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Abstract. We consider an Enskog-like discrete velocity model which in the
limit yields the viscous Lighthill-Whitham-Richards equation used to describe
vehicular traffic flow. Consideration is given to a discrete velocity model with
two speeds. Extensions to the Aw-Rascle system and more general discrete ve-
locity models are also discussed. In particular, only positive speeds are allowed
in the discrete velocity equations. To numerically solve the discrete velocity
equations we implement a Monte Carlo method using the interpretation that
each particle corresponds to a vehicle. Numerical results are presented for two
practical situations in vehicular traffic flow. The proposed models are able

to provide accurate solutions including both, forward and backward moving
waves.

1. Introduction. During the past decades several models have been proposed for
mathematical studies on vehicular traffic flow, see for example [1, 2, 6, 8, 9, 14, 15,
16, 20] and further references are therein. These models present different techniques
to describe dynamics of vehicles in a single road or networks. In the current work,
we are interested in mathematical models derived from partial differential equa-
tions and also known by macroscopic models, compare [2, 5, 16, 19] among others.
Recently, macroscopic models has also been applied to road networks by solving
the associated partial differential equation on each arc (road) of the network, we
refer the reader to [4, 11, 12, 13] for more details. The Lighthill-Whitham-Richards
(LWR) model [16] is widely considered as one of the most simple models to de-
scribe vehicular traffic flow. It simplicity lies on the fact that the LWR equation
is a scalar conservation law with strictly concave flux function which can be solved
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using well-established numerical methods. Therefore, the LWR model has become
a prototype for theoretical and numerical investigations in vehicular traffic flow. As
other mathematical equations for traffic flow, we cite the so-called ’second-order’
models, see for instance [2, 5, 19].

The objective of the present study is to obtain a kinetic formulation for the LWR
equation using only positive speeds and then to derive a Monte-Carlo method for its
numerical treatment. The particles in the latter could then be interpreted as single
cars of non–negative traveling speed. The Monte Carlo method has been successfully
used in numerical solution of gas dynamics and has found many other applications,
see [18] and other references can be found therein. However, to the best of our
knowledge, this is the first time that Monte Carlo method is used to solve problems
in traffic flow. There are two main reasons for considering this method. The first is
that the Monte Carlo method can provide a fast and reliable computations for traffic
flow and also a possible extension to networks. For instance, solving large scale
traffic networks, fully discrete methods require tremendous computational effort. A
Monte Carlo method however, allows to resolve different parts of the network by a
different number of particles (samples) which their dynamic in the network can be
obtained by solving the LWR or ’second-order’ models. The second reason is that
describing vehicles as particles, the Monte Carlo method can be interpreted as a
natural way to describe uncertainty in the traffic behavior such as driver reactions.
This stochastic effects in traffic flow can be easily incorporated in the Monte Carlo
method.

The Monte Carlo algorithm proposed in this paper is based on a kinetic discrete
velocity model proposed and studied by the authors in [10]. Here, we introduce
a new formulation of traffic flow models including a “look-ahead” distance which
yields an Enskog-like kinetic approximation. This discrete velocity model consti-
tutes the basis of our Monte Carlo method. Numerical results and examples are
carried out using the LWR equation, but our Monte Carlo method can be applied
also to the ’second-order’ Aw-Rascle model [2]. At the appropriate places we com-
ment on possible extensions and modifications.

The outline of this paper is as follows. In section 2 we briefly describe the
equations of vehicular traffic flow used to develop our Monte Carlo algorithm. The
kinetic discrete velocity model is formulated in section 3. In section 4 we discuss
the probabilistic Monte Carlo method for solving the kinetic equations. Numerical
results for two test examples are presented in section 5. Section 6 summarizes the
paper with concluding remarks.

2. Traffic flow equations. For the sake of simplicity we formulate our Monte
Carlo method for traffic flow models governed by partial differential equations of
LWR type. However, all the derivations presented in this paper can be applied to
’second-order’ traffic flow models without major conceptual modifications.

The LWR model requires only a state equation for traffic flow that relates the
velocity to density and is mainly based on traffic observations. It is formulated by
a scalar equation of conservation law written in dimensional form as

ρt + V (ρ)x = 0, (1)

where ρ = ρ(x, t) is the density of vehicles at position x and time t. The flux
function V (ρ), which may depend on space x as well, is defined by

V (ρ) = ρve(ρ), (2)
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where ve(ρ) is an equilibrium velocity known in traffic flow terminology by the fun-
damental diagram. The fundamental diagram is a necessary condition to describe
the rate relationship between density and flow fields. In most applications, it is
determined by empirical evidence of traffic behaviour. A well-established choice for
the fundamental diagram ve(ρ) is

ve(ρ) = vm

(

1− ρ

ρm

)

, (3)

with ρm and vm are the maximum density and the maximum speed, respectively.
Since it is more convenient to work with non-dimensional model than its dimensional
counterpart, we define the following non-dimensional variables

t∗ =
Lt

vm

, x∗ =
x

L
, ρ∗ =

ρ

ρm

, v∗ =
v

vm

,

where L denotes the length of the traffic road. Hence, the dimensionless equations
governing the LWR model (1) can be rewritten as

ρt + V (ρ)x = 0, (4)

where we have dropped the asterisk of the dimensionless variables for ease of nota-
tion. The dimensionless flux function in (2) becomes

V (ρ) = ρ (1− ρ) . (5)

Thus, the equations (4)-(5) has to be solved in the spatial domain [0, 1] and time
interval [0, T ] subject to a given initial condition

ρ(x, 0) = ρ0(x). (6)

It is easy to verify that the non-dimensional density satisfies

0 ≤ ρ(x, t) ≤ 1. (7)

Note that more general flux functions can also be incorporated in the following
discussions. Motivated by the ideas reported in [10] we introduce a class of discrete
velocity models as an approximation of equations (4)-(6). It should be stressed
that, for traffic flow in networks, fast numerical methods are usually required for
the treatment of possibly high dimensions of the problem, compare [12, 13] for some
examples. In the present study, we consider the simple discrete velocity model pro-
posed in [10] for vehicular traffic flow. This Enskog-type kinetic model contains only
positive velocities and accounted for a “look-ahead” concept to recover backward
waves in traffic dynamics. In addition, the discrete velocity model asymptotically
preserves the “correct” LWR limit. A Monte Carlo method is developed based on
the considered kinetic model and is formulated for the LWR model. However, this
approach also applies to the second-order models in traffic flow, see Remark 3.2.

3. Enskog-like discrete velocity model. Discrete velocity models for vehicular
traffic flow have been studied by the authors in [10]. In this reference, we have
proposed a class of two- and three-speed discrete velocity models with positive
speeds only. Deterministic methods based on relaxation discretization and implicit-
explicit schemes were used to approximate numerical solutions to the kinetic discrete
velocity models. In the current work, we propose a different approach to reconstruct
kinetic models for traffic flow with positive finite speeds. The emphasis is given to
a two-speed kinetic model for the LWR problem in a single road. In contrast to
discrete velocity models derived in [10], the proposed model incorporate the concept
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of “look-ahead” principle in its formulation. This property avoids some limitations
concerned with subcharacteristic conditions and fits with the frame of “follow the
leader” in traffic flow modelling.

3.1. Two speed models. Let us consider two nonnegative speeds v1 and v2, and
kinetic variables f(x, t) and g(x, t) corresponding to vehicles or particles with speed
v1 and v2, respectively. Without loss of generality, we assume

0 ≤ v1 <
V (ρ)

ρ
< v2. (8)

We define the (vehicle-)density ρ and the flux J as

ρ(x, t) = f(x, t) + g(x, t),
(9)

J(x, t) = v1f(x, t) + v2g(x, t).

A discrete Enskog model for the kinetic variables f and g reads

ft(x, t) + v1fx(x, t) = −1

ǫ

(

f(x, t)Eg(x + h, t)− g(x, t)Ef (x+ h, t)
)

, (10)

gt(x, t) + v2gx(x, t) = −1

ǫ

(

g(x, t)Ef (x+ h, t)− f(x, t)Eg(x+ h, t)
)

, (11)

where ǫ > 0 is the relaxation time and h > 0 is the “look-ahead” distance. The
equilibrium states Ef (x, t) = Ef (ρ(x, t)) and Eg(x, t) = Eg (ρ(x, t)) are implicitly
defined according to

f + g = ρ,
(12)

v1f + v2g = J = V (ρ),

and therefore, fulfill

Ef (x, t) =
ρ(x, t)

v2 − v1

(

v2 −
V (ρ(x, t))

ρ(x, t)

)

,

(13)

Eg(x, t) =
ρ(x, t)

v2 − v1

(

V (ρ(x, t))

ρ(x, t)
− v1

)

.

Note that by virtue of (12) the kinetic system can be written as

ft(x, t) + v1fx(x, t) = −1

ǫ

(

ρ(x+ h, t)f(x, t)− ρ(x, t)Ef (x+ h, t)
)

, (14)

gt(x, t) + v2gx(x, t) = −1

ǫ

(

ρ(x+ h, t)g(x, t)− ρ(x, t)Eg(x+ h, t)
)

. (15)

For notational convenience we set ρh = ρ(x + h, t) and similarly for Eh
f and Eh

g .

Next, before we discuss properties of the model (10)-(11) and derive the viscous
LWR limit, the kinetic model (10)-(11) can be interpreted as follows. According
to condition (8) and due to equation (10), slower vehicles will speed up depending
on the number of fast vehicles in the next cell i.e., at position x + h. In fact, the
loss term in equation (10) is fEh

g and therefore the loss is not proportional to the

actual number of fast vehicles (gh) but, to the number of fast vehicles being in the
equilibrium Eh

g . Similarly, the gain term for (10) is gEh
f and therefore, vehicles of

fast speed will slow down proportionally to the number of vehicles in the next cell
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assumed to be at the equilibrium. The parameter h describes therefore the “look-
ahead” distance. These ideas are inspired from an Enskog-like modelling taking
into account the size of the interacting particles.

From (10)-(11) we formally obtain the following macroscopic equations

ρt + Jx = 0, (16)

Jt + (v1 + v2)Jx − v1v2ρx = −1

ǫ

(

ρhJ − ρV (ρh)
)

. (17)

In the zeroth order expansion for ǫ, the above equations yield

ρt +

(

ρ

ρh
V (ρh)

)

x

= 0. (18)

In the case of the flux function (5) and for small values of h (h≪ 1) we obtain the
viscous LWR equation

ρt + (ρ(1 − ρ))x =
h

2

(

ρ2
)

xx
+O(h2). (19)

Hence, in the small relaxation limit ǫ −→ 0 and for small “look-ahead” distance
h≪ 1, the two-speed discrete velocity model (10)-(11) is an approximation for the
LWR equation with an additional diffusive term i.e, it approximately solves

ρt + (ρ(1 − ρ))x =
h

2

(

ρ2
)

xx
. (20)

For a more general flux function of the form V (ρ) = ρv(ρ) the same asymptotic
analysis leads to the approximate equation

ρt + (ρv(ρ))x = −h (v′(ρ)ρx)x , (21)

which is dissipative provided the condition v′(ρ) < 0 is satisfied. We end the
modelling part with the following remarks:

Remark 1. First, compared to other discrete velocity models as those proposed
for example in [17, 10], there is no condition necessary to ensure the dissipative
nature of (10)-(11). In other words, no subcharacteristic condition is required for
its stability.

Second, discrete velocity models with more than two speeds can also be derived.
For a M speeds vm with M > 2 and the kinetic variables fm the general form is
then

∂tfm + vm∂xfm = −1

ǫ

(

fmρ
h − ρEh

fm

)

, m = 1, . . . ,M, (22)

where the equilibrium distributions Efm
are defined such that

M
∑

m=1

Efm
= ρ,

(23)
M
∑

m=1

Efm
vm = V (ρ).

Note that, except for the case of M = 2, the constraints (23) are not sufficient to
derive unique expressions for Efm

. As in the classical BGK model for gas dynamics,
additional conservation laws might be introduced to obtain uniqueness.
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3.2. Four speed models. Another class of models arising in the literature on
traffic flow are so called ’second-order’ models. They consist of a 2x2 system of
conservation laws and have been derived by borrowing ideas from gas dynamic
approaches and apply them to traffic flow. We refer the reader to [2, 19] a discussion
of the various approaches. One recent model is the Aw-Rascle (AR) model proposed
in [2]. This model has several advantages over the previously proposed models,
e.g. Payne-Whitham, and has been under investigation for several years [2, 7, 14].
Written in a conservative form, the AR model is given by

ρt + (ρv(ρ, y))x = 0,

(24)

yt + (yv(ρ, y))x = 0,

where ρ is the total density of cars and

ρ v(ρ, y) = y − ρ p(ρ).

As stated in [2] there is no physical interpretation of the ’momentum’ variable y in
(24). However, the quantity w = y/ρ is invariant in the mass-Lagrangian coordinate
system and hence may be interpreted as “quality” (e.g. color) of a specific car. The
pressure term p(ρ) is an anticipation factor that takes into account drivers reactions
to the state of traffic in front of them. It has to satisfy the following assumptions:

(i) p(ρ) ≈ ργ , for ρ→ 0 with γ > 0.

(ii) ρp′′(ρ) + 2p′(ρ) > 0, for all ρ.

There are many ways to reconstruct discrete velocity models associated with the
AR traffic flow model. Here, we propose a kinetic discrete velocity model with four
speeds given by the following equations

ft + v1fx = −1

ε

(

f(x, t)Eg(x+ h, t)− g(x, t)Ef (x+ h, t)
)

,

gt + v2gx = −1

ε

(

g(x, t)Ef (x + h, t)− f(x, t)Eg(x+ h, t)
)

,

(25)

kt + v3kx = −1

ε

(

k(x, t)Ej(x+ h, t)− j(x, t)Ek(x+ h, t)
)

,

jt + v4jx = −1

ε

(

j(x, t)Ek(x+ h, t)− k(x, t)Ej(x+ h, t)
)

,

where ε is the relaxation time, h > 0 is the “look-ahead” distance, vi (i = 1, . . . , 4)
are nonnegative speeds, and f , g, k and j are the kinetic variables assumed to
travel with speeds v1, v2, v3 and v4, respectively. Again, we assume without loss of
generality

v2 > v(ρ, y) > v1 ≥ 0 and v4 > v(ρ, y) > v3 ≥ 0.

The equilibrium states Ef , Eg, Ek and Ej are defined according to

Ef + Eg = ρ,

Ek + Ej = y,
(26)

v1Ef + v2Eg = ρv(ρ, y),

v3Ek + v4Ej = yv(ρ, y),
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Following the same procedure as in the LWR model, the equilibrium states can be
explicitly calculated as

Ef =
ρ

v2 − v1
(v2 − v(ρ, y)) , Eg =

ρ

v2 − v1
(v(ρ, y)− v1) ,

(27)
Ek =

y

v4 − v3
(v4 − v(ρ, y)) , Ej =

y

v4 − v3
(v(ρ, y)− v3) .

In addition, the associated macroscopic model to (25) reads

ρt + Jx = 0,

yt +Wx = 0,
(28)

Jt + (v1 + v2)Jx − v1v2ρx = −ρ
h

ε

(

J − ρv(ρh, yh)
)

,

Wt + (v3 + v4)Wx − v3v4yx = −y
h

ε

(

W − yv(ρh, yh)
)

,

where ρ = f + g, y = k + j, J = v1f + v2g and W = v3k + v4j.
In the leading order for small ε the equations (28) reduces to

ρt +
(

ρv(ρh, yh)
)

x
= 0,

(29)
yt +

(

yv(ρh, yh)
)

x
= 0.

For small values of h, using a Taylor expansion one gets up toO(h2) the approximate
system

ρt + (ρv(ρ, y))x = −h (ρv(ρ, y)x)x ,
(30)

yt + (yv(ρ, y))x = −h (yv(ρ, y)x)x .

The above system is parabolic if the diffusion matrix




−ρv(ρ, y)ρ −ρv(ρ, y)y

−yv(ρ, y)ρ −yv(ρ, y)y



 (31)

has nonnegative eigenvalues. A simple computation shows that the eigenvalues of
(31) are given by

λ1 = −ρv(ρ, y)ρ − ρv(ρ, y)ρ = ρp′(ρ), λ2 = 0,

and thus the parabolicity condition is fulfilled if p′(ρ) > 0.

Remark 2. The physical interpretation of the above four speed discrete velocity
model is less straightforward then in the LWR case. Here we do not advocate
the validity of the discrete velocity kinetic model for large values of the relaxation
parameter but only in the limit as a tool for the construction of the Monte Carlo
method. The development of more realistic four speeds models is actually under
consideration.

4. Probabilistic Monte Carlo method. To solve numerically the discrete veloc-
ity kinetic models proposed in the previous section we apply a Monte Carlo method
previously applied to Boltzmann equation [18], rarefied gas dynamics [3], and Burg-
ers equation [17]. Our method is asymptotic preserving, simple to implement and
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approximate solution to the kinetic model with zero numerical viscosity. To sim-
plify the presentation we restrict ourselves to the LWR case. The AR model can be
treated in a similar way.

We start from the two speed model written in the form (14)-(15). Then, to solve
numerically the system we split the problem into two stages.

(1) The transport stage

ft + v1fx = 0,
(32)

gt + v2gx = 0.

(2) The relaxation stage

ft = −1

ǫ

(

fρh − Eh
f ρ

)

,

(33)

gt = −1

ǫ

(

gρh − Eh
g ρ

)

.

Again, due to the Enskog-like interaction terms, no subcharacteristic condition is
needed. However, to have a probabilistic interpretation of the above variables, we
should have

f ≥ 0, g ≥ 0,
f

ρ
+
g

ρ
= 1,

which, at the limit (ǫ −→ 0), is equivalent to impose

v1 ≤
V (ρ)

ρ
≤ v2.

To discretize the equations (32)-(33) in time we divide the time interval into subin-
tervals [tn, tn+1] with tn = n∆t and we denote by ψn the value of a generic function
ψ at time tn. During the relaxation stage we have ρ(x, tn+1) = ρ(x, tn) and similarly
for ρh. Hence, we can integrate the relaxation step exactly and obtain

f(x, tn+1) = (1− λ)f(x, tn) + λ
Eh

f (ρ(x, tn))ρ(x, tn)

ρh(x, tn)
,

(34)

g(x, tn+1) = (1− λ)g(x, tn) + λ
Eh

g (ρ(x, tn))ρ(x, tn)

ρh(x, tn)
,

where λ is given by

λ = 1− e
−∆t

ǫ
ρh(x, tn)

. (35)

It is obvious from (35) that 0 ≤ λ ≤ 1. Now let us define the probability density at
time tn as follows

Pn(ξ) =



























fn

ρn
, if ξ = v1,

gn

ρn
, if ξ = v2,

0, elsewhere.

Note that 0 ≤ Pn(ξ) ≤ 1 and
∑

ξ P
n(ξ) = 1. Moreover

∑

ξ

Pn+1(ξ) =
∑

ξ

Pn(ξ) = 1.
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The system (33) can be seen as an evolution of the probability function Pn(ξ)
according with

Pn+1(ξ) =



























(1− λ)f
n

ρn
+ λ

ρn

ρh,n
Eh

f (ρn), if ξ = v1,

(1− λ)g
n

ρn
+ λ

ρn

ρh,n
Eh

g (ρn), if ξ = v2,

0, elsewhere.

(36)

Let {ξ1, ξ2, . . . , ξN} be the particle samples, we know that ξj = v1 or ξj = v2 with
probability fn/ρn or gn/ρn, respectively. We also have the relation

Pn+1(ξ) = (1− λ)Pn(ξ) + λEn(ξ), (37)

where En(ξ) is defined as

En(ξ) =



























ρn

ρh,n
Ef (ρn), if ξ = v1,

ρn

ρh,n
Eg(ρ

n), if ξ = v2,

0, elsewhere.

Hence, the relaxation stage (33) can be solved in the following way.

1. Given a particle sample ξ the evolution of the sample during a time integration

process is performed according to:

i. With probability (1− λ) the sample is unchanged.

ii. With probability λ the sample is replaced with a sample from En(ξ).

2. To sample a particle from En(ξ) we proceed as follows:

i. With probability Ef (ρ) take ξ = v1.

ii. With probability Eg(ρ) take ξ = v2.

To generate particles, we first divide the spatial domain into a finite sequence of
cells Ii = [xi− 1

2

, xi+ 1

2

] with uniform stepsize ∆x and centered in the gridpoint xi.

Then particles are generated from a given piecewise constant initial data in each
cell and are randomly distributed around the cell center xi. A simple way to carry
this step out is to evaluate the histograms of samples on the cells Ii. For a set of N
samples p1, p2, · · · , pN , we define the associated discrete probability density located
at the gridpoint xi by

p(xi) =
1

N

N
∑

j=1

δIi
(pj − xi)

∆x
, (38)

where δIi
(x) is the Kronecker delta function defined as

δIi
(x) =







1, if x ∈ Ii,

0, elsewhere.
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Once the particle distribution is updated by the above steps, the transport stage of
the splitting (32) is realized by advecting the position of the particles according to
their speeds as

fn+1
i = f (xi − v1∆t, tn) ,

(39)
gn+1

i = g (xi − v2∆t, tn) .

Thus, given a sample of N particles at positions xn
1 , x

n
2 , · · · , xn

N and speeds
ξ1, ξ2, · · · , ξN (equal either to v1 or v2) the new position of the particle sample
{xn+1

i , ξi} is simply

xn
i = xn+1

i + ξi∆t, i = 1, . . . , N,

where xn+1
i and xn

i are respectively, the new and old positions of the sample ξi. To
summarize, Figure 1 illustrates the flow chart of the proposed Monte Carlo approach
for the kinetic discrete velocity model (10)-(11).

Remark 3. Some remarks are in order:

1. Note that the splitting implemented in the present work is first-order accurate.
For moderate stiff values of the relaxation parameter an extension of this
approach to second-order accuracy can be realized by using a second-order
Strang splitting together with a second-order reconstruction method based on
particles in the spatial cells. It is still an open problem how to achieve second
order accuracy in the limit ǫ→ 0.

2. It is worth remarking that the proposed Monte Carlo method is mass conser-
vative and preserves positivity of the solution variables without requiring any
conditions on the selection of time steps.

3. As it is common in most Monte Carlo methods, we mainly need a random
generator, particles sampling, stochastic rounding, counting and sorting pro-
cedures. All these technical tools have been studied with details in the lecture
notes [18] to construct a Monte Carlo algorithm for the Boltzmann equation.
In our Monte Carlo algorithm we have employed the same techniques.

4. Four samples of particles will be required for the Aw-Rascle model instead
of the two samples used for the LWR model. The advection of samples are
carried out according to their speeds and the projection to the equilibrium is
performed using the probabilistic interpretation of the system (25).

5. Numerical results and examples. In this section we present numerical re-
sults for two test cases on traffic flow namely, free traffic and traffic jam situations.
In all our computations we used a space interval [−5, 5] discretized into 200 grid-
points with uniform stepsize ∆x = 0.05. The time step ∆t = 0.9∆x is selected and
the number of particles is set to N = 104 which is large enough to decrease the
stochastic effects in the obtained solutions. We perform numerical tests using the
system (10)-(11) with two speeds chosen as v1 = 0, v2 = 1 and fixed “look-ahead”
distance h = ∆x. Other choices for the speeds are also possible. Here, we present
only results for the relaxed case corresponding to ǫ = 0. All the solutions presented
here are reconstructed in similar manner as in (38) by averaging the number of
particles in each cell i.e.,

ρ(xi, t) =
n(xi, t)

N∆x

∑

xj∈Ii

ρ0(xj), i = 1, 2, . . . , 200,
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Figure 1. Flow chart of Monte Carlo approach for traffic flow problems.

where ρ0 is the initial data and n(xi, t) is the number of the particles located in the
cell Ii at time t. For comparison reasons, we also include results obtained for the
system (10)-(11) using the deterministic relaxation scheme developed in [10].

5.1. Example of Free Traffic. We solve a free traffic situation corresponding to
the following initial condition

ρ0(x) =
1√
2π
e−

3

2 (x+ 5

2 )
2

. (40)

This condition corresponds to a vehicle-density normally distributed around the
point x = −2.5 in the computational domain. Advancing the time, vehicles are
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Figure 2. Evolution of density in the free traffic case.
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Figure 3. The kinetic variables f and g at t = 5 for the free traffic case.
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Figure 4. Computed results at t = 5 for the free traffic case.

allowed to freely move with speeds v1 and v2 according to the Monte Carlo algorithm
described in the previous section. In Figure 2, we display the evolution of vehicle
density in the time-space domain. As can be seen, the density distribution is freely
advected in the flow direction within the time simulation. The oscillations observed
in the computed results are due to the stochastic effects and are part of any Monte
Carlo procedure. These stochastic fluctuations can be damped out by increasing the
number of particles or plotting the mean density of a set of performed realizations
as it is commonly used in statistical methods.

In Figure 3, we present the profile of the kinetic variables f and g at time t = 5.
According to their speeds, the kinetic variables f and g are distributed in the
computational domain and the computed density results from their sum. In order
to compare our results to the deterministic method [10], we show in Figure 4 the
computed results along with the initial data. It can be seen that the free transport
behavior is accurately captured by the discrete velocity model. The presented Monte
Carlo method advects the initial density profile without either numerical diffusion
or oscillations in the computed density.

5.2. Example of Traffic Jam. Next we consider a traffic jam situation. The
initial density for this example is given by

ρ0(x) =











1√
2π
e−

3

2 (x+ 5

2 )
2

, if x ≤ 1,

1, elsewhere.

(41)

Here, additional to a vehicle-density normally distributed around the spatial point
x = −2.5, the spatial domain [1, 5] is saturated (ρ = 1). This test case corresponds
to a free traffic moving towards a congested traffic area. This is an interesting
example from a practical view point. The evolution of vehicle density in time-space
phase is displayed in Figure 5. The obtained results show the correct flow structure
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Figure 5. Evolution of density in the congested traffic case.
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Figure 6. The kinetic variables f and g at t = 5 for the congested
traffic case.

where the left vehicular density is freely transported till it reaches the traffic jam
at x = 1. At this time a density wave is formed and advected backward, compare
the jam position at the final time in Figure 5. Our model resolves this test case
accurately and the shock is clearly captured.

In Figure 6, we plot the distribution of the kinetic variables f and g at time t = 5
when the backward wave is formed. It is clear that the variables f and g have been
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Figure 7. Computed results at t = 5 for the congested traffic case.

correctly distributed in the computational domain according to their corresponding
speeds. For example, the kinetic variable f vanishes in the subdomain [1, 5] where
all the particles have speed v1. Figure 7 depicts the comparison between the Monte
Carlo results and those obtained using the deterministic method from [10]. Again,
our Monte Carlo method reproduce accurate results without numerical dissipation
or instability problems.

6. Concluding remarks. Kinetic discrete velocity models for vehicular traffic flow
have been formulated and numerically solved. Consideration has been given to a
two-speed model using the well-established LWR model for traffic flow in single road.
The main advantage of the derived kinetic models is the fact that only nonnegative
speeds are allowed in their formulations but still can recover backwards waves. This
property coincides with the nature of traffic flow and is indispensable for modelling
traffic flow using partial differential equations.

To solve the discrete velocity models we have proposed a probabilistic Monte
Carlo method. The kinetic model and the Monte Carlo method have been validated
for two situations in traffic flow. In both, free traffic and traffic jam situations,
our approach correctly captures the traffic dynamics without diffusing the moving
fronts or introducing non-physical oscillations. From these numerical tests one can
conclude that the new approach yields results which are comparable than those
obtained by deterministic methods. It should be pointed out that although we have
restricted our study to the LWR model, our approach can also be used for more
general traffic flow models like the AR model.

The vast applicability of the numerical tools for various traffic models is im-
pressively evidenced in the engineering literature. Future work will focus on the
extension of our approach for traffic flow in networks and also on its application
to traffic flow models with stochastic flux functions. These stochastic effects may
be originated from various inhomogeneities such as inhomogeneous road conditions,
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weather conditions, traffic congestion managements, driver decisions among others.
We believe that the discrete velocity model along with the Monte Carlo method
presented in this paper can perform well for such problems.
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