Traveling fronts of pyramidal shapes in competition-diffusion systems

  • Received: 01 January 2012 Revised: 01 March 2013
  • Primary: 35C07; Secondary: 35K57.

  • It is well known that a competition-diffusion system has a one-dimensional traveling front. This paper studies traveling front solutions of pyramidal shapes in a competition-diffusion system in $\mathbb{R}^N$ with $N\geq 2$. By using a multi-scale method, we construct a suitable pair of a supersolution and a subsolution, and find a pyramidal traveling front solution between them.

    Citation: Wei-Ming Ni, Masaharu Taniguchi. Traveling fronts of pyramidal shapes in competition-diffusion systems[J]. Networks and Heterogeneous Media, 2013, 8(1): 379-395. doi: 10.3934/nhm.2013.8.379

    Related Papers:

    [1] Ting Guo, Zhipeng Qiu . The effects of CTL immune response on HIV infection model with potent therapy, latently infected cells and cell-to-cell viral transmission. Mathematical Biosciences and Engineering, 2019, 16(6): 6822-6841. doi: 10.3934/mbe.2019341
    [2] Cameron Browne . Immune response in virus model structured by cell infection-age. Mathematical Biosciences and Engineering, 2016, 13(5): 887-909. doi: 10.3934/mbe.2016022
    [3] Jiawei Deng, Ping Jiang, Hongying Shu . Viral infection dynamics with mitosis, intracellular delays and immune response. Mathematical Biosciences and Engineering, 2023, 20(2): 2937-2963. doi: 10.3934/mbe.2023139
    [4] Yan Wang, Minmin Lu, Daqing Jiang . Viral dynamics of a latent HIV infection model with Beddington-DeAngelis incidence function, B-cell immune response and multiple delays. Mathematical Biosciences and Engineering, 2021, 18(1): 274-299. doi: 10.3934/mbe.2021014
    [5] Sophia Y. Rong, Ting Guo, J. Tyler Smith, Xia Wang . The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. Mathematical Biosciences and Engineering, 2023, 20(7): 12093-12117. doi: 10.3934/mbe.2023538
    [6] Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu . A delayed HIV-1 model with virus waning term. Mathematical Biosciences and Engineering, 2016, 13(1): 135-157. doi: 10.3934/mbe.2016.13.135
    [7] Cuicui Jiang, Kaifa Wang, Lijuan Song . Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1233-1246. doi: 10.3934/mbe.2017063
    [8] A. M. Elaiw, A. S. Shflot, A. D. Hobiny . Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity. Mathematical Biosciences and Engineering, 2022, 19(12): 12693-12729. doi: 10.3934/mbe.2022593
    [9] Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999
    [10] A. M. Elaiw, Raghad S. Alsulami, A. D. Hobiny . Global dynamics of IAV/SARS-CoV-2 coinfection model with eclipse phase and antibody immunity. Mathematical Biosciences and Engineering, 2023, 20(2): 3873-3917. doi: 10.3934/mbe.2023182
  • It is well known that a competition-diffusion system has a one-dimensional traveling front. This paper studies traveling front solutions of pyramidal shapes in a competition-diffusion system in $\mathbb{R}^N$ with $N\geq 2$. By using a multi-scale method, we construct a suitable pair of a supersolution and a subsolution, and find a pyramidal traveling front solution between them.


    In the last decades, many researchers have formulated various mathematical models to characterize the human immune system reaction on invading viruses [1,2,3,4,5,6]. The two mean immune system reactions are the cell-mediated immunity and the humoral immunity. The cell-mediated immunity is based on Cytotoxic T Lymphocytes (CTLs) which kill the infected cells, while the humoral immunity is based on antibodies which are produced by B cells and neutralize the free viruses from the plasma. Some existing models describe the virus dynamics under the effect of cell-mediated immune response (see e.g., [7,8,9,10], see also [11] and the references therein) or humoral immune response [12,13,14,15,16,17]. Wodarz [18] has formulated a virus dynamics model with five compartments; susceptible cells ($ S $), infected cells ($ I $), virus particles ($ V $), B cells ($ A $) and CTL cells ($ B $) as:

    $ {˙S(t)=ραS(t)ηS(t)V(t),˙I(t)=ηS(t)V(t)bI(t)μC(t)I(t),˙V(t)=dI(t)γA(t)V(t)εV(t),˙A(t)=τA(t)V(t)ζA(t),˙C(t)=σC(t)In(t)πC(t).
    $
    (1.1)

    The model has been extended in [19,20,21,22,23], but with virus-to-cell transmission. Cell-to-cell infection plays an important role in increasing the number of infected cells. Mathematical models of virus dynamics with both virus-to-cell and cell-to-cell transmissions have been studied in several works (see e.g., [24,25,26,27,28,29,30,31,32,33,34]). In very recent works [35], both CTL cells and B cells have been incorporated into the viral infection models with both cell-to-cell and virus-to-cell transmissions. However, in [35], only one class of infected cells (actively infected cells) is considered. It has been reported in [36] and [37] that the time from the contact of viruses and susceptible cells to the death of the cells can be modeled by dividing the process into $ n $ short stages $ I_{1}\rightarrow I_{2}\rightarrow....\rightarrow I_{n} $. In [38], virus dynamics models with multi-staged infected cells, humoral immunity and with only virus-to-cell infection have been studied.

    The aim of the present paper is to formulate a virus dynamics model by incorporating (ⅰ) multi-staged infected cells, (ⅱ) both cell-mediated and humoral immune responses (ⅱ) both cell-to-cell and virus-to-cell infections as:

    $ {˙S(t)=ραS(t)η1S(t)V(t)η2S(t)In(t),˙I1(t)=η1S(t)V(t)+η2S(t)In(t)b1I1(t),˙Ik(t)=dk1Ik1(t)bkIk(t),                           k=2,...,n1,˙In(t)=dn1In1(t)bnIn(t)μC(t)In(t),˙V(t)=dnIn(t)γA(t)V(t)εV(t),˙A(t)=τA(t)V(t)ζA(t),˙C(t)=σC(t)In(t)πC(t),
    $
    (1.2)

    where, $ I_{k} $, $ k = 1, 2, ..., n $ represents the concentration of the $ i $-th stage of infected cells. The model assumes that the susceptible cells are infected by virus particles at rate $ \eta_{1}S(t)V(t) $ and by infected cells at rate $ \eta_{2}S(t)I_{n}(t) $.

    Let $ \Omega_{j} > 0 $, $ j = 1, 2, ..., n+3 $ and define

    $ \Theta = \left. \left\{ (S, I_{1}, ..., I_{n}, V, A, C)\in\mathbb{R}_{\geq 0}^{n+4}:0\leq S, I_{1}\leq\Omega_{1}, 0\leq I_{k}\leq\Omega_{k}, 0\leq C\leq\Omega_{n+1}, \right. \right. \\ \ \ \ \ \ \ \left. \left. 0\leq V\leq\Omega_{n+2}, 0\leq A\leq\Omega_{n+3}, \text{ }k = 2, ..., n\right\} .\right. $

    Proposition 1. The compact set $ \Theta $ is positively invariant for system (1.2).

    Proof. We have

    $ \dot{S} \mid_{S = 0} = \rho \gt 0, \ \ \ \ \dot{I}_{1}\mid_{I_{1} = 0} = \eta_{1}SV+\eta_{2}SI_{n}\geq0 \ \ \forall\text{ }S, V, I_{n}\geq0, \\ \dot{I}_{k} \mid_{I_{k} = 0} = d_{k-1}I_{k-1}\geq0, \ \ \ \ \forall\text{ }I_{k-1}\geq0\text{, }k = 2, ..., n, \\ \dot{V} \mid_{V = 0} = d_{n}I_{n}\geq0, \ \ \forall I_{n}\geq0, \ \ \dot{A}\mid_{A = 0} = 0, \ \ \dot{C}\mid_{C = 0} = 0. $

    This insures that, $ S(t) > 0 $, $ I_{k}(t)\geq0, $ $ k = 1, ..., n, $ $ V(t)\geq0, $ $ A(t)\geq0 $, and $ C(t)\geq0 $ for all $ t\geq0 $.

    To show the boundedness of $ S(t) $ and $ I_{1}(t) $ we let $ \Psi_{1} (t) = S(t)+I_{1}(t), $ then

    $ \dot{\Psi}_{1} = \rho-\alpha S-b_{1}I_{1}\leq\rho-\phi_{1}\left( S+I_{1} \right) = \rho-\phi_{1}\Psi_{1}, $

    where $ \phi_{1} = \min\{ \alpha, b_{1}\} $. It follows that,

    $ \Psi_{1}(t)\leq e^{-\phi_{1}t}\left( \Psi_{1}(0)-\dfrac{\rho}{\phi_{1} }\right) +\dfrac{\rho}{\phi_{1}}. $

    Hence, $ 0\leq\Psi_{1}(t)\leq\Omega_{1} $ if $ \Psi_{1}(0)\leq\Omega_{1} $ for $ t\geq0, $ where $ \Omega_{1} = \frac{\rho}{\phi_{1}}. $ Since $ S(t) > 0 $ and $ I_{1}(t)\geq0 $, then $ 0\leq S(t), I_{1}(t)\leq\Omega_{1} $ if $ S(0)+I_{1} (0)\leq\Omega_{1} $. From the fourth equation of system (1.2) in case of $ k = 2 $, we have

    $ \dot{I}_{2} = d_{1}I_{1}-b_{2}I_{2}\leq d_{1}\Omega_{1}-b_{2}I_{2}. $

    It follows that, $ 0\leq I_{2}(t)\leq\Omega_{2} $ if $ I_{2}(0)\leq\Omega_{2} $, where $ \Omega_{2} = \dfrac{d_{1}\Omega_{1}}{b_{2}} $. Similarly, we can show$ \, 0\leq I_{k}(t)\leq\Omega_{k} $ if $ I_{k}(0)\leq\Omega_{k} $, where $ \Omega_{k} = \dfrac{d_{k-1}\Omega_{k-1}}{b_{k}}, $ $ k = 3, ..., n-1 $. Further, we let $ \Psi_{2}(t) = I_{n}(t)+\frac{\mu}{\sigma}C(t) $, then

    $ \dot{\Psi}_{2} = d_{n-1}I_{n-1}-b_{n}I_{n}-\frac{\mu\pi}{\sigma}C\leq d_{n-1}\Omega_{n-1}-\phi_{2}\left( I_{n}+\frac{\mu}{\sigma}C\right) = d_{n-1}\Omega_{n-1}-\phi_{2}\Psi_{2}, $

    where $ \phi_{2} = \min\{b_{n}, \pi\} $. It follows that, $ 0\leq\Psi_{2} (t)\leq\Omega_{n} $ if $ \Psi_{2}(0)\leq\Omega_{n} $, where $ \Omega_{n} = \dfrac{d_{n-1}\Omega_{n-1}}{\phi_{2}} $. Since $ I_{n}(t)\geq0 $ and $ C(t)\geq 0 $, then $ 0\leq I_{n}(t)\leq\Omega_{n} $ and $ 0\leq C(t)\leq\Omega_{n+1} $ if $ I_{n}(0)+\frac{\mu}{\sigma}C(0)\leq\Omega_{n} $, where $ \Omega_{n+1} = \frac{\sigma}{\mu}\Omega_{n} $. Finally, let $ \Psi_{3}(t) = V(t)+\frac{\gamma }{\tau}A(t) $, then

    $ \dot{\Psi}_{3} = d_{n}I_{n}-\varepsilon V-\frac{\gamma\zeta}{\tau}A\leq d_{n}\Omega_{n}-\phi_{3}\left( V+\frac{\gamma}{\tau}A\right) = d_{n} \Omega_{n}-\phi_{3}\Psi_{3}, $

    where $ \phi_{3} = \min\{ \varepsilon, \zeta\} $. It follows that, $ 0\leq\Psi _{3}(t)\leq\Omega_{n+2} $ if $ \Psi_{3}(0)\leq\Omega_{n+2} $, where $ \Omega _{n+2} = \dfrac{d_{n}\Omega_{n}}{\phi_{3}} $. It follows that, $ 0\leq V(t)\leq\Omega_{n+2} $ and $ 0\leq A(t)\leq\Omega_{n+3} $ if $ V(0)+\frac{\gamma }{\tau}A(0)\leq\Omega_{n+2} $, where $ \Omega_{n+3} = \frac{\tau}{\gamma} \Omega_{n+2} $.

    In this section, we derive five threshold parameters which guarantee the existence of the equilibria of the model.

    Lemma 1. System (1.2) has five threshold parameters $ \Re_{0} > 0 $, $ \Re_{1}^{A} > 0 $, $ \Re_{1}^{C} > 0 $, $ \Re_{2}^{C} > 0 $ and $ \Re_{2}^{A} > 0 $ with $ \Re_{1}^{C} < \Re_{0} $ such that

    (ⅰ) if $ \Re_{0}\leq1, $ then there exists only one steady state $Ɖ_{0} $,

    (ⅱ) if $ \Re_{1}^{A}\leq1 $ and $ \Re_{1}^{C}\leq1 < \Re_{0}, $ then there exist only two equilibria $Ɖ_{0} $ and ${\bar Ɖ}$,

    (ⅲ) if $ \Re_{1}^{A} > 1 $ and $ \Re_{2}^{C}\leq1, $ then there exist only three equilibria $Ɖ_{0} $, ${\bar Ɖ}$ and $\hat Ɖ$,

    (ⅳ) if $ \Re_{1}^{C} > 1 $ and $ \Re_{2}^{A}\leq1, $ then there exist only three equilibria $Ɖ_{0} $, ${\bar Ɖ}$ and $\mathop Ɖ\limits^ \vee $, and

    (ⅴ) if $ \Re_{2}^{A} > 1 $ and $ \Re_{2}^{C} > 1, $ then there exist five equilibria $Ɖ_{0} $, ${\bar Ɖ},$$ˆƉ

    , $ $\mathop Ɖ\limits^ \vee $ and $\tilde Ɖ$.

    Proof. Let $ (S, I_{1}, ..., I_{n}, V, A, C) $ be any equilibrium of system (1.2) satisfying the following equations:

    $ ραSη1SVη2SIn=0,
    $
    (3.1)
    $ η1SV+η2SInb1I1=0,
    $
    (3.2)
    $ dk1Ik1bkIk=0,              k=2,...,n1,
    $
    (3.3)
    $ dn1In1bnInμCIn=0,
    $
    (3.4)
    $ dnInγAVεV=0,
    $
    (3.5)
    $ (τVζ)A=0,
    $
    (3.6)
    $ (σInπ)C=0.
    $
    (3.7)

    We find that system (1.2) admits five equilibria.

    (ⅰ) Infection-free equilibrium $Ɖ_{0} = (S_{0}, \overset{n+3}{\overbrace {0, ..., 0, 0}}) $, where $ S_{0} = \rho/\alpha $.

    (ⅱ) Chronic-infection equilibrium with inactive immune response $\bar Ɖ = (\bar{S}, \bar{I}_{1}, ..., \bar{I}_{n}, \bar{V}, 0, 0), $ where

    $ \bar{S} = \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i} }\right) \dfrac{\varepsilon d_{n}}{\eta_{1}d_{n}+\eta_{2}\varepsilon}, \\ \bar{I}_{k} = \frac{\varepsilon\alpha d_{n}}{d_{k}\left( \eta_{1} d_{n}+\eta_{2}\varepsilon\right) }\left( \mathop {\mathop \prod \limits^k }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \left( \frac{\left( \eta_{1}d_{n}+\eta _{2}\varepsilon\right) S_{0}}{\varepsilon d_{n}}\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) -1\right) , \text{ }k = 1, 2, ..., n, \\ \bar{V} = \frac{\alpha d_{n}}{\eta_{1}d_{n}+\eta_{2}\varepsilon}\left( \frac{\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) S_{0}}{\varepsilon d_{n}}\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) -1\right) . $

    Therefore, ${\bar Ɖ}$ exists when

    $ \frac{\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) S_{0}}{\varepsilon d_{n}}\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) \gt 1. $

    At the equilibrium ${\bar Ɖ}$ the disease persists while the immune response is inhibited. The basic infection reproductive ratio for system (1.2) is defined as:

    $ \Re_{0} = \frac{\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) S_{0} }{\varepsilon d_{n}}\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i} }{b_{i}}\right) . $

    The parameter $ \Re_{0} $ determines whether the disease will progress or not. In terms of $ \Re_{0} $, we can write

    $ \bar{S} = \dfrac{S_{0}}{\Re_{0}}, \\ \bar{I}_{k} = \frac{\varepsilon\alpha d_{n}}{d_{k}\left( \eta_{1} d_{n}+\eta_{2}\varepsilon\right) }\left( \mathop {\mathop \prod \limits^k }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \left( \Re_{0}-1\right) , \text{ }k = 1, 2, ..., n, \\ \bar{V} = \frac{\alpha d_{n}}{\eta_{1}d_{n}+\eta_{2}\varepsilon}\left( \Re_{0}-1\right) . $

    (ⅲ) Chronic-infection equilibrium with only active humoral immune response $\hat Ɖ$$ = (\hat{S}, \hat{I}_{1}, ..., \hat{I}_{n}, \hat{V}, \hat{A}, 0) $, where

    $ \hat{S} = \dfrac{\tau\rho}{\alpha\tau+\eta_{1}\zeta+\eta_{2}\tau\hat{I} _{n}}, \ \ \ \ \ \hat{I}_{k} = \left( \mathop {\mathop \prod \limits^k }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) \dfrac{\rho\left( \eta_{1}\zeta+\eta_{2}\tau \hat{I}_{n}\right) }{d_{k}\left( \alpha\tau+\eta_{1}\zeta+\eta_{2}\tau \hat{I}_{n}\right) }, \ k = 1, 2, ..., n-1, \\ \hat{V} = \dfrac{\zeta}{\tau}, \ \ \ \ \hat{A} = \dfrac{\varepsilon }{\gamma}\left( \frac{d_{n}\tau}{\varepsilon\zeta}\hat{I}_{n}-1\right) , $

    where

    $ ˆIn=ϖ2+ϖ224ϖ1ϖ32ϖ1
    $
    (3.8)

    is the positive solution of

    $ \varpi_{1}\hat{I}_{n}^{2}+\varpi_{2}\hat{I}_{n}+\varpi_{3} = 0, $

    with

    $ ϖ1=(ni=1bidi)dnη2τ, ϖ2=(ni=1bidi)dn(η1ζ+ατ)ρη2τ, ϖ3=η1ρζ.
    $
    (3.9)

    We note that $\hat Ɖ$ exists when $ \frac{d_{n}\tau}{\varepsilon\zeta}\hat {I}_{n} > 1 $. Let us define the active humoral immunity reproductive ratio

    $ A1=dnτεζˆIn=dnˆInεˆV,
    $
    (3.10)

    which determines when the humoral immune response is activated. Thus, $ \hat {A} = \dfrac{\varepsilon}{\gamma}\left(\Re_{1}^{A}-1\right) $.

    (ⅳ) Chronic-infection equilibrium with only active cell-mediated immune response $\mathop Ɖ\limits^ \vee $$ = (\check{S}, \check{I}_{1}, ..., \check{I}_{n}, \check {V}, 0, \check{C}) $, where

    $ \check{S} = \dfrac{\varepsilon\sigma\rho}{\pi\left( \eta_{1}d_{n}+\eta _{2}\varepsilon\right) +\alpha\varepsilon\sigma}, \ \ \ \check{I} _{n} = \frac{\pi}{\sigma}, \ \ \ \check{V} = \frac{d_{n}\pi}{\varepsilon \sigma} = \frac{d_{n}}{\varepsilon}\check{I}_{n}, \\ \check{I}_{k} = \left( \mathop {\mathop \prod \limits^k }\limits_{i = 1} \frac{d_{i} }{b_{i}}\right) \dfrac{\rho\pi\left( \eta_{1}d_{n}+\eta_{2}\varepsilon \right) }{d_{k}\left[ \pi\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) +\alpha\varepsilon\sigma\right] }, \ k = 1, 2, ..., n-1, \\ \check{C} = \dfrac{b_{n}}{\mu}\left[ \dfrac{\sigma\rho\left( \eta _{1}d_{n}+\eta_{2}\varepsilon\right) }{d_{n}\left[ \pi\left( \eta_{1} d_{n}+\eta_{2}\varepsilon\right) +\alpha\varepsilon\sigma\right] }\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) -1\right] . $

    We note that $\mathop Ɖ\limits^ \vee $ exists when $ \dfrac{\sigma\rho\left(\eta_{1}d_{n} +\eta_{2}\varepsilon\right) }{d_{n}\left[\pi\left(\eta_{1}d_{n}+\eta _{2}\varepsilon\right) +\alpha\varepsilon\sigma\right] }\left(\mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) > 1 $. The active cell-mediated immunity reproductive ratio is stated as:

    $ \Re_{1}^{C} = \dfrac{\sigma\rho\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) }{d_{n}\left[ \pi\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) +\alpha\varepsilon\sigma\right] }\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) = \frac{\Re_{0}}{1+\dfrac{\pi\left( \eta_{1} d_{n}+\eta_{2}\varepsilon\right) }{\alpha\varepsilon\sigma}}. $

    The parameter $ \Re_{1}^{C} $ determines when the cell-mediated immune response is activated. Thus, $ \check{C} = \dfrac{b_{n}}{\mu}(\Re_{1}^{C}-1) $ and $ \Re _{1}^{C} < \Re_{0} $.

    (ⅴ) Chronic-infection equilibrium with both active humoral and cell-mediated immune responses $\tilde Ɖ$$ = (\tilde{S}, \tilde{I}_{1}, ..., \tilde{I}_{n}, \tilde {V}, \tilde{A}, \tilde{C}) $, where

    $ \tilde{S} = \dfrac{\rho\tau\sigma}{\alpha\tau\sigma+\eta_{1}\zeta \sigma+\eta_{2}\tau\pi}, \ \ \ \tilde{I}_{n} = \frac{\pi}{\sigma} = \check{I}_{n}, \ \ \ \tilde{V} = \dfrac{\zeta}{\tau} = \hat{V}, \\ \tilde{I}_{k} = \left( \mathop {\mathop \prod \limits^k }\limits_{i = 1} \frac{d_{i} }{b_{i}}\right) \dfrac{\rho\left( \eta_{1}\zeta\sigma+\eta_{2}\tau \pi\right) }{d_{k}\left[ \alpha\tau\sigma+\eta_{1}\zeta\sigma+\eta_{2} \tau\pi\right] }, \ k = 1, 2, ..., n-1, \\ \tilde{C} = \dfrac{b_{n}}{\mu}\left[ \dfrac{\sigma\rho\left( \eta _{1}\zeta\sigma+\eta_{2}\tau\pi\right) }{d_{n}\pi\left[ \alpha\tau \sigma+\eta_{1}\zeta\sigma+\eta_{2}\tau\pi\right] }\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) -1\right] , \\ \tilde{A} = \dfrac{\varepsilon}{\gamma}\left( \frac{d_{n}\pi\tau }{\varepsilon\sigma\zeta}-1\right) . $

    It is obvious that $\tilde Ɖ$ exists when $ \dfrac{\sigma\rho\left(\eta_{1} \zeta\sigma+\eta_{2}\tau\pi\right) }{d_{n}\pi\left[\alpha\tau\sigma +\eta_{1}\zeta\sigma+\eta_{2}\tau\pi\right] }\left(\mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) > 1 $ and $ \frac{d_{n}\pi\tau }{\varepsilon\sigma\zeta} > 1 $. Now we define

    $ \Re_{2}^{C} = \dfrac{\sigma\rho\left( \eta_{1}\zeta\sigma+\eta_{2}\tau \pi\right) }{d_{n}\pi\left[ \alpha\tau\sigma+\eta_{1}\zeta\sigma+\eta _{2}\tau\pi\right] }\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i} }{b_{i}}\right) \text{ and }\Re_{2}^{A} = \frac{d_{n}\pi\tau}{\varepsilon \sigma\zeta} = \frac{\tau}{\zeta}\check{V}, $

    where $ \Re_{2}^{C} $ refers to the competed cell-mediated immunity reproductive ratio and appears as the average number of T cells activated due to infectious cells in the scene that the humoral immune response has been constructed, while, $ \Re_{2}^{A} $ refers to the competed humoral immunity reproductive ratio and appears as the average number of B cells activated due to mature viruses in the scene that the cell-mediated immune response has been constructed. Clearly, $\tilde Ɖ$ exists when $ \Re_{2}^{C} > 1 $ and $ \Re_{2}^{A} > 1 $ and we can write $ \tilde{C} = \dfrac{b_{n}}{\mu}\left(\Re_{2}^{C}-1\right) $ and $ \tilde{A} = \dfrac{\varepsilon}{\gamma}\left(\Re_{2}^{A}-1\right). $

    The five threshold parameters are given as follows:

    $ \Re_{0} = \frac{\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) S_{0} }{\varepsilon d_{n}}\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i} }{b_{i}}\right) , \ \Re_{1}^{A} = \frac{d_{n}\tau}{\varepsilon\zeta} \hat{I}_{n} = \frac{d_{n}\hat{I}_{n}}{\varepsilon\hat{V}}, \ \Re_{1} ^{C} = \dfrac{\sigma\rho\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) }{d_{n}\left[ \pi\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) +\alpha\varepsilon\sigma\right] }\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) \\ \Re_{2}^{C} = \dfrac{\sigma\rho\left( \eta_{1}\zeta\sigma+\eta_{2}\tau \pi\right) }{d_{n}\pi\left[ \alpha\tau\sigma+\eta_{1}\zeta\sigma+\eta _{2}\tau\pi\right] }\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i} }{b_{i}}\right) \text{ and }\Re_{2}^{A} = \frac{d_{n}\pi\tau}{\varepsilon \sigma\zeta} = \frac{\tau}{\zeta}\check{V}. $

    We define the active humoral immunity reproductive ratio $ \Re_{humoral}^{A} $ which comes from the limiting (linearized) $ A $-dynamics near $ A = 0 $ as:

    $ \Re_{humoral}^{A} = \frac{\bar{V}}{\hat{V}}. $

    Lemma 2. (ⅰ) if $ \Re_{1}^{A} < 1, $ then $ \Re_{humoral}^{A} < 1 $,

    (ⅱ) if $ \Re_{1}^{A} > 1, $ then $ \Re_{humoral}^{A} > 1 $,

    (ⅲ) if $ \Re_{1}^{A} = 1, $ then $ \Re_{humoral}^{A} = 1 $,

    Proof. (ⅰ) Let $ \Re_{1}^{A} < 1, $ then from Eq. 3.10 we have $ \hat{I}_{n} < \frac{\varepsilon\hat{V}}{d_{n}}. $ Then, using Eq. 3.8 we get

    $ \frac{-\varpi_{2}+\sqrt{\varpi_{2}^{2}-4\varpi_{1}\varpi_{3}}}{2\varpi_{1} } \lt \frac{\varepsilon\hat{V}}{d_{n}}, $

    which leads to

    $ \left( \frac{2\varpi_{1}\varepsilon\hat{V}}{d_{n}}+\varpi_{2}\right) ^{2}-\left( \varpi_{2}^{2}-4\varpi_{1}\varpi_{3}\right) \gt 0. $

    Using Eq. 3.9 we derive

    $ \left. 4\eta_{2}\tau\zeta\varepsilon\hat{V}\left( \eta_{1}d_{n}+\eta _{2}\varepsilon\right) \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i} }{d_{i}}\right) ^{2}\left[ 1-\frac{\rho\left( \eta_{1}d_{n}+\eta _{2}\varepsilon\right) -\varepsilon\alpha d_{n}\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) }{\varepsilon\hat {V}\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) }\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) \right] \gt 0\right. \\ \left. \Longrightarrow4\eta_{2}\tau\zeta\varepsilon\hat{V}\left( \eta _{1}d_{n}+\eta_{2}\varepsilon\right) \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) ^{2}\left[ 1-\frac{\rho\left( \eta _{1}d_{n}+\eta_{2}\varepsilon\right) \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{d_{i}}{b_{i}}\right) -\varepsilon\alpha d_{n}}{\varepsilon \hat{V}\left( \eta_{1}d_{n}+\eta_{2}\varepsilon\right) }\right] \gt 0\right. \\ \left. \Longrightarrow4\eta_{2}\tau\zeta\varepsilon\hat{V}\left( \eta _{1}d_{n}+\eta_{2}\varepsilon\right) \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) ^{2}\left[ 1-\frac{\bar{V}}{\hat{V} }\right] \gt 0\right. \\ \left. \Longrightarrow4\eta_{2}\tau\zeta\varepsilon\hat{V}\left( \eta _{1}d_{n}+\eta_{2}\varepsilon\right) \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) ^{2}\left[ 1-\Re_{humoral}^{A}\right] \gt 0.\right. $

    Thus, $ \Re_{humoral}^{A} < 1 $. Using the same argument one can easily confirm part (ⅱ) and (ⅲ).

    The global stability of the each equilibria will be investigated by constructing Lyapunov functions using the method presented [39,40,41,42,43,44,45]. Let us define the function $ \digamma:\mathbb{(} 0, \infty\mathbb{)}\rightarrow\mathbb{[}0, \infty\mathbb{)} $ as $ \digamma (\upsilon) = \upsilon-1-\ln\upsilon $. Denote $ (S, I_{1}, ..., I_{n}, V, A, C) = (S(t), I_{1}(t), ..., I_{n}(t), V(t), A(t), C(t)) $. The following equalities will be used:

    $ 0i=1bidi=1, 0i=1di=1,
    $
    (4.1)
    $ b1I1+n1k=2(k1i=1bidi)bkIk+(n1i=1bidi)bnIn=nk=1(k1i=1bidi)bkIk=nk=1(ki=1bidi)dkIk,n1k=2(k1i=1bidi)dk1Ik1+(n1i=1bidi)dn1In1=nk=2(k1i=1bidi)dk1Ik1,n1k=2(k1i=1bidi)bkIk+(n1i=1bidi)bnIn=nk=2(k1i=1bidi)bkIk,n1k=2(k1i=1bidi)dk1Ik1IkIk+(n1i=1bidi)dn1In1InIn=nk=2(k1i=1bidi)dk1Ik1IkIk,
    $
    (4.2)
    $ n1k=2(k1i=1bidi)(dk1Ik1bkIk)=b1I1(n1i=1bidi)dn1In1,
    $
    (4.3)

    where $ I^{\ast}\in\left\{ \bar{I}, \hat{I}, \check{I}, \tilde{I}\right\}. $

    Theorem 1. If $ \Re_{0}\leq1 $, then the infection-free equilibrium $Ɖ_{0} $ is globally asymptotically stable.

    Theorem 2. Suppose that $ \Re_{1}^{A}\leq1 $ and $ \Re_{1}^{C}\leq 1 < \Re_{0} $, then the chronic-infection equilibrium with inactive immune response ${\bar Ɖ}$ is globally asymptotically stable.

    Theorem 3. If $ \Re_{1}^{A} > 1 $ and $ \Re_{2}^{C}\leq1 $, then the chronic-infection equilibrium with only active humoral immune response $\hat Ɖ$ is globally asymptotically stable.

    Theorem 4. Suppose that $ \Re_{1}^{C} > 1 $ and $ \Re_{2}^{A}\leq1 $, then the chronic-infection equilibrium with only active cell-mediated immune response $\mathop Ɖ\limits^ \vee $ is globally asymptotically stable.

    Theorem 5. If $ \Re_{2}^{A} > 1 $ and $ \Re_{2}^{C} > 1 $, then the chronic-infection equilibrium with both active humoral and cell-mediated immune responses $\tilde Ɖ$ is globally asymptotically stable.

    The proofs of Theorems 1–5 are given in a Supplementary.

    In this section, we perform some numerical simulations in case of three stages of infected cells i.e. $ n = 3 $.

    $ {˙S=ραSη1SVη2SI3,˙I1=η1SV+η2SI3b1I1,˙I2=d1I1b2I2,˙I3=d2I2b3I3μCI3,˙V=d3I3γAVεV,˙A=τAVζA,˙C=σCI3πC.
    $
    (5.1)

    The threshold parameters $ \Re_{0}, $ $ \Re_{1}^{A}, $ $ \Re_{1}^{C}, $ $ \Re_{2} ^{C}, $ and $ \Re_{2}^{A} $ for system (5.1) are given by:

    $ \left. \Re_{0} = \frac{d_{1}d_{2}\left( \eta_{1}d_{3}+\eta_{2} \varepsilon\right) S_{0}}{b_{1}b_{2}b_{3}\varepsilon}, \ \Re_{1} ^{A} = \frac{d_{3}\tau}{\varepsilon\zeta}\hat{I}_{3}, \ \Re_{1} ^{C} = \dfrac{d_{1}d_{2}\sigma\rho\left( \eta_{1}d_{3}+\eta_{2}\varepsilon \right) }{b_{1}b_{2}b_{3}\left[ \pi\left( \eta_{1}d_{3}+\eta_{2} \varepsilon\right) +\alpha\varepsilon\sigma\right] }, \right. \\ \left. \Re_{2}^{C} = \dfrac{d_{1}d_{2}\sigma\rho\left( \eta_{1}\zeta \sigma+\eta_{2}\tau\pi\right) }{b_{1}b_{2}b_{3}\pi\left[ \alpha\tau \sigma+\eta_{1}\zeta\sigma+\eta_{2}\tau\pi\right] }\text{, and }\Re_{2} ^{A} = \frac{d_{3}\pi\tau}{\varepsilon\sigma\zeta}, \right. $

    where

    $ \hat{I}_{3} = \frac{d_{1}d_{2}\text{$\eta$}_{2}\rho\tau-b_{1}b_{2}b_{3} (\zeta\text{$\eta$}_{1}+\alpha\tau)+\sqrt{-4b_{1}b_{2}b_{3}d_{1} d_{2}C\text{$\eta$}_{1}\tau+\left( \text{$\eta$}_{2}\rho\tau d_{1}d_{2} -b_{1}b_{2}b_{3}(\zeta\text{$\eta$}_{1}+\alpha\tau)\right) ^{2}}}{2b_{1} b_{2}b_{3}\text{$\eta$}_{1}\tau}. $

    Table 1 contains the values of the parameters of model (5.1).

    Table 1.  Some values of the parameters of model (5.1).
    Parameter Value Parameter Value Parameter Value
    $ \rho $ $ 10 $ $ b_{3} $ $ 0.8 $ $ \gamma $ $ 0.05 $
    $ \alpha $ $ 0.01 $ $ d_{1} $ $ 0.2 $ $ \tau $ Varied
    $ \eta_{1} $ Varied $ d_{2} $ $ 1 $ $ \zeta $ $ 0.1 $
    $ \eta_{2} $ Varied $ d_{3} $ $ 5 $ $ \sigma $ Varied
    $ b_{1} $ $ 0.6 $ $ \mu $ $ 0.1 $ $ \pi $ $ 0.1 $
    $ b_{2} $ $ 0.7 $ $ \varepsilon $ $ 1.5 $

     | Show Table
    DownLoad: CSV

    The results of Theorems 1–5 will be investigated by choosing the values of $ \eta_{1} $, $ \eta_{2} $, $ \tau $ and $ \sigma $ under three different initial conditions for model (5.1) as follows:

    Initial–1: $ (S(0), I_{1}(0), I_{2}(0), I_{3} (0), V(0), A(0), C(0)) = (800, 3, 1, 1, 2, 3, 10) $, (Solid lines in the figures)

    Initial–2: $ (S(0), I_{1}(0), I_{2}(0), I_{3} (0), V(0), A(0), C(0)) = (700, 0.5, 2, 2, 3, 4, 5), $ (Dashed lines in the figures)

    Initial–3: $ (S(0), I_{1}(0), I_{2}(0), I_{3} (0), V(0), A(0), C(0)) = (300, 0.1, 0.5, 0.5, 1.5, 2, 2.5) $. (Dotted lines in the figures)

    Stability of $Ɖ_{0} $: $ \eta_{1} = \eta_{2} = 0.0001 $, $ \tau = 0.001 $ and $ \sigma = 0.01 $. For this set of parameters, we have $ \Re _{0} = 0.26 < 1, $ $ \Re_{1}^{A} = 0.10 < 1 $, $ \Re_{1}^{C} = 0.18 < 1 $ and $ \Re_{2} ^{C} = 0.31 < 1 $. Figure 1 illustrates that the solution trajectories starting from different initial conditions reach the equilibrium $Ɖ_{0} = (1000, 0, 0, 0, 0, 0, 0) $. This ensures that $Ɖ_{0} $ is globally asymptotically stable according to the result of Theorem 1. In this situation the viruses will be died out.

    Figure 1.  Solution trajectories of system (5.1) when $ \Re_{0}\leq1 $.

    Stability of ${\bar Ɖ}$: $ \eta_{1} = \eta_{2} = 0.001 $, $ \tau = 0.001 $ and $ \sigma = 0.01 $. With such choice we get, $ \Re_{1}^{A} = 0.18 < 1 $ and $ \Re_{1}^{C} = 0.48 < 1 < \Re_{0} = 2.58 $ and ${\bar Ɖ}$ exists with $\bar Ɖ = (387.68, 10.21, 2.92, 3.65, 12.15, 0, 0). $ Thus, Lemma 1 is verified. Figure 2 shows that the solution trajectories starting from different initial conditions tend to ${\bar Ɖ}$ and this support Theorem 2. This case represents the persistence of the viruses but with inhibited humoral and cell-mediated immune responses.

    Figure 2.  Solution trajectories of system (5.1) when $ \Re_{1}^{A}\leq1 $ and $ \Re_{1}^{C}\leq1 < \Re_{0} $.

    Stability of $\hat Ɖ$: $ \eta_{1} = \eta_{2} = 0.001 $, $ \tau = 0.07 $ and $ \sigma = 0.05 $. Then, we calculate $ \Re_{0} = 2.58 > 1 $, $ \Re_{1}^{A} = 2.94 > 1 $ and $ \Re_{2}^{C} = 0.76 < 1 $. The numerical results show that $\hat Ɖ = (787.99, 3.53, 1.01, 1.26, 1.43, 58.34, 0) $ which confirm Lemma 1. The global stability result given in Theorem 3 is illustrated by Figure 3. This situation represents the case when the infection is chronic and the humoral immune response is active, while the cell-mediated immune response is inhibited.

    Figure 3.  Solution trajectories of system (5.1) when $ \Re_{1}^{A} > 1 $ and $ \Re_{2}^{C}\leq1 $.

    Stability of $\mathop Ɖ\limits^ \vee $: $ \eta_{1} = \eta_{2} = 0.001 $, $ \tau = 0.05 $ and $ \sigma = 0.2 $. Then, we calculate $ \Re_{0} = 2.58 > 1 $, $ \Re _{1}^{C} = 2.12 > 1 $ and $ \Re_{2}^{A} = 0.83 < 1 $. The results presented in Lemma 1 and Theorem 4 show that the equilibrium $\mathop Ɖ\limits^ \vee $ exists and it is globally asymptotically stable. Figure 4 supports the results of Theorem 4, where the solution trajectories of the system starting from different initial conditions reach the equilibrium point $\mathop Ɖ\limits^ \vee $ $ = (821.91, 2.97, 0.85, 0.50, 1.67, 0, 8.96) $. This situation represents the case when the infection is chronic and the cell-mediated immune response is active, while the humoral immune response is inhibited.

    Figure 4.  Solution trajectories of system (5.1) when $ \Re_{1}^{C} > 1 $ and $ \Re_{2}^{A}\leq1 $.

    Stability of $\tilde Ɖ$: $ \eta_{1} = \eta_{2} = 0.001 $, $ \tau = 0.07 $ and $ \sigma = 0.2 $. Then, we calculate $ \Re_{0} = 2.58 > 1 $ and $ \Re_{2} ^{A} = 1.17 > 1, $ $ \Re_{2}^{C} = 1.92 > 1 $. The numerical results show that $\tilde Ɖ = (838.32, 2.69, 0.77, 0.50, 1.43, 5.00, 7.40) $ which ensure Lemma 1. Moreover, the global stability result given in Theorem 5 is demonstrated in Figure 5. It can be seen that the solution trajectories of the system starting from different initial conditions converge to the equilibrium $\tilde Ɖ$. This situation represents the case when the infection is chronic and both immune responses are active.

    Figure 5.  Solution trajectories of system (5.1) when $ \Re_{2}^{A} > 1 $ and $ \Re_{2}^{C} > 1 $.

    We consider system (5.1) under the effect of two types of treatment as:

    $ {˙S=ραS(1ϵ1)η1SV(1ϵ2)η2SI3,˙I1=(1ϵ1)η1SV+(1ϵ2)η2SI3b1I1,˙I2=d1I1b2I2,˙I3=d2I2b3I3μCI3,˙V=d3I3γAVεV,˙A=τAVζA,˙C=σCI3πC,
    $
    (5.2)

    where, the parameter $ \epsilon_{1}\in\lbrack0, 1] $ is the efficacy of antiretroviral therapy in blocking infection by virus-to-cell mechanism, and $ \epsilon_{2}\in\lbrack0, 1] $ is the efficacy of therapy in blocking infection by cell-to-cell mechanism [47].

    The basic reproduction number of system (5.2) is given by

    $ \Re_{0, (5.2)}(\epsilon_{1}, \epsilon_{2}) = (1-\epsilon_{1})\Re _{01}+(1-\epsilon_{2})\Re_{02}, $

    where

    $ \Re_{01} = \frac{d_{1}d_{2}d_{3}\eta_{1}S_{0}}{b_{1}b_{2}b_{3}\varepsilon }, \ \ \ \ \ \Re_{02} = \frac{d_{1}d_{2}\eta_{2}S_{0}}{b_{1}b_{2}b_{3}}. $

    When the cell-to-cell transmission is neglected, system (5.2) leads to the following system:

    $ {˙S=ραS(1ϵ1)η1SV,˙I1=(1ϵ1)η1SVb1I1,˙I2=d1I1b2I2,˙I3=d2I2b3I3μCI3,˙V=d3I3γAVεV,˙A=τAVζA,˙C=σCI3πC.
    $
    (5.3)

    The basic reproduction number of system (5.3) is given by

    $ \Re_{0, (5.3)}(\epsilon_{1}) = (1-\epsilon_{1})\Re_{01}. $

    Without loss of generality we let $ \epsilon_{1} = \epsilon_{2} = \epsilon $. Now we calculate the minimum drug efficacy $ \epsilon $ which stabilize the infection-free equilibrium for systems (5.2) and (5.3). For system (5.2) one can determine the minimum drug efficacy $ \epsilon _{(5.2)}^{\min} $ such that $ \Re_{0, (5.2)}(\epsilon)\leq1 $ for all $ \epsilon_{(5.2)}^{\min}\leq\epsilon\leq1 $ as:

    $ ϵmin(5.2)=max{1101+02,0}.
    $
    (5.4)

    For system (5.3) the minimum drug efficacy $ \epsilon_{(5.3)} ^{\min} $ such that $ \Re_{0, (5.3)}(\epsilon)\leq1 $, $ \epsilon _{(5.3)}^{\min}\leq\epsilon\leq1 $ is given by:

    $ ϵmin(5.3)=max{1101,0}.
    $
    (5.5)

    Comparing Eqs. (5.5) and (5.4) we get that $ \epsilon_{(5.3)}^{\min}\leq\epsilon_{(5.2)}^{\min} $. Therefore, if we apply drugs with $ \epsilon $ such that $ \epsilon_{(5.3)}^{\min}\leq\epsilon < \epsilon _{(5.2)}^{\min} $, this guarantee that $ \Re_{0, (5.3)}(\epsilon)\leq1 $ and then $Ɖ_{0} $ of system (5.3) is globally asymptotically stable, however, $ \Re_{0, (5.2)} > 1 $ and then $Ɖ_{0} $ of system (5.2) is unstable. Therefore, more accurate drug efficacy $ \epsilon $ is determined when using the model with both virus-to-cell and cell-to-cell transmissions. This shows the importance of considering the effect of the cell-to-cell transmission in the virus dynamics.

    Now we perform numerical simulation for both systems (5.2) and (5.3). Using the values given in Table 1 and choosing $ \eta_{1} = 0.001 $, $ \eta_{2} = 0.005 $, $ \tau = 0.07 $ and $ \sigma = 0.2 $. Then we get

    $ \epsilon_{(5.3)}^{\min} = 0.496, \ \ \ \ \ \ \epsilon_{(5.2 )}^{\min} = 0.7984. $

    Now we select $ \epsilon = 0.5 $ and choose the initial condition as follows:

    Initial–4: $ (S(0), I_{1}(0), I_{2}(0), I_{3} (0), V(0), A(0), C(0)) = (900, 3, 1, 0.5, 2, 3, 5) $.

    From Figure 6 we can see that the trajectory of model (5.3) tends to $Ɖ_{0} $, while the trajectory of model (5.2) tends to $\tilde Ɖ$. It means that if one design treatment using model (5.3) where the cell-to-cell transmission is neglected, then this treatment will not suffice to clear the viruses from the body.

    Figure 6.  Effect of treatment when $ \epsilon = 0.5 $ on the behaviour of the solution trajectories of systems (5.2) and (5.3).

    On the other hand, we choose $ \epsilon = 0.8 $ and consider the following initial condition:

    Initial–5: $ (S(0), I_{1}(0), I_{2}(0), I_{3} (0), V(0), A(0), C(0)) = (920, 0.5, 0.5, 0.5, 2, 3, 3) $.

    From Figure 7 we can see that the trajectories of both systems (5.2) and (5.3) tend to $Ɖ_{0} $. Therefore, this treatment will suffice to clear the viruses from the body.

    Figure 7.  Effect of treatment when $ \epsilon = 0.8 $ on the behaviour of the solution trajectories of systems (5.2) and (5.3).

    In this paper, we formulated and analyzed a virus dynamics model with both CTL and humoral immune responses. We incorporated both virus-to-cell and cell-to-cell transmissions. We assumed that the infected cells pass through $ n $ stages to produce mature viruses. We showed that the solutions of the system are nonnegative and bounded, which ensures the well-posedness of the proposed model. Further, we obtained five threshold parameters, $ \Re_{0} $ (the basic infection reproductive ratio), $ \Re_{1}^{A} $ (the active humoral immunity reproductive ratio), $ \Re_{1}^{C} $ (the active cell-mediated immunity reproductive ratio), $ \Re_{2}^{C} $ (the competed cell-mediated immunity reproductive ratio), and $ \Re_{2}^{A} $ (the competed humoral immunity reproductive ratio). The global asymptotic stability of the five equilibria $Ɖ_{0}, $ $\bar Ɖ, $ $\hat Ɖ$, $\mathop Ɖ\limits^ \vee $, $\tilde Ɖ$ was investigated by constructing Lyapunov functions and applying LaSalle's invariance principle. To support our theoretical results, we conducted some numerical simulations. We note that the incorporation of cell-to-cell transmission mechanism into the viral infection model increases the basic reproduction number $ \Re_{0} $, since $ \Re_{0} = \Re_{01}+\Re_{02} > \Re_{01} $. Therefore, neglecting the cell-to-cell transmission will lead to under-evaluated basic reproduction number. Model with two types of treatment was presented. We showed that more accurate drug efficacy which is required to clear the virus from the body is calculated by using our proposed model.

    There are some factors that can extend our model (1.2):

    a. The infected cells may begin to present the viral antigen earlier than when they reach the terminal stage $ n $ (i.e. at stage $ m $ where $ m\leq n $). Therefore, infected cells $ I_{m} $, $ I_{m+1}, ..., I_{n} $ are subject to be targeted by the CTL immune response.

    b. Model (1.2) is formulated by assuming that the virus is purely lytic, that is, only the bursting cells are capable of releasing the free virions. However, many viruses are somewhat mixed, in the sense that they are partially lytic and partially budding, where the release of free virions can be from the infected cells $ I_{m} $, $ I_{m+1}, ..., I_{n} $.

    c. The cell-to-cell infection mechanism can also be expanded to the contact between susceptible cells with infected cells $ I_{m} $, $ I_{m+1}, ..., I_{n} $.

    d. The loss of virions upon the infection could also be added to the model. In fact, there is some speculation that the virions may be indiscriminately entering not only the susceptible cells, but also the cells that are already infected [26,53].

    Then, taking into account the above factors will leads to the following model:

    $ {˙S(t)=ραS(t)η1S(t)V(t)nk=mηkS(t)Ik(t),˙I1(t)=η1S(t)V(t)+η2S(t)In(t)b1I1(t),˙I2(t)=d1I1(t)b2I2(t)˙Im1(t)=dm2Im2(t)bm1Im1(t),˙Ik(t)=dk1Ik1(t)bkIk(t)μkC(t)Ik(t),       k=m,m+1,...,n,˙V(t)=nk=mδkIk(t)γA(t)V(t)εV(t)ˉη1S(t)V(t)V(t)nk=1ϰkIk(t),˙A(t)=τA(t)V(t)ζA(t),˙C(t)=nk=mσkC(t)Ik(t)πC(t),
    $
    (6.1)

    where, $ \sum\limits_{k = m}^{n}\eta_{k}SI_{k} $ represent the incidence rates due to the contact of the infected cells $ I_{m}, I_{m+1}, ..., I_{n} $ with susceptible cells. The term $ \bar{\eta}_{1}SV $ is the loss of virus upon entry of a susceptible cell. The term $ V\sum\limits_{k = 1}^{n}\varkappa_{k}I_{k} $ represents the absorption of free virions into already infected cells $ I_{1}, I_{2}, ..., I_{n} $. The production rate of the viruses and the activation rate of the CTL cells are modeled by $ \sum\limits_{k = m}^{n}\delta_{k}I_{k} $ and $ \sum\limits_{k = m}^{n}\sigma_{k}CI_{k} $, respectively. The $ k $-stage infected cells $ I_{k}, $ are attacked by CTL cells at rate $ \mu_{k}CI_{k}, $ $ k = m, m+1, ..., n $. Analysis of system (6.1) is not straightforward, therefore we leave it for future works.

    It is commonly observed that in viral infection processes, time delay is inevitable. Herz et al. [59] formulated an HIV infection model with intracellular delay and they obtained the analytic expression of the viral load decline under treatment and used it to analyze the viral load decline data in patients. Several viral infection models presented in the literature incorporated discrete delays (see, e.g., [36] and [44]) or distributed delays (see, e.g., [7,23] and [48,49,50]). In these papers, the global stability of equilibria was proven by utilizing global Lyapunov functional that was motivated by the work in [51] and [52]. Model (6.1) can be extended to incorporate distributed time delays. Moreover, considering age structure of the infected class or diffusion in the virus dynamics model will lead to PDE model [54,55,56,57,58]. These extensions require more investigations, therefore we leave it for future works.

    This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (DG–14–247–1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

    There is no conflicts of interest.

    Proof of Theorem 1. Constructing a Lyapunov function:

    $ Φ0(S,I1,...,In,V,A,C)=S0ϝ(SS0)+nk=1(k1i=1bidi)Ik+η1S0εV+γη1S0τεA+μσ(n1i=1bidi)C.
    $
    (6.2)

    It is seen that, $ \Phi_{0}(S, I_{1}, ..., I_{n}, V, A, C) > 0 $ for all $ S, I_{1}, ..., I_{n}, V, A, C > 0, $ and $ \Phi_{0} $ has a global minimum at $Ɖ_{0} $. We calculate $ \frac{d\Phi_{0}}{dt} $ along the solutions of model (1.2) as:

    $ dΦ0dt=(1S0S)˙S+˙I1+n1k=2(k1i=1bidi)˙Ik+(n1i=1bidi)˙In+η1S0ε˙V+γη1S0τε˙A+μσ(n1i=1bidi)˙C.
    $
    (6.3)

    Using (4.3), we have

    $ \overset{n}{\mathop \sum \limits_{k = 1} }\left( \mathop {\mathop \prod \limits^{k - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \dot{I}_{k} = \eta_{1}SV+\eta_{2}SI_{n} -b_{1}I_{1}+\mathop {\mathop \sum \limits_{k = 2} }\limits^{n - 1} \left( \mathop {\mathop \prod \limits^{k - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) (d_{k-1}I_{k-1}-b_{k} I_{k})\\ +\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \left( d_{n-1}I_{n-1}-b_{n}I_{n}-\mu CI_{n}\right) \\ = \eta_{1}SV+\eta_{2}SI_{n}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{n}I_{n}-\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) CI_{n}. $

    Then,

    $ dΦ0dt=(1S0S)(ραS)+η1S0εdnIn+η2S0In(ni=1bidi)dnInγζη1S0τεAμπσ(n1i=1bidi)C.
    $

    Using $ S_{0} = \rho/\alpha $, we obtain

    $ dΦ0dt=α(SS0)2S+(ni=1bidi)dn(01)Inγζη1S0τεAμπσ(n1i=1bidi)C.
    $
    (6.4)

    Therefore, $ \frac{d\Phi_{0}}{dt}\leq0 $ for all $ S, I_{n}, A, C > 0 $ with equality holding when $ S(t) = S_{0} $ and $ I_{n}(t) = A(t) = C(t) = 0 $ for all $ t. $ Let $ \Upsilon_{0} = \left\{ (S(t), I_{1}(t), ..., I_{n}(t), V(t), A(t), C(t)):\frac {d\Phi_{0}}{dt} = 0\right\} $ and $ \Upsilon_{0}^{^{\prime}} $ is the largest invariant subset of $ \Upsilon_{0} $. We note that, the solutions of system (1.2) are confined to $ \Upsilon_{0} $ [46]. The set $ \Upsilon_{0} $ is invariant and contains elements which satisfy $ I_{n}(t) = 0 $. Then, $ \dot {I}_{n}(t) = 0 $ and from Eq. 3.4 we have

    $ 0 = \dot{I}_{n}(t) = d_{n-1}I_{n-1}(t). $

    It follows that, $ I_{n-1}(t) = 0 $ for all $ t $. Since we have $ I_{n-1}(t) = 0 $, then $ \dot{I}_{n-1}(t) = 0 $ and from Eq. 3.3, we have $ \dot{I} _{n-1}(t) = d_{n-2}I_{n-2} = 0 $ which yields $ I_{n-2}(t) = 0 $. Consequently, we obtain $ I_{k}(t) = 0, $ where $ k = 1, ..., n $. Moreover, since $ S(t) = S_{0} $ we have $ \dot{S}(t) = 0 $ and Eq. 3.1 implies that

    $ 0 = \dot{S}(t) = \rho-\alpha S_{0}-\eta_{1}S_{0}V. $

    which insures that $ V(t) = 0 $. Noting that $ \Re_{0}\leq1 $, then $Ɖ_{0} $ is globally asymptotically stable using LaSalle's invariance principle.

    Proof of Theorem 2. Let us define a function $ \Phi_{1}(S, I_{1}, ..., I_{n}, V, A, C) $ as:

    $ Φ1=ˉSϝ(SˉS)+nk=1(k1i=1bidi)ˉIkϝ(IkˉIk)+η1ˉSεˉVϝ(VˉV)+γη1ˉSτεA+μσ(n1i=1bidi)C.
    $

    Calculating $ \frac{d\Phi_{1}}{dt} $ as:

    $ dΦ1dt=(1ˉSS)(ραSη1SVη2SIn)+(1ˉI1I1)(η1SV+η2SInb1I1)+n1k=2(k1i=1bidi)(1ˉIkIk)(dk1Ik1bkIk)+(n1i=1bidi)(1ˉInIn)(dn1In1bnInμCIn)+η1ˉSε(1ˉVV)(dnInγAVεV)+γη1ˉSτε(τVAζA)+μσ(n1i=1bidi)(σInCπC).
    $
    (6.5)

    Collecting terms of Eq. 6.5 and using Eqs. 4.2 and 4.3, we derive

    $ dΦ1dt=(1ˉSS)(ραS)+η2ˉSIn(ni=1bidi)dnInη1SVˉI1I1η2SInˉI1I1nk=2(k1i=1bidi)dk1Ik1ˉIkIk+nk=1(ki=1bidi)dkˉIk+(n1i=1bidi)μCˉIn+η1ˉSεdnInη1ˉSεdnInˉVV+η1ˉSˉV+η1ˉSεγAˉVγη1ˉSτεζAμπσ(n1i=1bidi)C.
    $
    (6.6)

    Using the equilibrium conditions for ${\bar Ɖ}$:

    $ \rho = \alpha\bar{S}+\eta_{1}\bar{S}\bar{V}+\eta_{2}\bar{S}\bar{I}_{n}, \ \ \ \ \ \eta_{1}\bar{S}\bar{V}+\eta_{2}\bar{S}\bar{I}_{n} = \left( \mathop {\mathop \prod \limits^k }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{k}\bar{I} _{k} = \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \varepsilon\bar{V}, \ \ k = 1, ..., n. $

    We obtain

    $ dΦ1dt=(1ˉSS)(αˉSαS)+(η1ˉSˉV+η2ˉSˉIn)(1ˉSS)+η2ˉSIn(ni=1bidi)dnIn+η1ˉSεdnInη1ˉSˉVSVˉI1ˉSˉVI1η2ˉSˉInSInˉI1ˉSˉInI1(η1ˉSˉV+η2ˉSˉIn)nk=2Ik1ˉIkˉIk1Ik+n(η1ˉSˉV+η2ˉSˉIn)+η1ˉSˉVη1ˉSεdnInˉVV+μ(n1i=1bidi)(ˉInπσ)C+η1ˉSγε(ˉVζτ)A.
    $
    (6.7)

    Since we have

    $ \bar{S} = \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \dfrac{\varepsilon d_{n}}{\eta_{1}d_{n}+\eta_{2}\varepsilon}, $

    then

    $ \eta_{2}\bar{S}I_{n}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i} }{d_{i}}\right) d_{n}I_{n}+\frac{\eta_{1}\bar{S}}{\varepsilon}d_{n}I_{n} = 0. $

    Also we have when $ k = n $,

    $ \frac{d_{n}}{\varepsilon} = \frac{\bar{V}}{\bar{I}_{n}}\Longrightarrow\frac {\eta_{1}\bar{S}}{\varepsilon}d_{n}I_{n}\frac{\bar{V}}{V} = \eta_{1}\bar{S} \bar{V}\frac{I_{n}\bar{V}}{\bar{I}_{n}V}. $

    Therefor Eq. 6.7 becomes

    $ dΦ1dt=α(SˉS)2S+η1ˉSˉV[(n+2)ˉSSSVˉI1ˉSˉVI1nk=2Ik1ˉIkˉIk1IkInˉVˉInV]+η2ˉSˉIn[(n+1)ˉSSSInˉI1ˉSˉInI1nk=2Ik1ˉIkˉIk1Ik]+μ(n1i=1bidi)(ˉInˇIn)C+η1ˉSγε(ˉVˆV)A=α(SˉS)2S+η1ˉSˉV[(n+2)ˉSSSVˉI1ˉSˉVI1nk=2Ik1ˉIkˉIk1IkInˉVˉInV]+η2ˉSˉIn[(n+1)ˉSSSInˉI1ˉSˉInI1nk=2Ik1ˉIkˉIk1Ik]+εασ+π(η1dn+η2ε)σ(η1dn+η2ε)(C11)C+η1ˉSγε(ˉVˆV)A.
    $
    (6.8)

    Since the arithmetical mean is greater than or equal to the geometrical mean, then

    $ \frac{\bar{S}}{S}+\frac{SV\bar{I}_{1}}{\bar{S}\bar{V}I_{1}}+\overset {n}{\mathop \sum \limits_{k = 2} }\frac{I_{k-1}\bar{I}_{k}}{\bar{I}_{k-1}I_{k}} +\frac{I_{n}\bar{V}}{\bar{I}_{n}V}\geq n+2\text{ and }\frac{\bar{S}}{S} +\frac{SI_{n}\bar{I}_{1}}{\bar{S}\bar{I}_{n}I_{1}}+\mathop {\mathop \sum \limits_{k = 2} }\limits^n \frac{I_{k-1}\bar{I}_{k}}{\bar{I}_{k-1}I_{k}}\geq n+1. $

    From Lemma 2 we have $ \bar{V} < \hat{V} $ and since $ \Re_{1}^{C}\leq1 < \Re_{0} $ then $ \frac{d\Phi_{1}}{dt}\leq0 $ for all $ S, I_{k}, V, A, C > 0 $ with equality holding when $ S(t) = \bar{S} $, $ I_{k}(t) = \bar{I}_{k} $, $ k = 1, 2, ..., n, $ $ V(t) = \bar{V}, $ and $ A(t) = C(t) = 0 $ for all $ t. $ It can be easily verified that $ \Upsilon_{1}^{\prime} = \left\{ \text{${\bar Ɖ}$}\right\} $ is the largest invariant subset of $ \Upsilon_{1} = \left\{ (S(t), I_{1}(t), ..., I_{n} (t), V(t), A(t), C(t)):\frac{d\Phi_{1}}{dt} = 0\right\} $[46]. Then, ${\bar Ɖ}$ is globally asymptotically stable using LaSalle's invariance principle.

    Proof of Theorem 3. The candidate Lyapunov function is

    $ Φ2(S,I1,...,In,V,A,C)=ˆSϝ(SˆS)+nk=1(k1i=1bidi)ˆIkϝ(IkˆIk)+η1ˆSˆVdnˆInˆVϝ(VˆV)+γη1ˆSˆVτdnˆInˆAϝ(AˆA)+μσ(n1i=1bidi)C.
    $
    (6.9)

    We calculate $ \frac{d\Phi_{2}}{dt} $ as:

    $ dΦ2dt=(1ˆSS)(ραSη1SVη2SIn)+(1ˆI1I1)(η1SV+η2SInb1I1)+n1k=2(k1i=1bidi)(1ˆIkIk)(dk1Ik1bkIk)+(n1i=1bidi)(1ˆInIn)(dn1In1bnInμCIn)+η1ˆSˆVdnˆIn(1ˆVV)(dnInγAVεV)+γη1ˆSˆVτdnˆIn(1ˆAA)(τVAζA)+μσ(n1i=1bidi)(σInCπC).
    $
    (6.10)

    Collecting terms of Eq. 6.10 and using Eqs. 4.2 and 4.3, we derive

    $ dΦ2dt=(1ˆSS)(ραS)+η1ˆSV+η2ˆSIn(ni=1bidi)dnInη1SVˆI1I1η2SInˆI1I1nk=2(k1i=1bidi)dk1Ik1ˆIkIk+nk=1(ki=1bidi)dkˆIk+(n1i=1bidi)μCˆIn+η1ˆSˆVInˆInη1ˆSˆVdnˆInεVη1ˆSˆVInˆVˆInV+η1ˆSˆVdnˆInεˆV+η1ˆSˆVdnˆInγˆVAγη1ˆSˆVτdnˆInζAγη1ˆSˆVdnˆInVˆA+γη1ˆSˆVτdnˆInζˆAμπσ(n1i=1bidi)C.
    $
    (6.11)

    Using the equilibrium conditions for $\hat Ɖ$:

    $ ρ=αˆS+η1ˆSˆV+η2ˆSˆInη1ˆSˆV+η2ˆSˆIn=(ki=1bidi)dkˆIk=(ni=1bidi)[εˆV+γˆVˆA],  k=1,...,n.
    $
    (6.12)

    We obtain

    $ dΦ2dt=(1ˆSS)(αˆSαS)+(η1ˆSˆV+η2ˆSˆIn)(1ˆSS)+η1ˆSˆVVˆV+η2ˆSˆInInˆIn(ni=1bidi)dnInη1ˆSˆVSVˆI1ˆSˆVI1η2ˆSˆInSInˆI1ˆSˆInI1(η1ˆSˆV+η2ˆSˆIn)nk=2Ik1ˆIkˆIk1Ik+n(η1ˆSˆV+η2ˆSˆIn)+η1ˆSˆVInˆInη1ˆSˆVdnˆIn[εˆV+γˆVˆA]VˆVη1ˆSˆVInˆVˆInV+η1ˆSˆVdnˆIn[εˆV+γˆVˆA]+μ(n1i=1bidi)(ˆInπσ)C=α(SˆS)2S+(η1ˆSˆV+η2ˆSˆIn)(1ˆSS)+(η1ˆSˆV+η2ˆSˆIn)InˆIn(ni=1bidi)dnInη1ˆSˆVSVˆI1ˆSˆVI1η2ˆSˆInSInˆI1ˆSˆInI1(η1ˆSˆV+η2ˆSˆIn)nk=2Ik1ˆIkˆIk1Ik+n(η1ˆSˆV+η2ˆSˆIn)η1ˆSˆVInˆVˆInV+η1ˆSˆV+μ(n1i=1bidi)(ˆInπσ)C.
    $
    (6.13)

    Using Eq. 6.12 in case of $ k = n $ we get

    $ \left( \eta_{1}\hat{S}\hat{V}+\eta_{2}\hat{S}\hat{I}_{n}\right) \frac{I_{n} }{\hat{I}_{n}}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i} }\right) d_{n}I_{n} = \left( \eta_{1}\hat{S}\hat{V}+\eta_{2}\hat{S}\hat{I} _{n}\right) \frac{I_{n}}{\hat{I}_{n}}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{n}\hat{I}_{n}\frac{I_{n}}{\hat {I}_{n}} = 0. $

    Thus, Eq. 6.13 will become

    $ dΦ2dt=α(SˆS)2S+(η1ˆSˆV+η2ˆSˆIn)(1ˆSS)η1ˆSˆVSVˆI1ˆSˆVI1η2ˆSˆInSInˆI1ˆSˆInI1(η1ˆSˆV+η2ˆSˆIn)nk=2Ik1ˆIkˆIk1Ik+n(η1ˆSˆV+η2ˆSˆIn)+η1ˆSˆVη1ˆSˆVInˆVˆInV+μ(n1i=1bidi)(ˆIn˜In)C.
    $
    (6.14)

    Eq. 6.14 can be written as

    $ dΦ2dt=α(SˆS)2S+η1ˆSˆV[(n+2)ˆSSSVˆI1ˆSˆVI1nk=2Ik1ˆIkˆIk1IkInˆVˆInV]+η2ˆSˆIn[(n+1)ˆSSSInˆI1ˆSˆInI1nk=2Ik1ˆIkˆIk1Ik]+μ(n1i=1bidi)(ˆIn˜In)C.
    $
    (6.15)

    Thus, if $ \Re_{2}^{C}\leq1 $, then $\tilde Ɖ$ dose not exist since $ \tilde {C} = \dfrac{b_{n}}{\mu}\left(\Re_{2}^{C}-1\right) \leq0. $ This guarantee that $ \dot{C}(t) = \sigma\left(I_{n}(t)-\frac{\pi}{\sigma}\right) C(t) = \sigma\left(I_{n}(t)-\tilde{I}_{n}\right) C(t)\leq0 $ for all $ C > 0 $, which implies that $ \hat{I}_{n} < \tilde{I}_{n} $. Hence $ \frac{d\Phi_{2}} {dt}\leq0 $ for all $ S, I_{k}, V, A, C > 0 $ with equality holding when $ S(t) = \hat{S} $, $ I_{k}(t) = \hat{I}_{k} $, $ k = 1, 2, ..., n, $ $ V(t) = \hat{V}, $ and $ C(t) = 0 $ for all $ t. $ We note that, the solutions of system (1.2) are tend to $ \Upsilon_{2}^{^{\prime}} $ the largest invariant subset of $ \Upsilon _{2} = \left\{ (S(t), I_{1}(t), ..., I_{n}(t), V(t), A(t), C(t)):\frac{d\Phi_{2}} {dt} = 0\right\} $ [46]. For each element of $ \Upsilon_{2}^{^{\prime}} $ we have $ I_{n}(t) = \hat{I}_{n}, $ $ V(t) = \hat{V} $, then $ \dot{V}(t) = 0 $ and from Eq. 3.5 we have

    $ 0 = \dot{V}(t) = d_{n}\hat{I}_{n}-\gamma A(t)\hat{V}-\varepsilon\hat{V} = 0, $

    which gives $ A(t) = \hat{A}. $ Therefore, $ \Upsilon_{2}^{^{\prime}} = \left\{ \text{$\hat Ɖ$}\right\} $. Applying LaSalle's invariance principle we get $\hat Ɖ$ is globally asymptotically stable.

    Proof of Theorem 4. Define a function $ \Phi_{3}(S, I_{1}, ..., I_{n}, V, A, C) $ as:

    $ \Phi_{3} = \check{S}\digamma\left( \frac{S}{\check{S}}\right) +\overset {n}{\mathop \sum \limits_{k = 1} }\left( \mathop {\mathop \prod \limits^{k - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \check{I}_{k}\digamma\left( \frac{I_{k}} {\check{I}_{k}}\right) +\frac{\eta_{1}\check{S}}{\varepsilon}\check {V}\digamma\left( \frac{V}{\check{V}}\right) +\frac{\gamma\eta_{1}\check{S} }{\tau\varepsilon}A+\frac{\mu}{\sigma}\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \check{C}\digamma\left( \frac {C}{\check{C}}\right) . $

    We calculate $ \frac{d\Phi_{3}}{dt} $ as:

    $ dΦ3dt=(1ˇSS)(ραSη1SVη2SIn)+(1ˇI1I1)(η1SV+η2SInb1I1)+n1k=2(k1i=1bidi)(1ˇIkIk)(dk1Ik1bkIk)+(n1i=1bidi)(1ˇInIn)(dn1In1bnInμCIn)+η1ˇSε(1ˇVV)(dnInγAVεV)+γη1ˇSτε(τVAζA)+μσ(n1i=1bidi)(1ˇCC)(σInCπC).
    $
    (6.16)

    Collecting terms of Eq. 6.16 and using Eqs. 4.2 and 4.3, we derive

    $ dΦ3dt=(1ˇSS)(ραS)+η2ˇSIn(ni=1bidi)dnInη1SVˇI1I1η2SInˇI1I1nk=2(k1i=1bidi)dk1Ik1ˇIkIk+nk=1(ki=1bidi)dkˇIk+(n1i=1bidi)μCˇIn+η1ˇSεdnInη1ˇSεdnInˇVV+η1ˇSˇV+η1ˇSεγAˇVγη1ˇSτεζAμπσ(n1i=1bidi)Cμ(n1i=1bidi)ˇCIn+μπσ(n1i=1bidi)ˇC.
    $
    (6.17)

    Using the equilibrium conditions for $\mathop Ɖ\limits^ \vee $:

    $ \rho = \alpha\check{S}+\eta_{1}\check{S}\check{V}+\eta_{2}\check{S}\check {I}_{n}, \ \ \ \check{I}_{n} = \frac{\pi}{\sigma}, \ \ \ \check {V} = \frac{d_{n}\pi}{\varepsilon\sigma} = \frac{d_{n}}{\varepsilon}\check{I} _{n}, \\ \eta_{1}\check{S}\check{V}+\eta_{2}\check{S}\check{I}_{n} = \left( \mathop {\mathop \prod \limits^{k - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{k-1} \check{I}_{k-1} = \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i} }\right) d_{n}\check{I}_{n}+\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \check{C}\check{I}_{n}, \ \ k = 1, ..., n, $

    we obtain

    $ dΦ3dt=(1ˇSS)(αˇSαS)+(η1ˇSˇV+η2ˇSˇIn)(1ˇSS)+η2ˇSIn(ni=1bidi)dnIn+η1ˇSεdnInμ(n1i=1bidi)ˇCInη1ˇSˇVSVˇI1ˇSˇVI1η2ˇSˇInSInˇI1ˇSˇInI1(η1ˇSˇV+η2ˇSˇIn)nk=2Ik1ˇIkˇIk1Ik+n(η1ˇSˇV+η2ˇSˇIn)η1ˇSˇVInˇVˇInV+η1ˇSˇV+η1ˇSγζετ(τˇVζ1)A.
    $
    (6.18)

    Since we have in case of $ k = n $:

    $ \eta_{2}\check{S}I_{n}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{n}I_{n}+\frac{\eta_{1}\check{S}}{\varepsilon }d_{n}I_{n}-\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i} }\right) \check{C}I_{n}\\ = \left[ \eta_{2}\check{S}\check{I}_{n}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{n}\check{I}_{n}+\frac{\eta_{1} \check{S}}{\varepsilon}d_{n}\check{I}_{n}-\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \check{C}\check{I} _{n}\right] \frac{I_{n}}{\check{I}_{n}}\\ = \left[ \eta_{1}\check{S}\check{V}+\eta_{2}\check{S}\check{I}_{n}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{n}\check {I}_{n}-\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i} }\right) \check{C}\check{I}_{n}\right] \frac{I_{n}}{\check{I}_{n}} = 0. $

    Then,

    $ dΦ3dt=α(SˇS)2S+η1ˇSˇV[(n+2)ˇSSSVˇI1ˇSˇVI1nk=2Ik1ˇIkˇIk1IkInˇVˇInV]+η2ˇSˇIn[(n+1)ˇSSSInˇI1ˇSˇInI1nk=2Ik1ˇIkˇIk1Ik]+η1ˇSγζετ(A21)A.
    $
    (6.19)

    Hence, if $ \Re_{2}^{A} = \frac{\tau\check{V}}{\zeta}\leq1 $, then $ \frac {d\Phi_{3}}{dt}\leq0 $ for all $ S, I_{k}, V, A, C > 0 $ with equality holding when $ S(t) = \check{S} $, $ I_{k}(t) = \check{I}_{k} $, $ k = 1, 2, ..., n, $ $ V(t) = \check{V} $ and $ A(t) = 0 $ for all $ t. $ It can be easily verified that the largest invariant subset of $ \Upsilon_{3} = \left\{ (S(t), I_{1}(t), ..., I_{n} (t), V(t), A(t), C(t)):\frac{d\Phi_{3}}{dt} = 0\right\} $ is $ \Upsilon _{3}^{^{\prime}} = \left\{ \text{$\mathop Ɖ\limits^ \vee $}\right\} $ [46]. Applying LaSalle's invariance principle we get that $\mathop Ɖ\limits^ \vee $ is globally asymptotically stable.

    Proof of Theorem 5. Define $ \Phi_{4}(S, I_{1}, ..., I_{n}, V, A, C) $ as:

    $ \Phi_{4} = \tilde{S}\digamma\left( \frac{S}{\tilde{S}}\right) +\overset {n}{\mathop \sum \limits_{k = 1} }\left( \mathop {\mathop \prod \limits^{k - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \tilde{I}_{k}\digamma\left( \frac{I_{k}} {\tilde{I}_{k}}\right) +\frac{\eta_{1}\tilde{S}\tilde{V}}{d_{n}\tilde{I}_{n} }\tilde{V}\digamma\left( \frac{V}{\tilde{V}}\right) +\frac{\gamma\eta _{1}\tilde{S}\tilde{V}}{\tau d_{n}\tilde{I}_{n}}\tilde{A}\digamma\left( \frac{A}{\tilde{A}}\right) +\frac{\mu}{\sigma}\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \tilde{C}\digamma\left( \frac{C}{\tilde{C}}\right) . $

    Calculating $ \frac{d\Phi_{4}}{dt} $ as:

    $ dΦ4dt=(1˜SS)(ραSη1SVη2SIn)+(1˜I1I1)(η1SV+η2SInb1I1)+n1k=2(k1i=1bidi)(1˜IkIk)(dk1Ik1bkIk)+(n1i=1bidi)(1˜InIn)(dn1In1bnInμCIn)+η1˜S˜Vdn˜In(1˜VV)(dnInγAVεV)+γη1˜S˜Vτdn˜In(1˜AA)(τVAζA)+μσ(n1i=1bidi)(1˜CC)(σInCπC).
    $
    (6.20)

    Collecting terms of Eq. 6.20 and using Eqs. 4.2 and 4.3, we obtain

    $ dΦ4dt=(1˜SS)(ραS)+η1˜SV+η2˜SIn(ni=1bidi)dnInη1SV˜I1I1η2SIn˜I1I1nk=2(k1i=1bidi)dk1Ik1˜IkIk+nk=1(ki=1bidi)dk˜Ik+(n1i=1bidi)μC˜In+η1˜S˜VIn˜Inη1˜S˜Vdn˜InεVη1˜S˜VIn˜V˜InV+η1˜S˜Vdn˜Inε˜V+η1˜S˜Vdn˜Inγ˜VAγη1˜S˜Vτdn˜InζAγη1˜S˜Vdn˜InVˆA+γη1˜S˜Vτdn˜InζˆAμπσ(n1i=1bidi)Cμ(n1i=1bidi)˜CIn+μπσ(n1i=1bidi)˜C.
    $
    (6.21)

    Using the equilibrium conditions for $\tilde Ɖ$:

    $ \left. \rho = \alpha\tilde{S}+\eta_{1}\tilde{S}\tilde{V}+\eta_{2}\tilde {S}\tilde{I}_{n}, \ \ \ \tilde{I}_{n} = \frac{\pi}{\sigma} = \check{I} _{n}, \ \ \ \tilde{V} = \dfrac{\zeta}{\tau} = \hat{V}, \ \ \ d_{n}\tilde{I}_{n} = \varepsilon\tilde{V}+\gamma\tilde{V}\tilde{A}, \right. \\ \left. \eta_{1}\tilde{S}\tilde{V}+\eta_{2}\tilde{S}\tilde{I}_{n} = \left( \mathop {\mathop \prod \limits^{k - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{k-1} \tilde{I}_{k-1} = \left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i} }\right) d_{n}\tilde{I}_{n}+\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \tilde{C}\tilde{I}_{n}, \ \ k = 1, ..., n.\right. $

    We obtain

    $ dΦ4dt=(1˜SS)(α˜SαS)+(η1˜S˜V+η2˜S˜In)(1˜SS)+η1˜SV+η2˜SIn(ni=1bidi)dnInη1˜S˜VSV˜I1˜S˜VI1η2˜S˜InSIn˜I1˜S˜InI1(η1˜S˜V+η2˜S˜In)nk=2Ik1˜Ik˜Ik1Ik+n(η1˜S˜V+η2˜S˜In)+η1˜S˜VIn˜Inη1˜S˜Vdn˜In[ε˜V+γ˜V˜A]V˜Vη1˜S˜VIn˜V˜InV+η1˜S˜Vdn˜In[ε˜V+γ˜V˜A]μ(n1i=1bidi)˜CIn.
    $
    (6.22)

    Since we have

    $ \eta_{1}\tilde{S}V-\frac{\eta_{1}\tilde{S}\tilde{V}}{d_{n}\tilde{I}_{n} }\left[ \varepsilon\tilde{V}+\gamma\tilde{V}\tilde{A}\right] \frac{V} {\tilde{V}} = 0, $

    and

    $ \eta_{2}\tilde{S}I_{n}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{n}I_{n}-\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) \tilde{C}I_{n}+\eta_{1}\tilde {S}\tilde{V}\frac{I_{n}}{\tilde{I}_{n}}\\ = \left[ \eta_{1}\tilde{S}\tilde{V}+\eta_{2}\tilde{S}\tilde{I}_{n}-\left( \mathop {\mathop \prod \limits^n }\limits_{i = 1} \frac{b_{i}}{d_{i}}\right) d_{n}\tilde {I}_{n}-\mu\left( \mathop {\mathop \prod \limits^{n - 1} }\limits_{i = 1} \frac{b_{i}}{d_{i} }\right) \tilde{C}\tilde{I}_{n}\right] \frac{I_{n}}{\tilde{I}_{n}} = 0. $

    Then, Eq. 6.22 will be reduced to the form

    $ dΦ4dt=α(S˜S)2S+(η1˜S˜V+η2˜S˜In)(1˜SS)η1˜S˜VSV˜I1˜S˜VI1η2˜S˜InSIn˜I1˜S˜InI1(η1˜S˜V+η2˜S˜In)nk=2Ik1˜Ik˜Ik1Ik+n(η1˜S˜V+η2˜S˜In)η1˜S˜VIn˜V˜InV+η1˜S˜V=α(S˜S)2S+η1˜S˜V[(n+2)˜SSSV˜I1˜S˜VI1nk=2Ik1˜Ik˜Ik1IkIn˜V˜InV]+η2˜S˜In[(n+1)˜SSSIn˜I1˜S˜InI1nk=2Ik1˜Ik˜Ik1Ik].
    $
    (6.23)

    Hence, $ \frac{d\Phi_{4}}{dt}\leq0 $ for all $ S, I_{k}, V, A, C > 0 $ with equality holding when $ S(t) = \tilde{S} $, $ I_{k}(t) = \tilde{I}_{k} $, $ k = 1, 2, ..., n, $ and $ V(t) = \tilde{V} $ for all $ t. $ It can be easily verified that the largest invariant subset of $ \Upsilon_{4} = \left\{ (S(t), I_{1}(t), ..., I_{n} (t), V(t), A(t), C(t)):\frac{d\Phi_{3}}{dt} = 0\right\} $ is $ \Upsilon _{4}^{^{\prime}} = \left\{ \tilde Ɖ\right\} $ [46]. LaSalle's invariance principle implies that $\tilde Ɖ$ is globally asymptotically stable.

    [1] J.-S. Guo and X. Liang, The minimal speed of traveling fronts for the Lotka-Volterra competition system, J. Dynam. Differential Equations, 23 (2011), 353-363. doi: 10.1007/s10884-011-9214-5
    [2] J. K. Hale, "Ordinary Differential Equations," Wiley-Interscience, 1969.
    [3] F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., 13 (2005), 1069-1096. doi: 10.3934/dcds.2005.13.1069
    [4] F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., 14 (2006), 75-92.
    [5] M. Haragus and A. Scheel, Corner defects in almost planar interface propagation, Ann. I. H. Poincaré, 23 (2006), 283-329. doi: 10.1016/j.anihpc.2005.03.003
    [6] Y. Hosono, Traveling waves for a diffusive Lotka-Volterra competition model. I. Singular perturbations, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 79-95. doi: 10.3934/dcdsb.2003.3.79
    [7] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363. doi: 10.1137/S0036141093244556
    [8] Y. Kan-on and Q. Fang, Stability of monotone travelling waves for competition-diffusion equations, Japan J. Indust. Appl. Math., 13 (1996), 343-349. doi: 10.1007/BF03167252
    [9] Y. Kurokawa and M. Taniguchi, Multi-dimensional pyramidal traveling fronts in the Allen-Cahn equations, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 1031-1054. doi: 10.1017/S0308210510001253
    [10] H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations, 213 (2005), 204-233. doi: 10.1016/j.jde.2004.06.011
    [11] H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst., 15 (2006), 819-832. doi: 10.3934/dcds.2006.15.819
    [12] M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, Berlin, 1984. doi: 10.1007/978-1-4612-5282-5
    [13] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J., 21 (1972), 979-1000.
    [14] M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: 10.1137/060661788
    [15] M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations, 246 (2009), 2103-2130. doi: 10.1016/j.jde.2008.06.037
    [16] M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., 32 (2012), 1011-1046. doi: 10.3934/dcds.2012.32.1011
    [17] A. I. Volpert, V. A. Volpert and V. A. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, RI}, 1994.
    [18] Z.-C. Wang, Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., 32 (2012), 2339-2374. doi: 10.3934/dcds.2012.32.2339
  • This article has been cited by:

    1. N.H. AlShamrani, A.M. Elaiw, H. Batarfi, A.D. Hobiny, H. Dutta, Global stability analysis of a general nonlinear scabies dynamics model, 2020, 138, 09600779, 110133, 10.1016/j.chaos.2020.110133
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3732) PDF downloads(143) Cited by(31)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog