Enskog-like discrete velocity models for vehicular traffic flow

  • Received: 01 February 2007 Revised: 01 May 2007
  • Primary: 65C05, 90B20; Secondary: 82B40.

  • We consider an Enskog-like discrete velocity model which in the limit yields the viscous Lighthill-Whitham-Richards equation used to describe vehicular traffic flow. Consideration is given to a discrete velocity model with two speeds. Extensions to the Aw-Rascle system and more general discrete velocity models are also discussed. In particular, only positive speeds are allowed in the discrete velocity equations. To numerically solve the discrete velocity equations we implement a Monte Carlo method using the interpretation that each particle corresponds to a vehicle. Numerical results are presented for two practical situations in vehicular traffic flow. The proposed models are able to provide accurate solutions including both, forward and backward moving waves.

    Citation: Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow[J]. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481

    Related Papers:

    [1] Michael Herty, Lorenzo Pareschi, Mohammed Seaïd . Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2(3): 481-496. doi: 10.3934/nhm.2007.2.481
    [2] Simone Göttlich, Ute Ziegler, Michael Herty . Numerical discretization of Hamilton--Jacobi equations on networks. Networks and Heterogeneous Media, 2013, 8(3): 685-705. doi: 10.3934/nhm.2013.8.685
    [3] Paola Goatin, Sheila Scialanga . Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11(1): 107-121. doi: 10.3934/nhm.2016.11.107
    [4] Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada . A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16(2): 187-219. doi: 10.3934/nhm.2021004
    [5] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [6] Simone Göttlich, Elisa Iacomini, Thomas Jung . Properties of the LWR model with time delay. Networks and Heterogeneous Media, 2021, 16(1): 31-47. doi: 10.3934/nhm.2020032
    [7] Paola Goatin, Elena Rossi . Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15(2): 261-279. doi: 10.3934/nhm.2020012
    [8] Helge Holden, Nils Henrik Risebro . Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13(3): 409-421. doi: 10.3934/nhm.2018018
    [9] Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012
    [10] Shimao Fan, Michael Herty, Benjamin Seibold . Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks and Heterogeneous Media, 2014, 9(2): 239-268. doi: 10.3934/nhm.2014.9.239
  • We consider an Enskog-like discrete velocity model which in the limit yields the viscous Lighthill-Whitham-Richards equation used to describe vehicular traffic flow. Consideration is given to a discrete velocity model with two speeds. Extensions to the Aw-Rascle system and more general discrete velocity models are also discussed. In particular, only positive speeds are allowed in the discrete velocity equations. To numerically solve the discrete velocity equations we implement a Monte Carlo method using the interpretation that each particle corresponds to a vehicle. Numerical results are presented for two practical situations in vehicular traffic flow. The proposed models are able to provide accurate solutions including both, forward and backward moving waves.


  • This article has been cited by:

    1. Martin Gugat, Michaël Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, 2011, 17, 1292-8119, 28, 10.1051/cocv/2009035
    2. Michael Herty, Siegfried Müller, Aleksey Sikstel, Coupling of Compressible Euler Equations, 2019, 47, 2305-221X, 769, 10.1007/s10013-019-00353-7
    3. R. Borsche, A. Klar, A Nonlinear Discrete Velocity Relaxation Model For Traffic Flow, 2018, 78, 0036-1399, 2891, 10.1137/17M1152681
    4. Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles, 2021, 19, 1540-3459, 589, 10.1137/20M1360128
    5. M. Dick, M. Gugat, M. Herty, S. Steffensen, On the relaxation approximation of boundary control of the isothermal Euler equations, 2012, 85, 0020-7179, 1766, 10.1080/00207179.2012.703787
    6. Markus Dick, Martin Gugat, Michael Herty, Günter Leugering, Sonja Steffensen, Ke Wang, 2014, Chapter 31, 978-3-319-05082-9, 487, 10.1007/978-3-319-05083-6_31
    7. Giuseppe Visconti, Michael Herty, Gabriella Puppo, Andrea Tosin, Multivalued Fundamental Diagrams of Traffic Flow in the Kinetic Fokker--Planck Limit, 2017, 15, 1540-3459, 1267, 10.1137/16M1087035
    8. Giacomo Dimarco, Andrea Tosin, The Aw–Rascle Traffic Model: Enskog-Type Kinetic Derivation and Generalisations, 2020, 178, 0022-4715, 178, 10.1007/s10955-019-02426-w
    9. Felisia Angela Chiarello, Benedetto Piccoli, Andrea Tosin, A statistical mechanics approach to macroscopic limits of car-following traffic dynamics, 2021, 137, 00207462, 103806, 10.1016/j.ijnonlinmec.2021.103806
    10. Martin Gugat, Markus Dick, Günter Leugering, Gas Flow in Fan-Shaped Networks: Classical Solutions and Feedback Stabilization, 2011, 49, 0363-0129, 2101, 10.1137/100799824
    11. S. Göttlich, C. Teuber, Space mapping techniques for the optimal inflow control of transmission lines, 2018, 33, 1055-6788, 120, 10.1080/10556788.2016.1278542
    12. G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato, J. Soler, Vehicular traffic, crowds, and swarms: From kinetic theory and multiscale methods to applications and research perspectives, 2019, 29, 0218-2025, 1901, 10.1142/S0218202519500374
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4156) PDF downloads(58) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog