L'(2) such that

u;:l 4 ﬁi,m RN uz Weakly* in BD(Q) )

et +ém —ep  strongly in L2(Q;M2)2), (4.23)
and
T(%“”,i“”)((“Z_l)t‘;...t;’gl) - (H;c)tg...t;'c (4.24)

weakly* in GY (Q; (ME2xR)*™!). Condition (4.19) is trivially satisfied thanks to
(4.23). To prove (4.20) we observe that for every ¢ > 1

Mmo...mi _ Tz (umg...mi,l) .

(ﬁi,mi )Ziv”li)

We now proceed by induction on i. Equality (4.20) for ¢ = 0 is true by construction.
Assume that (4.20) holds for ¢ — 1. Then by Lemma 2.1

lim ... lim g™ =17,

mi—1 —00 mo— 00 (

i}i,mi,Zi’mi)((ll’?l)t%,,,tgl)
The conclusion for i follows from (4.24). O

4.3. Further minimality properties. We now prove that the solutions of the
incremental problems satisfy some additional minimality conditions.

Lemma 4.12. For every i and k and every t > ti we have

Qeg,) + ({VHBi,0), (1) (2, &, 05,m))
S Q(e) + <H(§ - 51'5 0— 91)7 Vt}'ct('rvgiv eiafv 0777» (425)
+ <{V}(97 77)5 Vt(xv 67 9) 77)>
Jor every (u,e,v) € BD(Q)x L*(Q;M22)xSGY ({t), ..., ti,t}, M%?xR) such
that
Vo i = (N};)t%..t}; ’ (4.26)
(u,e,p) € A(w(ty)), (4.27)

where (p, z) := bar(v:).

Proof. Let us fix (u,e,v) as in the statement of the lemma, and let & be the sys-
tem in SGY ({19 ... #1}, Q; M5? xR) associated with the generalized Young measure

0 i — . .
tkmtktt(’/tf;,..t;'ct) € GY (; (M52 xR)*1) according to [4, Remark 7.9]. Since pi,

0 i—1
tr-- -ty
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satisfies (4.11), by (4.26) and (4.27) the triplet (u,e, ) satisfies (4.11) and (4.12),
hence (u, e, ) belongs to the set Bj, defined in Remark 4.8. By minimality we have
Q(el) + (H(& — &, 0; — 0i1), (Hi)t;;lti (@,&1,051,&,0:,m))

+ ({VHOi, ), (13); (%, &, 05,m))
< Qe) + (H(& — &i1,0; — 0i1), Vyirty (@,&1,0i1,&,0:,m))

+ {V3}(i,n), 04 (2., 0i,m)) -

pio Uyt = Vit and vy = vy, we get

Oel) + (H(& — &1,0i — 0,1), Vi (x,&,09,8,0:,m))
+ {V3O:,m), (1) (2, &, 05.m))
< Qe) + (H(§ — &i,0 — 0i), Vt;;lt(w,&—h@i—l,é, 0,n))
+ (V3O m), vi(x,€,0,m)) -
From the compatibility condition (7.2) of [4] we obtain

Qep,) + (H(& — i, 0: — 0ia), vy (2, €1, 051, 63,05, €, 6, m))
+ {V3O:,m), (1) (2, &, 05.m))
< Qe) + (H(§ —&,0 —0i), Vt;;lt}'ct(wagi—la 0i1,8,0:,6,0,1m))
+ {VHO,n),vi(x,€,0,n)) .
By the triangle inequality (2.11) we deduce that
Ofeh) + ({VHBiy ), (1) (€5, 61,)
< Q(e) + (H(E =& 0 = 0:), vy, (2,66, 061, 63, 03,6, 0,m))
+ {VHO.n),vi(x,€,0,m)),
which gives (4.25) by the compatibility condition (7.2) of [1]. O

Since (pi),im1,; = v,z
(“k)t; ti te

For every i and k we set o := Ce’ and for every t € [0,+00) we consider the
piecewise constant interpolations defined by

ug(t) == ul, ek(t) = e}, pk(t) = pl, zk.(t) = 2, (128)
oip(t) =op, wi(t)=wj, [t :=t, :

for t € [ti, i), We define p,, as the unique system in SGY ([0, +00), Q; M52 xR)
whose restrictions to the time intervals [0,#¢] coincide with the piecewise constant
interpolations of pi € SGY ({tY,..., ¢}, M75®xR) introduced in [1, Definition
7.10]. As (p(t), zr(t)) = bar((py,),), we have also

(ur(t), ex(t), Py (1)) € A(wi(t)) (4.29)

for every ¢ € [0, +00).
Lemma 4.13. Let t,t € [0, +00) with t < t. Then

Qex(t)) + {VIO,m), (kp)e(,&,0,m))
< Q(ex(t) — Bwy(t) + Ewi(t)) (4.30)
+ <H(é - 57 é - 6‘)7 (p’k)tf(xv €7 67 éa év 77)> + <{V}(é7 77)7 (p’k)f(xv éa éa 77)>

for every k.
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Proof. Let u := ug(t) — wi(f) + wi(t) and e := ex(f) — Bwy(t) + Ewy(t), and let
i be the greatest index such that ¢i < t. Since the triplet (u,e, (uk)t%”tﬁ) satisfies
(4.26) and (4.27), the result follows from Lemma 4.12. O

Lemma 4.14. Lett € [0,+00). Then

Qlex(t)) + ({V}(O,n), (1) (2,€,0,n))
< Q(ex(t) + &) + H(p, 2) + {V IO+ nz(z),n), (1) (2, €, 0,m))

for every (@, &,p) € Ayey(0) and every z € L1(1).

(4.31)

Proof. Let us fix (@,6,p) € Arey(0) and Z € LY(Q). Let i be the greatest index
such that t§ < t and let £ > . We set @ := ul + @ = ur(t) + 4, é := el +
e=ex(t) +¢ v i=To05((B)w. ) = T (). ), and we define v €
SGY ({t9, ...t 1}, ;M52 xR) as the system associated with Vyo .4 ¢ according to
[4, Remark 7.9]. Since the triplet (4, é,v) satisfies (4.26) and (4.27), the conclusion
follows from Lemma 4.12. O

4.4. Energy estimates. We now prove some energy estimates for the solutions of
the incremental minimum problems.

Lemma 4.15. For every T' > 0 there exists a sequence w,{ — 0T such that

Q(ex(t)) + Du(py; 0,1) + (V30 m), (g )i (2, €, 0,m))

[t]k
< Qeo) + V(o) + [ (on(t), Biv(®)) dt +
0

(4.32)

for every k and every t € [0,T).

Proof. Let us fix T'> 0 and ¢ € [0,7T]. Arguing as in [4, Remark 8.5], we can prove
that

DH(Hk? 0, t) = Z<H(€T — &1, 0 — 97“71)7 (/Lk)t;*ltz (Ia &r1,0r1,&,0r, 77)> )

r=1

where i is the largest integer such that ti < t. Therefore, using the definition of
piecewise constant interpolation of a generalized Young measures, we have to show
that there exists a sequence wg — 07 such that

Q(d@) + Z<H(§T —&r1,0r — 97“*1)7 (/1'2)152*1,52 (I, &r1,0r1,8,0r, 77)>
r=1
+ ({VHO,m), (B}.)e: (2,€,0,m)) (4.33)

< Q(eo)—I—V(zo)—i—/O “(on(t), Bio(t)) dt + wT

for every k and every i with ¢ < T.
Fix 7 € N with 1 <r < i and let 7(7): Ox (M52 xR)" xR — Qx (ME2xR)"+1
xR be the map defined by

F(T) ((E, (507 60)7 ey (5’!‘—17 67‘—1)7 77) = (J:, (507 60)7 ey (57‘—17 97‘—1)7 (57‘—1797‘—1)777) .
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Let us define @ == uj ' —w, ' +w}, é:= ¢, ' — Fw, ' + Bw}, and fi,0 ;- =

B 0 1
W(T)((H’;—l)tz”.t;—l). Let o € SGY ({tY,... ,t};},Q;M%“xR) be the system associ-
ated with fi;0 ;- by [, Remark 7.9]. It is easy to check that

r _ 1
o gt = (ha )tf,;...tF :

Let (p, 2) := bar(fu,y ). Since p = pj,~", we find that (i, é, p) € A(wy), hence (i, &, fz)
belongs to the class B}, introduced in Remark 4.8. By minimality we have

Q(e%) + <H(§T - frflv or - 97“71)7 (N};)tfltz (Ia frflv 9T,1, fra 9% 77)>
+ <{V}(9ra 77)7 (Ng)tglt}; (LL', 57‘—1 ) 97‘—17 5’!‘7 9r7 77)>
< Q(é) + <H(§7‘ - gr—la er - 97‘—1)7 ﬂt;:lt}; (xa 57‘—1 ) 97‘—17 57‘7 era 77))
+ <{V}(9Ta 77)7 /}’t;:lt}; ({E, 67”*15 07“717 §T7 97“5 77)> . (434)
As ﬂtz—ltz = (ﬂ't’““'tz o W(T)) ((H;ﬁl)t%”t;ﬁl) and

thtey
0 4
(mpciy o) (@, (60, 00), - (6. 000),m) = (@, (6, Bra) (€t Bra), ).
we have
<H(§7‘ - 5’(‘—17 er - 97‘—1)7 ﬂt;:lt}; (:I;a 57‘—1 ) 97‘—17 5’!‘7 97‘7 77)) =0

and
<{V}(9ra 77)7 ﬂt;:lt}; (LL', 57‘—1 ) 97‘—17 fra 97‘7 77)>

= <{V}(97‘—17 77)7 (H;ﬁl)tgl (‘T? €T‘—l7 er—lu 77)> .
Therefore (4.34) gives, thanks to the compatibility condition (7.2) of [1],

Q(‘?Z) + <H(§r - 5’(‘—17 9r - 97‘—1)7 (NZ)tglt; (:E7 €T—17 97‘—17 §r, 9r7 77)>
+ ({VHO0r,n), (13t (2, &, 0r,m)) (4.35)
< Qe + Bup — Bup ™) + ({VIOra,m), () 1 (2, €1, 01, m)

where the quadratic form in the right-hand side can be developed as

O+ Buf ~ Buf ) = Q) + (ol Buf— Bup)
+ Q(Bw) — Fw, ). '

From the absolute continuity of w with respect to ¢ we obtain

th
wy —w, ! = /71 w(t)dt,
¢

r

k

where we use a Bochner integral of a function with values in H'(£2;R?). This implies
that

r

k

Ewj, — Bw, ' = FEw(t)dt, (4.37)
!

where we use a Bochner integral of a function with values in L%Q;Mg;ﬁ). By
(2.22) and (4.37) we get

th

Q(Buf — Eul ™) < @C(/H ||Efw(t)||2dt)2. (4.38)
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By (4.35)—(4.38) we obtain

Q(eZ) + <H(§r - gr—lu 97‘ - 97‘—1)7 (N’Z)tglt; (‘Tu §r—17 67‘—17 fr, 97‘7 77))
+ {V3Or,m), ()i (2, &, O m))
S Q(e;;_l) + <{V}(9r—lu 77)7 (Nz_l)tgl (LL', 57‘—1797‘—17 77)>

+/ttz (oZ’l,Ew(t))dt-i-ﬁ(c(/

r—1 r
k tk

< Q(62_1> =+ <{V}(9T*1a 77)7 (/1’2_1)%4 (ZE, ngla 97“*17 77)>

o (4.39)
-1

)] de)

th th
[ e pemyas ot [ B,
t ,

P ty
where
th,
T . :
o= e [ IR0t 0
by the absolute continuity of the integral. Iterating now inequality (4.39) for 1 <
r < i, we get (4.33) with wf = pf [ || Eav(t)||2 dt. O

4.5. Proof of the main theorem. Let us fix a sequence of subdivisions (¢} );>0
of the half-line [0,+00) satisfying (4.8) and (4.9). For every k let (ul,el,pul),
i=1,...,k, be defined inductively as minimizers of the functional (4.10) on the sets
Al with (u)), e, uf) = (10, €0, O(p, =), and let ug(t), ex(t), ok (t), wy(t), and [t]x
be defined by (4.28) and let p;, be the unique system in SGY ([0, +00); Q; M52 xR)
whose restrictions to the intervals [0, #}] coincide with the piecewise constant inter-
polations of p! (see [1, Definition 7.10]). Using Lemma 2.1 and the definition of

Al we can prove by induction on i that (uy,ex, uy,) € AY ({t0,t},... i}, wy) for
every ¢ and k. This implies that

(ur; ex, i) € AY ([0, +00), wp) (4.40)
for every k.

Let us prove that for every T' > 0 there exists a constant C'r, independent of k,
such that

sup |lex(®)|l2 < Cr, Var(p;;0,7) < Cr. (4.41)
t€[0,T

By (2.30) we have

Dy (py;0,t) + {V 3O, m), (p)e (2,6, 0,m))
> (H(€ —&0,0 — 00) +{V}(0,m), (1)t (%, 0, 00, €, 0, 1))
> (CF1E = ol + CF10 — 00| +{V}(0o,m), (k1) ot (, €0, 00, €, 0,1))
= CY (1€ — &l + 10 — bol, (11.) ot (2, &0, 00, €, 6,1)) +V(20) ,

where the last equality follows from the fact that (p;)y = (pg,2). From (2.22),
(2.23), (4.32), and (4.42) we deduce that

(4.42)

T
acllex(®)]3 < Belleol3 + 26¢ S[up]llek(t)llz/ [Bw(t)|l2 dt +wi
te[0,T 0
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for every k and every ¢t € [0,T]. The first estimate in (4.41) can be obtained now
by using the Cauchy inequality.
By (4.32) and the first inequality in (4.41) we have that

DH(/Lk;Oat) + <{V}(9577)7(H’k)t('rvgvean» (443)

is bounded uniformly with respect to k and ¢ € [0,T]. By (4.42) this implies the
boundedness of

<|§ - §0| + |0 - 90|7 (p’k)Ot(xa 507 905 57 07 77)> : (444)
By the compatibility condition (7.2) of [4] and by the equality (tty)q = 0(py,z,) We
have
(€0l + 601, (111 )or (2 €0, 60,€, 6,m)) = lIpolls + 12001
which, together with the boundedness of (4.44), gives that (|€]+ 0], (py): (2, &, 0,m))
is bounded. This implies that ({V}(0,n), (ps.),(z, &, 0,7n)) is bounded too, so that
(2.13) and the boundedness of (4.43) yield the second estimate in (4.41).

By the Helly Theorem for compatible systems of generalized Young measures
proved in [4, Theorem 8.10] there exist a subsequence, still denoted p,,, a set © C
[0, 4+00), containing 0 and with [0, +00)\© at most countable, and a left continuous
pESGY([0, +0), Q; M3%? xR), with

sup [lells < +o0,  Var(u;0,T) < +o0 (4.45)
t€[0,T]
for every T' > 0, such that
(e, b, = By,.p,  Weakly® in GY (O (MB*xR)™) (4.46)
for every finite sequence t1,..., &, in © with t1 < -+ < .

Let p,(t) € Mb(ﬁ;M%XQ), z1(t) € My(Q), p(t) € Mb(ﬁ;MQD“), and z(t) €

Mp(€2) be the measures defined by

(Pg (1), 2 (1)) = bar((py),)  and  (p(t), (1)) := bar(p,) . (4.47)
By (4.46) and by [4, Remark 6.4] we have
p(t) = p(t) weakly” in My (Q; M%?) (4.48)

for every t € O.

By Corollary 4.10 the sequence (u(t), ex(t), p,(t)) coincides with the discrete-
time approximation of the quasistatic evolution corresponding to the function £ —
H.g(&,0) according to [3, Definition 4.2]. Using [3, Theorems 4.5, 4.8, 5.2] we obtain
that there exist a subsequence, still denoted (ug, ek, p;.), a continuous function ¢ +—
(u(t), e(t)) from [0, +o0) into BD(Q)x L*(Q; MZ2y?%) and an extension of ¢ — p(t)
to [0, +00), still denoted by the same symbol, such that ¢ — (u(t), e(t),p(t)) is a
quasistatic evolution of the problem corresponding to the function & — Heg(&,0),
and

er(t) — e(t) strongly in L*(;MZ2%2), (4.49)
up(t) = u(t) weakly” in BD(Q), (4.50)

for every ¢ € [0, +00).

By Remark 4.4 and by (4.40) the triple (u, e, p) belongs to AY (©,w). By the
left continuity of u, e, u we have also (u, e, u) € AY (|0, +00), w).

Let us fix (@, €, p) € Ayeg(0) and Z € L(2). Passing to the limit in (4.31) thanks
to Lemma 2.1 we obtain that (evl) is satisfied for every ¢ € ©. By left continuity
the same inequality holds for every ¢ € [0, +00).
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By (4.41) and by the weak* lower semicontinuity of the dissipation we can pass
to the limit in (4.32) and we obtain

Q(e(T)) + Pu(p; 0, T) + ({V'}(0, 1), pr(, €, 0,m))

. (4.51)
< Qlen) + Vi(z0) + / (o (1), Biv(1)) dt.

for every T' € ©. By left continuity the same inequality holds for every T' € [0, +00).
Passing to the limit in (4.30), we obtain

Q) + (VIO (€, 0,)
< Qe(d) - (o(i), Bw(d) - Ew(t) + QEw(h) - Fuw(t) (4.5
(HE = 6,0 0),pys(,€,0,6,0,0)) + {VHO, ), (2, €,0,1)

for every t,t € © with ¢t < £. By left continuity the same inequality holds for every
t,t € [0,400) with ¢ < .
Using this inequality, we want to prove that

Q(e(T)) + Du(p;0,T) + ({V}(0,n), ur(z,€,0,n))
T (4.53)

> Q(eo) + V(z0) + ; (o(t), Bw(t))dt,

for every T € (0, +00).
Let us fix 7" € (0, +00) and a sequence of subdivisions (s} )o<i<x of [0, 7] with

O=s%<s,1€<---<3’,z_1<s’,§:T,

i i1y (4.54)
i, ek =)
For every i = 1,...,k we apply (4.52) with times s; ' and s}, and we obtain

Qle(sy ) + {V3HO0ia,m), g (2, €1, 051, m))
< Q(e(s})) — (o(s},), Bw(sy,) — Bw(s; ™))
+ Q(Buw(s)) - Pw(sih) (4.55)
+ (H(& — &i1,0; — 0i1), Pivtgi (@,&1,0i,&,05,m))
+ ({V}0:in), s (&, 03,m)) -

We notice that

(o(s1), Buw(sy) — Bu(si)) = / (o (s4), Eto(s)) ds

QEw(sh) - Fw(si) < ge( [ IFw)2as) 50

(H(& — &1, 05 — 0i), Bitg (2,81, 0i1,&,0:,m)) < Du(p; sy, sp) -

On [0,7] we define the piecewise constant function T(s) := o (si), where i is the
smallest index such that s < S}c Summing the inequalities (4.55) for 1 < i < k, we



GLOBALLY STABLE QUASISTATIC EVOLUTION IN PLASTICITY WITH SOFTENING 603

obtain

T
Q(e(T)) + Du (1;0,T) + ({VH(0,m), s (2, €, 0,1m)) + pr /O [Ew(s)]|2 ds

T

> Q(eo) + V(z0) + / (Tr(s), Ew(s))ds, (4.57)
0
where v
s,
puim swp e [ Bl ds.

1<i<k sit
Now conditions (4.54) and the continuity of o guarantee that pr — 0 and that
o — o strongly in L2([0,T]; L?(9; M2%2)). Hence, taking the limit as k — oo in

sym

(4.57), we obtain inequality (4.53), which, together with (4.51), gives (ev2).

4.6. Some properties of the solutions. We conclude this section by proving
some qualitative properties of the Young measure solutions to the evolution problem.

Theorem 4.16. Let (u,e,p) be a globally stable quasistatic evolution of Young
measures. For every t € [0,+00) let (p(t),z(t)) := bar(w,). Then (u,e,p) is a
quasistatic evolution corresponding to the function & — Heg(€,0) according to [3,
Definition 4.2].

Proof. Let us fix t € [0, +00). We want to prove that
Q(e(t)) < Q(e(t) + €) + Her (5, 0) - (4.58)
for every (,¢é,p) € A(0). Let us fix (@,¢,p), let (u), 1) be the pair of measures

associated with g, by [1, Theorem 4.3], let (17" )zcq be the disintegration of Y
considered in [4, Remark 4.5], let

Fa&d)= [ (HED+VO+0) - VOl €0),

let F’*° be the recession function of F' with respect to (5, é), and let co F' be the
convex envelope of F' with respect to (§,0). It is easy to see that F>° = H + V°.
We claim that

coF = Heg . (4.59)
Indeed, as V is concave, we have V(6 + 0) — V(6) > V°°(6), which gives

P&z [ HED+ V@i (€6) = HED +V™(0) > Hrlé.).

where the intermediate equality follows from the fact that uf’y is a probability
measure. This implies co F' > Heg. The opposite inequality can be obtained arguing
as in the proof of (3.4).

By Theorem 3.8 there exist a sequence (ug, €k, pr) € A(0) and a sequence Zj €
LY(Q) such that p, € LY (M5 ?), é — € strongly in L2(Q;M2%<2), pr — b
weakly* in M, (Q; M%?), Z;, — 0 weakly* in M;(2), and

H(pr, k) + V(Z) —  Hea(p,0) +V(0).

Passing to a subsequence, we may assume that §(;, z,) converges weakly™ to some
v € GY (Q;ME2xR). We note that bar(v) = (5,0) and that

(H(E0) +{V}(@.1), v(x,€0,n)) = Her (5, 0) +V(0).
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By Theorem 3.10 we deduce that
_ 1, .L? 1, L2 1.\ 1.\
V=1000,0) t 3W(ge.2) T 3WGa,—2) T 395 20) T 2905 —20) - (4.60)

where ) := |p°| and p” is the Radon-Nikodym derivative of p* with respect to |p°|,
while z and z) are two nonnegative functions such that

Heg(p*,0) = H(p, 2) + V=°(z) ae. inQ
Heg(p*,0) = H(p*, 20) + V>=(21) Aae. in Q.

— v weakly* in GY (Q; M7,?xR), we have

/ Fapni)de —  ({F}.o),
Q

(4.61)

As 5(ﬁk7

Ek)

where o
s s o nE(E/n,0/n) ifn>0,
e 0m:= {F“(f,é) ifn<0.

As F*>° = H + V*°, using (4.60) and (4.61) we obtain ({F'},v) = Heg(p,0), hence
using also the strong convergence of €; to e, we deduce

Q(e(t) + ex) + /Q F(x,p, 2p)de —  Qe(t) + é) + Heu(p,0) .

From the definition of F(z, I3 é) this is equivalent to saying that

Q(e(t) + ék) + H(ﬁku gk) + <{V}(9 + 7751@ (‘T)v 77) - {V}(ev 77)7 ll’t(xa 57 07 77)>
converges to Q(e(t) + €) + Heg(p, 0). Since
Qle(t)) < Qle(t) +éx) + H(pr, 2) + {VHO + nz(x),n) —{V}(0,1), (2, €,0,m))

by (evl), we obtain (4.58) by passing to the limit as k — oo.
Thanks to [3, Theorem 4.7], to conclude the proof of the theorem it is enough to
show that

T
9(e(T)) + Dr ((p,0);0,T) < Q(eo)+/0 (o(t), Bw(t)) dt (4.62)

for every T € (0, +0o0), where Dy, ((p,0);0,T) is defined as in [3, Section 4]. By
(ev2) it suffices to prove that
Dr e (P, 0);0,T) < D (p; 0, T) + {V}(6,m), (2, €, 60,7m))
- <{V}(97 77)7 No(xu €7 67 77)> .

To show this we fix any subdivision (¢;)o<;<x of the interval [0, T]. From the defi-
nition of Dy we obtain, using the compatibility condition (7.2) of [4],

DH(/L; Oa T) + <{V}(95 77)7 H’T(xv 67 9, 77)> - <{V}(97 77)) H‘O(xv 67 9, 77)>

k
> Z (<H(§z —&i—1,0; = 0i—1), By, 4, (@, 6i-1,0i-1, &, 05,m))
—1

+ {V3Oum) = VI Omrm) by, (@061, 0m1, 63, 05,))

k
> Z(Heff(& —&io1,0i = 0i1), (261,001, &, 05,m)

1=

(4.63)

1 k
> ZHCH(p(ti) —p(ti—1), z(t;) — 2(ti—1))
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where the last inequality follows from the Jensen inequality. Recalling the inequality
Heg(€,0) > Heg(&,0) for every & and 6, from the arbitrariness of the subdivision
we obtain (4.63). O

Every globally stable quasistatic evolution of Young measures is absolutely con-
tinuous with respect to time, as made precise by the following theorem.

Theorem 4.17. Let (u,e, ) be a globally stable quasistatic evolution of Young
measures. Then for every T € [0,400) the functions w and e are absolutely con-
tinuous on [0,T] with values in BD(Q) and L*(;MZ2)2%), respectively, while p is

absolutely continuous on [0,T] according to [1, Definition 10.1].

Proof. The assertion on w and e follows from Theorem 4.16 and [3, Theorem 5.2].
By (2.30) we have
C‘I/(V&r(p’v l1, t?) < DH(N? l1, t?) + <{V}(927 77)7 ey, (‘Tv 627 627 77)>
- <{V}(917n)ap’t1 (xvglaelvn)> .

It follows from the energy balance (ev2) that the right-hand side of the previous
inequality is equal to

Qle(tr)) - Qe(ts)) + / “olt), Bio(t)) dt

t1

therefore
C\I/{<|§2 - §1| + |92 - 91|7 I"l’tltz (LL', 517 917 527 927 77))
ta
< [Q(e(t1)) — Qle(t2))] +/ (o (1), Ew(t))|dt.
t1
Since the functions ¢ — Q(e(t)) and t — fo s), Ew(s))| ds are absolutely con-
tinuous, we conclude that p satisfies [4, Deﬁmtlon 10.1]. O

Owing to the previous theorem, if (u, e, u) is a globally stable quasistatic evolu-
tion of Young measures, then p has a weak® derivative f1, at a.e. time ¢t € [0 + 00)
in the sense of [4, Definition 9.4]. The next theorem deals with the structure of f,
and shows that the finite part 7, of p, does not evolve.

Theorem 4.18. Let p, € LY (QME?), Zo € LY(Q), and w € ACi,([0, +00);
HY(Q;R?)). Let (u, e, p) be a globally stable quasistatic evolution of Young measures
with boundary datum w such that fiy = 5(1)07%), and let (p(t), z(t)) := bar(pu,).

Denote the total variation of the measure (p°(t), 2°(t)) by }\( ), and let (P (t), 22 (t))
be the Radon-Nikodym derivative of the measure (p°(t), 2°(t)) with respect to A(t).
By Lemma 3.5 for a.e. t € [0,+00) there exist 2(t) € LY(2), with 2(t) 2*(t) > 0
a.e. on Q, and a(t) € L= (Q), with 0 < a(t) < 1 a.e. on Q, such that

24(t) = a(t)2(t) + (1 — a(t)) (—2(1)) ,
Hegr (p* (1), 2°(t)) = H(p"(1), (1)) + V= (2(1))

a.e. in Q, and there exist Zx(t) € Lk(t) (Q), with 2x(t) 2} (t) > 0 A(t)-a.e. on Q,
and ax(t) € Li"t)(ﬁ), with 0 < ax(t) <1 A(t)-a.e. on Q, such that

(
,'z)‘(t) = OLA(t)sz(t) + (I —aa(®)(=2a(1),
et (D7 (1), 22(1)) = H(PM (1), 2a (1)) + V>°(2a

(4.64)

) (4.65)
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X(t)-a.e. in Q. Then

. 2 2
e = 00,0 + QW0 0) 2 + (1= @)W 50

4.66)
A(t) A(?) (
FaOGA ) 23wy T A a 0 2y )

and
for a.e. t € [0,400). Moreover,

B = 65,70 (4.68)
for every t € [0, 400).

Proof. As the system p is absolutely continuous with respect to time by Theo-
rem 4.17, we have by [4, Theorem 10.4] that for every t1,ts € [0, +00) with t; < to

Dir(pas 1, 12) = / CH(E,0), fug (o €, 0,m)) dt (4.69)

t1

where f1, is the weak® derivative of p at time ¢ in the sense of [4, Definition 9.4]. By
[1, Remark 9.6] we also have that the maps t — p(t) and t — z(t) are absolutely
continuous and (p(t), 2(t)) = bar(f,) for a.e. t € [0, +00).

From Theorem 4.16 and [3, Proposition 5.6] it follows that

2]

Qe(t2) + [ Hen(p(t),0)dt = Qe(tr)) + / o(t), Buo(t)) dt.

t1 tl
By (ev2) and (4.69) we deduce that for every t1 < to

2]

/ CH(E,0). i) de+ (VYO m)— (VY Orom) ) = [ Hem(p(£),0)dt, (4.70)

tl tl

where the measure f1, acts on (z,£,0,7), while p, ,, acts on (z,£1,01,82,02,7m). By
concavity we have {V}(02,n) — {V}(61,n7) > V(62 — 0;), so that (4.70) yields

to to
€Ot (V02 =00 ) < [ Heaol. 00 @)
Dividing by t2 — t; and letting t3 — t; = ¢ we obtain

for a.e. t € [0,+00). Using the Jensen inequality for generalized Young measures
[4, Theorem 6.5] we conclude that

<H(§7 9) + V= (9)7 p’t(xa &0, 77)> = Heff(p(t)7 0) = Heff(p(t)7 Z(t)) (473)

for a.e. t € [0, +00), which shows, in particular, (4.67). By taking the derivative of
(4.70) we obtain from (4.73)

i (L (VH02,m) = {VHOL0) = V() ) =0 (474)

As —V*°° is convex and positively homogeneous, by [, Theorem 10.4] we have
that for every ¢ € [0, +00)

t
(Vo> (01— 60), oy) > / (Vo> fa) ds,
0
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where p, acts on the variables (z, &, 0o, &1,01,m). Since s — ({V'}, pu,) is absolutely
continuous and by (4.74)

<V007 p’s> = %<{V}7 p’s>
for a.e. s € [0, +00), we deduce that
(V=01 = 00), pror) = ({V}O1,m) = {V}(00, 1), poy) - (4.75)
Let 1: Qx(M%?xR)?xR — QxRxR be defined by

¢($a§0790751,91777) = (:6791 - 90777)7

and let v := (g, ). By repeating the arguments used in the proof of (3.78)—(3.80)
we obtain

V3O m) = {V(00,1), o) = ({V}(1Z0(2) +8,m) — {V}(nZo(x),m), v)
where v acts on (z,0,n). This inequality, together with (4.75), yields

(Vo,v) = ((VY(nzo(@) + 6. m) = {V}(nZo(x), ), v)
By (2.27) it follows that 7¥ = §y. Arguing as in the proof of (3.82), we conclude
that
TR (B ) = b, (4.76)
where g : QxM52xRxR — QxRxR is defined by mg(z,£,0,1) := (z,0,n).
As the system p is absolutely continuous with respect to time, we also have that
the system f* given by ﬁg...tm = (Htl...tm)y is absolutely continuous, so that its
weak* derivative fi; exists for a.e. t € [0,+00). We note that in general the weak*

derivative 1z} of r* does not coincide with the finite part (f2,)Y of fi,. Nevertheless
the following identity holds

.

B = ()" (4.77)
To see this we observe that at every time ¢ where both i, and i} are defined, there
also exists the weak* limit of the difference quotients gs(fi;s) as s — t* (see [4,
Definition 9.1]), which is an element of M (Q2xM3%*xRxR) supported on {1 = 0}
(see [4, Definition 2.8]). The equality (4.77) follows now from the identity

fo =+ m g (f177)
Using (4.76) and Corollary 3.12 it is easy to see that ¢ (iy,) = do for every s > t,
which, in turn, implies
FR(ﬁz/) = 60. (478)

By (4.77), (4.78), and [, Lemma 4.8] we deduce that mg((f,)¥) = &p. It follows
that

<{V}(97 77)7 p’t(‘rv €7 67 77)> = <VOO(9)7 ﬂt(‘rv €7 67 77)> + V(O) ’
hence by (4.73) we have
(H (& 0) +{V}0,n), fr,(x,€,0,m)) = Herr (D(t), 2(t)) + V(0) (4.79)

for a.e. t € [0,400). Identity (4.66) is now a consequence of Theorem 3.10 (applied
with po = 0 and 2z = 0).
We now claim that for almost every ¢ € [0, +00)

B =000 (4.80)
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Let us fix t € [0, +-00) such that fi, and 7z} exist. By (4.66) and (4.77) there exists
v € M (QxM32xRxR), with support contained in {7 = 0}, such that

= 60,0 +V5°. (4.81)
By (4.81), (4.78), and Lemma 3.11 we infer that
(f(x, & 0,m),v7° (2,6, 0,m)) = (f(2,€,0,n),v17°(2,£,0,m)) (4.82)

D) = /Q F£,0,0,1) de + (f(2.€,0,0), (@, 6.0.m))  (4.83)

for every f € B (QxME *xRxR). Let v5° € M} (QUxM7*xRxR) be the weak*

limit of the difference quotients qs(fiys ) as s — t+. From (4.66) and (4.83) it follows
that

<f,y§°>:/Qaf(x,p“,,%,())da:+/(l—a)f(x,pa,—fz,())d:c

Q

4 /, anf (@, 5 2x,0) dA + ﬁ (1= an) f (@, —2x, 0) dA (4.84)
Q Q

- <f($7§70777>a Vfo(xvgvean»

for every f € BZ}(‘)’)T (OxM%? xRxR). In the previous formula and in the remaining
part of the proof the dependence upon time is omitted, since ¢ is fixed.

We shall prove that v{° = 0, so that claim (4.80) will follow from the decompo-
sition (4.81). According to [4, Remark 4.5], there exist 7> € M, () and a family

V%) o of probability measures on ¥ := {& € M2*? : |¢| = 1} such that
1 Jzen D

aeomor@etn = [ ([ f@eonai~©)a=@ @)

for every f € Bhom(QxMp?xRxR). We have to prove that 7> = 0. Let us
consider the Lebesgue decomposition 7°° = 7°% 4 75,

We first prove that 7°% = 0. We argue by contradiction. Assume that there
exists a Borel set A, with £2(A) > 0 and A(A) = 0, such that 7°>%(x) > 0 for every
x € A

For every Borel set A" C A let f(x,£,0,n) := 1 (x)|£|. Since v5° is positive, by
(4.84) and (4.85) we deduce that

|j)“|d:§2/ 7% dx
A/ ’

for every Borel set A’ C A. Therefore, [p®| > 0 a.e. on A and there exists h €
L>(A), with 0 < h < 1, such that 7% = h[p?| on A.

Since [p?| > 0 a.e. on A, by (4.64) and Lemma 3.5 we have that |2| > 0 a.e. on A.
Hence, there exists M > 0 such that the set Ay :={z € A: |p*(x)| < M, |2(z)] >
ﬁ} has positive Lebesgue measure. Let us consider the function f(x,&,0,n) :=
La,, (2)(|€] — M?|0])T. Using (4.84), (4.85), the fact that 7°°% = h|p®| on A, and
the positivity of v5°, we obtain

/ <|p“|—M2|z|>+da:z/ Hp®| de,

A M A M

which gives the contradiction, since the left-hand side vanishes, while the right-hand
side is strictly positive. Therefore, 7°°% = Q.
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It remains to prove that 7°°® = 0. We argue by contradiction. Assume that
there exists a Borel set A with £2(A4) = 0 and 7°°%(4) > 0.

For every Borel set A’ C A let f(x,&,0,n) := 1a/(x)[€]. Since v3° is positive, by
(4.84) and (4.85) we deduce that

/ PN dA > 70 (')
A/

for every Borel set A" C A. Therefore, there exists hx € LY (A), with 0 < hy <1,
such that 7°°% = hy|p™|A on A. Taking A smaller if needed, we may assume that
A(A) >0, hx > 0 and [p*| > 0 A-a.e. on A. We can now argue as before with £2
replaced by A and we obtain a contradiction, which implies 7% = 0.
This concludes the proof of the fact that v{° = 0 and, in turn, of (4.80) by (4.81).
By [1, Theorem 10.4] identity (4.80) yields

Var(@" ;0,1) / (VIEPR+ 02,1 (z,€,0,m))dt =0
for every t € [0, +00). By Corollary 3.12 we deduce that

(& = 1P ()] + |61 — nZo(2)|, B (2, &1,61,7))
= <|€1 - €0| + |91 - 90|7ﬁgf,(xa€0790551791577)> S Var(ﬁy;ovt) = Oa

which easily implies (4.68). O

Remark 4.19. We remark that in the previous proof we could not deduce (4.68)
from (4.66) simply by “integration” with respect to time. In fact, for a system g of
generalized Young measures it is not true in general that the knowledge of £, and
of py is enough to identify pu,, as the following example shows.

Let U := (0,1) and for every ¢ € [0, +00) let p(t) € L*(U) be the characteristic
function 1¢y 4. We now consider the two systems pt, p? € SGY([0,+),U;R)
defined by

1 ,_ 2 ,_ Lt
Bty oty = O(p(t)p(tn)) A0 17, 5= 0(0,...,0) F Wp(t1),..p(tm)
for every finite sequence 0 < ¢ <ty < -+ < t,,. Note that for every 0 <t < t;

1
(161 — 6], pefy,) = (161 — 6, i) = / |p(t1) — p(t)|dv = t1 — ¢,
0

which shows that both p! and p? are absolutely continuous. Moreover, for every
f € Ch™(UxRxR) and every 0 <t < t; we have

<f(17, t]— tﬂ?) p‘ttl 915 / f t;) f(t 9 )dI

:/0 f(x,O,l)dx—i—tl%t/t f(ac,l,tl—t)d:v—i—/tl f(x,0,1)dx

(f (e, T=2.m): iy, (2,0, 601,m) /fxOIda:+/f , PP ) gy

_/O f(a:,(),l)da:—l—tl—l_t/t f(2,1,0)dz

and
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It follows that
lim (f(z, 2=2,n), pyy, (2,0,01,m)) = lim (f(z, 2=%,n), u3,, (2,0,01,7))

t1—tt+ t1—tt

1
:/ f(x,o,l)dI+f(t;170)a
0

which yields
1 a2 5
By = i = 0o +wy

for every t € [0,4+00). We point out that, although (i1}) = do, the finite part of
i, which coincides with p} itself, evolves in time.

5. An example. In this section we assume that C is isotropic, which implies that
C¢ =2uép + w(tré)I
for some constants g > 0 and x > 0. We also assume that
K = {(0.¢) e MZ2xR : o2 + (2 < 1,
V() :=3-3IVIi+62, To=09, Ti:=0.

Let us fix a constant 6y > 0 and a 2x2 matrix & with tr&y = 0. We assume that
the symmetric part & of & is different from 0. We will examine the globally stable
quasistatic evolution corresponding to the boundary datum

(5.1)

’LU(t, 'r) = t&)x ’
and to the initial conditions
up(xz) =0, eo(x)=0, po(z)=0, =zo(x)=">0.

Theorem 5.1. Assume that C, K, V, I'g, I'1, 6o, &0, &, w, uo, €o, po, and 2o
satisfy the conditions considered at the beginning of this section. Let

V3

to = ik (5.2)
and let w, e, p, zo be defined by
u(t, z) =t e(t,x) == a(t)&g,
p(t,z) := B()S5 Zoo(t,7) = —z|p(t, @),
where
L PRSI M oy

and let p € SGY ([0, 4+00), % M52 xR) be the system defined by
— 1,02
Kyt "= 6((?0;20)7'“:(?0720)) + 29((D(t1),200 (£1))s s (P(Em ) Z o0 (Em)))
for every finite sequence ty,...,ty with 0 < t1 < -+ < t,,. Then (u,e,pu) is a

globally stable quasistatic evolution of Young measures with boundary datum w and
initial condition py = O(p,, =) -
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Proof. By (3.11) and (5.1) we have

Keg = {(0,¢) e ME2xR : o] < 42, [¢] < /T o2 - 4}.
By (3.9) we have

Heg(€,0) = §|§| for every £ € M3?.

Thanks to (5.2) the function (u, e, p) satisfies condition (b) of [3, Theorem 6.1] for
the dissipation function & — Heg (€, 0), therefore it is a quasistatic evolution for the
same dissipation function according to [3, Definition 4.2]. It follows, in particular,
that

Q(e(t)) < Q(e(t) +¢) + Herr (5, 0) (5.3)

00) and every (4, €,p) € Ayeq(0). Since Heg is convex and even,
< Her (P, 2) for every zZ € L'(Q). From (3.4) and (5.3) it follows

for every t € [0, +
we have Hem (5, 0)
that

Qle(t)) < Qe(t) + &) +H(p, 2) + V(2 + 20) — V(20)
= Q(e(t) +e) + H(p, 2) + (VIO +nz(x),n) —{V}(0,n), m(x,8,0,m)),

which gives the global stability condition (evl) of Definition 4.6.
Let us prove the energy balance (ev2). Since for 0 < t; < to we have

2

(V1€ — &2+ 102 — 6112, g, (3, 61,01, €2, 02,7)) = 7

[p(t2) —p(t)ll1,
we deduce that
2 T
D, :0,7T) = — p(t)||1 dt .
1 (0.7) = = [ 1p0)]s

Therefore, if T' € (0, to] condition (ev2) is satisfied, since

Qe(T) = uT?|&1PL*(Q),  Q(e(0)) =0,  Du(p;0,7)=0,
<{V}(6.777)7 HT(J:7§70777)> = V(ZO) = <{V}(97 77)7 NO(x7§70777)> )

T T
/0 (o (), Eo(1)) dt = / 2ut|E§ P L2(Q) di = uT?(52L2()

If T € [to, +00) condition (ev2) is satisfied, since
Qe(T)) = gl 1L (Q),  Du(p;0,T) = %(T —to)[&51£%(),
Qe(0)) =0,  ({V3}Om), po(,&,0,m) = V(z0),

while
{V3HO.m), ur(z,€,0,m) = V(20) + V> (2(T))

— V(z) %(T — to)l€IL3(@),
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and

T to T
| ot pam)a = [ oungPe @ [ 2umlgPe@d
0 0

to
= ptd|&1P L3 (Q) + 2u(T — to)tol& 1L ()

— il PL@) + LT - )l 1£3@).

where in the last equality we use (5.2).

It remains to prove that (u, e, u) € AY (|0, +00),w). Let us fix a finite sequence
t1,...,tym with 0 < ¢; < --- < t,,. By an algebraic property of I\/JIQDX2 there exist
a,b € R?, with |b| = 1, and a skew symmetric 2x2-matrix ¢ such that £ = a ® b+q.
Therefore there exists a skew symmetric 2x2-matrix w such that §, = a© b+ w.

For every k € N and i € Z we set

Ay = {zeQii<ba<it LY
B, = {eeQ:ilof<bustlo g,
Ch = {fzeQ: - <pap<id}

Moreover, for every k € N we define
Ae=JA,,  Be=\UBL,  Ge=JGi,

%a—l—q:c if v € A,
k(@) 1= - i+l - i
(kb-x—z—l—i—T)a—i—qgt if x € B UC,,

0 if v € A,
Or(z) := %|§5| if z € B},
—%|§g| if v € CL,

so that v, € WH(Q;R?), |vk(z) — &x| < |al/k on Q, Fvg(z) = 0 on Ay, and
Eug(x) = k& on By, U Cl. We note that

la, =1, klg, — 1, kle, — & weakly® in M,(Q).  (5.4)

Let Qi be an increasing sequence of open sets, with union equal to €2, such that
0 < dist(Qx, R2\Q) < 2/Vk, and let @), € C°(Q) be cut-off functions such that
v =10onQ, 0 < pr <1on Q\Qy, and |Veg| < Vk on .

Let us define

wiklt, ) = u () ()G + B0 () + 1) + (1 - pu(e))ikor
Pi(t, @) := or(x) B(t) Bvk (x) + (1 — or(2))185 ,
ex(t,x) := Eug(t,z) — pi.(t, ) = op(z)a(t)§5 + B()Ver(r) © (vr(z) — &),
zi(t,x) =00 + B(t)0r(2) .



GLOBALLY STABLE QUASISTATIC EVOLUTION IN PLASTICITY WITH SOFTENING 613

Then wu(t,x) — téox and er(t, ) — ()& uniformly on Q for every ¢ € [0, +00).
As for py and z, for every f € C"™(Qx (ME2xR)™xR) we have

f(xapk(tlax)azk(tlax)a s apk(tmv'r)vzk(tmax)a 1) dx
Q

:/ f(I,O,oo,...,O,oo,l)dI
A

LNQg

+/ Fla, Bt)KES, 00 + Bt)RSE, ., Bltm)KES, B0 + Bltm )k 4, 1)da
B

N

o B0k B0 Btk GG, B0 Bt HH 1 + R

N
:/ f(:v,O,Ho,...,O,Ho,l)d:v
A

KN

+k/B f(x,ﬂ(h)éé,%“+6(t1)%,...,5( m)ES, %+ B(t )57 1)y

LN

k[ gt pengs - 500 5 % 80 b+ R

KN
where the remainder R satisfies the estimate

[Ri| < cll fllnom (£2(Q\ Q) + kL2 (B N (2\Qk)) + kL (Cr N (2\D1))) -
By (5.4) it follows that

lim /f(xupk(tlax)vzk(tlux)u"wpk(tmvx)vzk(tmax)vl)d‘r
2

k—oo J¢

f(a:,(),@o,...,(),t?o,l)d:c
Q

/fxﬁtl gOvﬂ(tl) 7"'76( )5056( )%70)6117
/fxﬁtl gOvﬂ(tl) 7"'16( )ggaﬁ(t )3)270)6117
This proves (4.1) and concludes the proof of the theorem. O

Remark 5.2. For ¢t > ty the globally stable quasistatic evolution described in
Theorem 5.1 is completely different from the approximable quasistatic evolution
presented in [5, Section 7]. The globally stable quasistatic evolution contains the

terms
2

§w(£(p(t1)72m(t1)) ----- (P(tm) 2o (tm))) T w((p(tl) —2oo(t1))55(P(tm ), — 2o (tm))) ?
which describe oscillations of p and z with infinite amplitude and frequency, while
the approximable quasistatic evolution is given by ordinary functions, without con-
centration or oscillation effects. Moreover the stress o of the globally stable qua-
sistatic evolution satisfies

3 S
o(t) = £ 52 for every t > 1,
2 &1
while the stress o of the approximable quasistatic evolution satisfies
V3 &
o(t) — ast — +o00,
2 1§

but |o(t)] > \/Tg for every t > to, as shown in [5, Remark 7.7].
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