Citation: Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio, Juliette Venel. Handling congestion in crowd motion modeling[J]. Networks and Heterogeneous Media, 2011, 6(3): 485-519. doi: 10.3934/nhm.2011.6.485
[1] | A. D. Aleksandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov., Izdat. Akad. Nauk SSSR, Moscow, 38 (1951), 5-23. |
[2] | L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Natur., 19 (1995), 191-246. |
[3] | L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures," Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel, 2005. |
[4] |
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scalling to hyperbolic macroscopic models, Math. Mod. Meth. Appl. Sci., 18 (2008), 1317-1345. doi: 10.1142/S0218202508003054
![]() |
[5] | F. Bernicot and J. Venel, Differential inclusions with proximal normal cones in Banach spaces, J. Convex Anal., 17 (2010), 451-484. |
[6] | Available from: http://arxiv.org/abs/1009.2837. |
[7] |
V. Blue and J. L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways, Transportation Research B, 35 (2001), 293-312. doi: 10.1016/S0191-2615(99)00052-1
![]() |
[8] |
A. Borgers and H. Timmermans, A model of pedestrian route choice and demand for retail facilities within inner-cityshopping areas, Geographycal Analysis, 18 (1986), 115-128. doi: 10.1111/j.1538-4632.1986.tb00086.x
![]() |
[9] |
A. Borgers and H. Timmermans, City centre entry points, store location patterns and pedestrian route choice behavior: A microlevel simulation model, Socio-Economic Planning Sciences, 20 (1986), 25-31. doi: 10.1016/0038-0121(86)90023-6
![]() |
[10] | M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear Convex Anal., 6 (2005), 359-374. |
[11] |
C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525. doi: 10.1016/S0378-4371(01)00141-8
![]() |
[12] | A. Canino, On $p$-convex sets and geodesics, J. Differential Equations, 75 (1988), 118-157. |
[13] |
C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows, SIAM J. Sci. Comput., 29 (2007), 539-555. doi: 10.1137/050641211
![]() |
[14] |
C. Chalons, "Transport-Equilibrium Schemes for Pedestrian Flows with Nonclassical Shocks," Traffic and Granular Flows'05, Springer, (2007), 347-356. doi: 10.1007/978-3-540-47641-2_31
![]() |
[15] | F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property, J. Convex Anal., 2 (1995), 117-144. |
[16] |
G. Colombo and V. V. Goncharov, The sweeping processes without convexity, Set-Valued Anal., 7 (1999), 357-374. doi: 10.1023/A:1008774529556
![]() |
[17] | G. Colombo and M. D. P. Monteiro Marques, Sweeping by a continuous prox-regular set, J. Differential Equations, 187 (2003), 46-62. |
[18] |
R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
![]() |
[19] |
V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Mod. Meth. Appl. Sci., 18 (2008), 1217-1247. doi: 10.1142/S0218202508003017
![]() |
[20] | to appear in Communications in Pure and Applied Analysis. |
[21] | E. De Giorgi, New problems on minimizing movements, in "Boundary Value Problems for PDE and Applications" (eds., C. Baiocchi and J. L. Lions), RMA Res. Notes Appl. Math, 29, Masson, Paris, (1993), 81-98. |
[22] |
P. Degond, L. Navoret, R. Bon and D. Sanchez, Congestion in a macroscopic model of self-driven particles modeling gregariousness, J. Stat. Phys., 138 (2010), 85-125. doi: 10.1007/s10955-009-9879-x
![]() |
[23] | M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model of pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362. |
[24] |
C. Dogbé, On the numerical solutions of second order macroscopic models of pedestrian flows, Comput. Appl. Math., 56 (2008), 1884-1898. doi: 10.1016/j.camwa.2008.04.028
![]() |
[25] |
A. Donev, S. Torquato, F. H. Stillinger and Robert Connelly, Jamming in hard sphere and disk packings, J. Appl. Phys., 95 (2004), 989. doi: 10.1063/1.1633647
![]() |
[26] | J. L. Doob, "Classical Potential Theory and Its Probabilistic Counterpart," Grundlehren der Mathematischen Wissenschaften, 262, Springer-Verlag, New York, 1984. |
[27] |
J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program, 104 (2005), 347-373. doi: 10.1007/s10107-005-0619-y
![]() |
[28] | J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations, 226 (2006), 135-179. |
[29] |
H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491. doi: 10.1090/S0002-9947-1959-0110078-1
![]() |
[30] |
P. G. Gipps and B. Marksjö, A micro-simulation model for pedestrian flows, Mathematics and Computers in Simulation, 27 (1985), 95-105. doi: 10.1016/0378-4754(85)90027-8
![]() |
[31] |
B. Gustafsson and M. Sakai, Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Analysis, 22 (1994), 1221-1245. doi: 10.1016/0362-546X(94)90107-4
![]() |
[32] |
S. Gwynne, E. R. Galea, P. J. Lawrence and L. Filippidis, Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model, Fire Safety Journal, 36 (2001), 327-357. doi: 10.1016/S0379-7112(00)00060-6
![]() |
[33] | D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415. |
[34] | D. Helbing, P. Molnar and F. Schweitzer, "Computer Simulations of Pedestrian Dynamics and Trail Formation," Evolution of Natural Structures, Sonderforschungsbereich, 230, Stuttgart, (1994), 229-234. |
[35] |
D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev E, 51 (1995), 4282-4286. doi: 10.1103/PhysRevE.51.4282
![]() |
[36] |
R. L. Hughes, A continuum theory for the flow of pedestrian, Transport. Res. Part B, 36 (2002), 507-535. doi: 10.1016/S0191-2615(01)00015-7
![]() |
[37] | R. L. Hughes, "The Flow of Human Crowds," Ann. Rev. Fluid Mech., 35 Annual Reviews, Palo Alto, CA, (2003), 169-183. |
[38] |
A. D. Ioffe and J. V. Outrata, On metric and calmness qualification conditions in subdifferential calculus, Set-Valued Anal., 16 (2008), 199-227. doi: 10.1007/s11228-008-0076-x
![]() |
[39] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359
![]() |
[40] |
L. Levine and Y. Peres, Scaling limits for internal aggregation models with multiple sources, J. Anal. Math., 11 (2010), 151-219. doi: 10.1007/s11854-010-0015-2
![]() |
[41] |
G. G. Løvås, Modelling and simulation of pedestrian traffic flow, Transportation Research B, 28 (1994), 429-443. doi: 10.1016/0191-2615(94)90013-2
![]() |
[42] |
B. Maury, A time-stepping scheme for inelastic collisions. Numerical handling of the nonoverlapping constraint, Numerische Mathematik, 102 (2006), 649-679. doi: 10.1007/s00211-005-0666-6
![]() |
[43] |
B. Maury and J. Venel, A discrete contact model for crowd motion, ESAIM Mathematical Modelling and Numerical Analysis, 45 (2011), 145-168. doi: 10.1051/m2an/2010035
![]() |
[44] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Mathematical Models and Methods in Applied Sciences, 20 (2010), 1787-1821. doi: 10.1142/S0218202510004799
![]() |
[45] | J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 346-374. |
[46] | J.-J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 255 (1962), 238-240. |
[47] |
K. Nagel, From particle hopping models to traffic flow theory, Transportation Research Record, 1644 (1998), 1-9. doi: 10.3141/1644-01
![]() |
[48] |
B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y
![]() |
[49] |
B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x
![]() |
[50] |
R. A. Poliquin and R. T. Rockafellar, Prox-regular functions in variational analysis, Trans. Amer. Math. Soc., 348 (1996), 1805-1838. doi: 10.1090/S0002-9947-96-01544-9
![]() |
[51] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249. doi: 10.1090/S0002-9947-00-02550-2
![]() |
[52] | R. T. Rockafellar and R. Wets, "Variational Analysis," Grundlehren der Mathematischen, Wissenschaften, 317, Springer-Verlag, Berlin, 1998. |
[53] | Ph.D thesis, Université Paris-Sud, in preparation. |
[54] | Y. Saisho and H. Tanaka, Stochastic differential equations for mutually reflecting Brownian balls, Osaka J. Math., 23 (1986), 725-740. |
[55] | A. Schadschneider, Cellular automaton approach to pedestrian dynamics-theory, in "Pedestrian and Evacuation Dynamics" (eds., M. Schreckenberg and S. D. Sharma), Springer, Berlin, (2001), 75-85. |
[56] |
A. Schadschneider, A. Kirchner and K. Nishinari, From ant trails to pedestrian dynamics, Applied Bionics and Biomechanics, 1 (2003), 11-19. doi: 10.1533/abib.2003.1.1.11
![]() |
[57] | L. Thibault, Sweeping process with regular and nonregular sets, J. Differential Equations, 193 (2003), 1-26. |
[58] | S. Torquato and F. H. Stillinger, "Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond," Reviews of Modern Physics, 82, July-September 2010. |
[59] |
S. Torquato, T. M. Truskett and P. G. Debenedetti, Is random close packing of spheres well defined?, Phys. Rev. Lett., 84 (2000), 2064-2067. doi: 10.1103/PhysRevLett.84.2064
![]() |
[60] |
J. Venel, A numerical scheme for a class of sweeping processes, Numerische Mathematik, 118 (2011), 367-400. doi: 10.1007/s00211-010-0329-0
![]() |
[61] |
J. Venel, "Integrating Strategies in Numerical Modelling of Crowd Motion," Pedestrian and Evacuation Dynamics '08, Springer, (2010), 641-646. doi: 10.1007/978-3-642-04504-2_59
![]() |
[62] | J. Venel, "Modélisation Mathématique et Numérique des Mouvements de Foule," Ph.D thesis, Université Paris-Sud XI, 2008. Available from: http://tel.archives-ouvertes.fr/tel-00346035/fr. |
[63] | C. Villani, "Topics in Optimal Transportation," Grad. Stud. Math., 58, AMS, Providence, RI, 2003. |
[64] |
S. J. Yuhaski and J. M. Smith, Modeling circulation systems in buildings using state dependent queueing models, Queueing Systems Theory Appl., 4 (1989), 319-338. doi: 10.1007/BF01159471
![]() |