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ABSTRACT. It is well known that a competition-diffusion system has a one-
dimensional traveling front. This paper studies traveling front solutions of
pyramidal shapes in a competition-diffusion system in RY with N > 2. By
using a multi-scale method, we construct a suitable pair of a supersolution and
a subsolution, and find a pyramidal traveling front solution between them.

1. Introduction. In this paper we consider a competition-diffusion equation
at = Au+u(l —u—cyv)

U = dAv + v(ag — bou — v)

u(a:,O) =ug(x), v(x,0)=vo(x) xRV,

Here N > 2 and @ = '(z1,...,2zN), and we are interested in the “strong competi-
tion” case; i.e. ag, by, co and d are positive constants with

x € RN, t>0, (1)

1
— < ag < bo, (2)
Co

and ug and vy are given bounded and uniformly continuous functions with 0 <
ug < 1 and 0 < vy < ag. This competition system is called the Lotka-Volterra
system, and its traveling fronts have been studied. See [17], Kan-on [7], Kan-on
and Fang [8], Hosono [6], Guo and Liang [1] for instance. It is well known that
there exists (U(y), V(y)) that satisfies
()

U'(y) +sU'(y) + U(y)(1 = U(y) — coV(y)) =0
dv"(y) + sV'(y) + V(y)(ao — boU(y) — V(y)) =

() = (o) (5212)( ) (@)
~U'(y) >0, V'(y)>0 y €R.
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Here s = s(ag,bo, o, d) is the speed of a traveling front (U,V). By Kan-on [7],
s(ag, by, co,d) is a function of class C! with

0s Js Js
670,0<07 87bo>0, 6700<07

which implies that s # 0 is generic for given (ay, b, co, d).
We now introduce a general setting that includes the Lotka-Volterra system. Let
m > 2 and let u(x,t) = Y(ui(x,t), ..., un(x,t)) satisfy

%::DAu+f(u) zeRN, t>0, (5)
u(x,0) = uo(x) x € RN, (6)
Here
a0
D= , di>0(1<j<m), (7)

(O
and f(u) = *(fi(w),..., fm(u)) is defined on [0,2]™ and is of class C'. We
denote the solution w(x,t;ug) = *(ui(x,t;ug), ..., um(x, t;ug)). For any v =
Hor,eooyom) € R™ and w = *(wy,...,wy) € R™ we define v < w if and only
if v; < wjforalll <j < m, and define v < w if and only if v; < w; for all
1 <j < m. We define 0 =*(0,...,0) e R™ and 1 =*(1,...,1) € R™. Here ug is a
bounded and uniformly continuous function with 0 < ug(x) < 1.
We state the following standing assumptions:

(A1) One has f(0) =0, f(1) =0 and

min 0f; >0 for i # j.
[0,1]™ Ou;

For each 7 # j there exists a constant L;; > 0 with

gfl + L;j max{0,u; — 1} >0 for u € [0,2]™
u
(A2) There exist k > 0 and ® = *(®q,...,®,,) such that one has
D®"(y) + k®'(y) + f(®(y)) =0  forally € R, (®)

®(—00) =1, ®(+00) =0, (9)
—®'(y) >0 forally e R.

(A3) There exist p,q € R™ with p > 0, ¢ > 0 such that f'(1)p < 0 and f/(0)g <
0.

The Lotka-Volterra system (1) does satisfy the assumptions (A1), (A2) and (A3)
stated above when s # 0. Indeed, when s > 0, we put

w(w,t) = (u(w,t), - ”(f”’t)> ,

ao
and
D 1 0 1(1 = cpag — u1 + coapus)
B 0 d)’ 1 — Ug)(boul — CL()’U,Q) ’
Then f satisfies (A1) and satlsﬁes (6) with

ao

0 < up(x) = (uo(w), 1- ”0(‘”)> <1.
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Using
/ _ 1-— CoQag 0 / _ -1 CoQago
f (0) - ( bO _a0> 9 f (1) - ( 0 ag — bO) )

we can find p and q to satisfy (A3). Since (s,?(U,V)) satisfies (3) and (4), we put

k=s, ®(y) =" (U(y),l—v(y))

Qo
and (k, ®) satisfies (A2). When s < 0, we put

ute.t) = (L2201 u-a)

ag

. d 0 (u) Uy CLO — bo — aguy + boUz)
D= (O 1) ’ 'f(u) ( (’U,) ( 1 - UQ c0a0u1 — UQ) ’
Then f satisfies (A1) and wu satisfies (5) and (6) with

0 < ug(z) = (”O( )1~ ol ))gl.

ao

1y [ao—by 0O iy [ —ao bo
f (0) - ( coao 1) ) .f (1) - ( O 1— COaO) )
we can find p and q to satisfy (A3). Since (s,?(U,V)) satisfies (3) and (4), we put

k= —s, ®(y)— (W_y) - U(—y)>

ao
and (k, ®) satisfies (A2).

Multi-dimensional traveling fronts in the Allen-Cahn equation have been studied
by [10, 3, 11, 4, 5, 14, 15, 16, 9]. In particular, N-dimensional traveling fronts
of pyramidal shapes in the Allen-Cahn equations are studied in [9], and two-
dimensional V-form fronts for competition-diffusion systems are studied by [18].
The purpose of this paper is to prove the existence of N-dimensional traveling
fronts of pyramidal shapes for (5). In fact, a comparison principle for systems as
well as vector notation enable us to present the existence proof in a similar way as
in the scalar case of the Allen-Cahn equation.

In order to study traveling front solutions, we adopt the moving coordinate of
speed ¢ towards the x y-axis without loss of generality. We write € = (z1,...,xn) €
RY and @’ = (z1,...,2x-1) € RVN7! and put s = zy — ct and u(z,t) = w(x’, s,t).
We denote w(a’, s,t) by w(x,t) for simplicity. Then we have

ow ow
E — DAw —Cam

and

Using

— flw) = in RV, ¢t >0, (10)

w|t:0 = Uy in RN.

We denote the solution of this equation by w(x, t; ug). If v is a traveling wave with
speed c, it satisfies the following profile equation

ov
—~DAv —c¢ — f(v) =0in RV, (11)
oxn
To study this equation, we introduce a nonlinear operator
ov

ﬁ[v]:—DAv—cax — f(v) (12)
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for a function v € C?(RY). We assume ¢ > k throughout this paper, because the
curvature effect is expected to accelerate the speed.
Let n > 2 be a given integer, and

T2
Let {A;}7_; be a set of unit vectors in RN~ such that A; # A; for i # j. Then
Aj= (A1 ,...,An_1,) € RN satisfies
N-1

AP =) (Ai;)?=1  forj=1,...,n. (14)

i=1
Now (—m,Aj,1) € RY is the normal vector of {& € RY | 2y = m.(A;,2')}, where
(A;, ') is the inner product of A; and &’ given by

N-1
(Aj, 213’): Z Aiiji.
i=1

‘We put
hj(@')=m.(A;,z'),

N= (x) = A 2
h(z") lrgjagnh](w) M @aécn( j»x')

for @’ € RVN=1. We call {z = (¢',2y_1) € RV |2y = h(2')} an N-dimensional
pyramid in RY. Setting
Q={a' e RV | h(z') = hy(z')}

(15)

for 5 =1,...,n, we have
RY-D = Up_ ;. (16)
We denote the boundary of €; by 9€;. Then we put
Sj={x e RN |zy = hj(z') forz’ € Q;}
for each j, and call U}_; S; C RY the lateral faces of a pyramid. Finally we set
Ii={z e RN |zy = h;(z’) for z' € 9Q;}
for j =1,...,n, then Uj_,I'; represents the set of all edges of a pyramid.

For every A; with (14), (11) has a planar front solution ®((k/c)(zn — h;(x'))).
We define v(z) = *(v1(x),...,vm(x)) as

o(@)= (Eox - @) = max @ (Lo - 1i@)) (a7)
Then v satisfies
v(x) < w(x, t;v) for all z € RN, ¢ > 0,
and becomes a weak subsolution to (11). For v > 0 we define
D(y)={x e RY | dist(z, U}_,T}) > v} (18)

and put
. ary —plax’)

M_a\/l + [Vo(az?’

(19)



TRAVELING FRONTS OF PYRAMIDAL SHAPES 383

and show that
v(x)=® (i) + eS(aa’) (p+ x (1) (¢ — p)) (20)
is a supersolution with v < ©. Here ¢, S and x are functions given by (31), (32) and
(29), respectively, and £ and « are positive constants in (41) and (42), respectively.
Then a solution of (11) between v and U is guaranteed by the comparison principle,
and this solution has a contour surface of a pyramidal front shape.
The following theorem is the main result in this paper.

Theorem 1.1. Let ¢ > k, and let v(x) be given by (17). There exists a solution
V(z) ="Vi(z),...,Vin(x)) to (11) with
lim sup |V(z)—wv(x)| =0. (21)

Y7 zeD(y)

Moreover one has
ov

0<v(x)<V(e)<l, Pn

() <0
for all x € RN,

The main part of the proof of Theorem 1.1 is devoted to the construction of a
supersolution . The idea is as follows. Taking o > 0 very small, we make a very flat
surface {xx = a~tp(ax’)} over a pyramid, and then fi represents the signed length
of the perpendicular from & € RY onto the tangent plane of {zy = o lp(az’)}
at (z',a"tp(ax’)). Then the first term of ¥ converges to a planar front traveling
with a slower speed k € (0,¢) as @ — +0. If we use the moving coordinate of a
speed ¢, we expect that w(ax,t;?) is monotone decreasing in ¢ > 0. This suggests
that o is a supersolution of (11). We will show that this argument applies to system
(5) with the help of a comparison principle for systems as well as vector notation.
Theorem 1.1 is established in Section 3.

2. Preliminaries. For u = (uq,...,u;) € R™ and an n x n real matrix A we put

lu| = (/377" w3 and |A| = supj, <; |[Aul. We state the maximum principle and
comparison principle needed in this paper. Let G(x,t) = (g;j(2,t))1<i,j<m be given
and satisfies

sup  [gij(®,t)[ < oo for 1 <i,j <m,
ZERN 0<t<T
inf gij(x,t) > 0 ifi#£j

zERN 0<t<T

for given T' > 0.
The maximum principle is as follows. See [12] for the proof.

Lemma 2.1. Let G(x,t) = (gi;(,t))1<i,j<m Satisfy the assumption stated above,
and let u(zx,t) = (ui(x,t), ..., um(x,t)) satisfy

ou N

EfDAugG(m,t)u reRY, 0<t<T,

sup |u(x,t)| < oo,
@ERN 0<t<T

where T > 0 is a given number, and D is as in (7). If u(z,0) <0 forx € RN, one
has u(z,t) <0 forz € RN and 0 <t <T. Moreover, if u;(-,0) 0 for some j in
addition, one has uj(x,t) <0 for all x € RY and 0 <t <T.
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We introduce a function ffollowing to [18]. We define f: (ﬁ, e fm) by

fi(w) = fi(w) + > Lij(u; — 1) max{0,u; —1}  for all u € [0,2]™,
J#i
where L;; is as in (Al). Then f satisfies f/(1) = £/(1), f(u) = f(u) for all
u € [0,1]™, and
. Of;
inf

[0,2] Ou;

>0  fori#j.

Hereafter we write f simply as f. We put 2=!(2,...,2) € R™. By the lemma
stated above, the comparison principle follows immediately:

I a(@,t) = H@ (@,1), .., T (@,1)) and w(w, t) = (uy (2,8), ..., u,,(2,)) sat-
isfy

(D; — DA)@ — f(u) > 0, (D; — DA)u — f(u) <0 zeRY, 0<t<T,
0 <u(z,0) <u(zx,0) <2 x € RY,

then one has u(z,t) < u(z,t) forx € RY and 0 < t < T. (Here D; = 0/0t.)
Moreover, if u;(-,0) # u;(-,0) for some j in addition, one has u;(z,t) <0 for all
xRN and 0 <t <T.

Since 0 and 1 are equilibrium solutions to (5), we have

0 <u(x,t;ug) <1 forallz e RY and ¢t >0

from the comparison principle, (A1) and 0 < ug(x) < 1. From the comparison
principle and (A2) we have

—®'(y)>0 forallyeR. (22)

Without loss of generality, we can assume |p| = 1 and |g| = 1. From the assumption
(A3), p="t(p1,...,pm) and q = (q1, ..., qmn) satisfy

f'(Up <261, f'(0)g <251
for a constant 8 > 0. Then there exists a positive constant d* with 0 < §, < % and
—fl(v)p>p1 if |Jv—1]<20, —f(v)g>p1 if |v|<26..
We put

ro =min<{ min p;, min ¢q; p > 0.
{1§j§mp”1§j5mqj}

Next we choose a constant . > 1 such that

sup |®(y)| < 6., sup [®(y)— 1| < by,

Y= px YS—fis
and we put
Ae=min {—®(y) | ly| < ps, 1 < j <m} >0, (23)
o /
M= max, |'(w)]. (24)

Lemma 2.2. One has
max {|®'(y)|, |®"(y)[} < Koexp(—rolyl)  forally €R, (25)

where Ky and kg are positive constants.
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Proof. First we have ®'(—o00) = 0 and ®'(+00) = 0. We study an ordinary differ-

ential equation
Ao\ _p(®
dy <¢/> =F <¢/> yER, (26)

where ¢ =*(¢1(y), - dm(v)), &' ="(¢1(y), .-, &7, (y)) and

< ) - < | )
d)/ kiD 1¢)/ D 1f(¢)
| l en we d

PO (ol ) ()= (o )

Here I,,, is the m X m unit matrix and O,, is the m x m zero matrix, respectively.
After a simple calculation we obtain

(117, d;) det <>\Igm —F (g)) = det (\2D + kAL, + f/(0))

(117, d;) det (AIQm —F' <(1)>) = det (\2D + kAL, + f'(1)).

From k > 0, every root A € C of

det(A\2D + kX + £'(0)) = 0 (27)
has a nonzero real part and every root A € C of

det(\2D + kAT + /(1)) =0 (28)

has a nonzero real part. Then we can apply the stable manifold theorem to (26) at
(0,0) and (1,0). See Hale [2, Theorem 6.1] for the details. Now (®, ®') belongs to
the stable manifold of (0, 0) and belongs to the unstable manifold of (1, 0) simulta-
neously. The stable manifold theorem says that since (®(0), ®’(0)) belongs to the
stable manifold of (0, 0), one has

VI®(W)2+ | (y)]> < Koe "oV for y >0

for positive constants Ky and k. Also since (®(0), ®'(0)) belongs to the unstable
manifold of (1,0), one has

VI1—@@y))2 +[@/(y)? < Koe™?  for y <0.

Replacing Ky by a larger constant if necessary, we complete the proof. O

Now we fix a function x € C*>°(R) with

x(y) =1 if y>1,
0<x(y) <1, 0<x'(y) <1 if —l<y<l, (29)
x(y)=0 if  y<-1L

Since unit vectors {A;}7_; satisfy A; # A; for i # j, we have
—IS(A“A]) <1 fOI‘Z?é]
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Let p(r) € C*°[0,00) be a function with the following properties:
) >0, pr(r) <0 forr >0,

p(r)=1 if r > 0 is small enough,
)

T

=e " if r > 0is large enough, say r > Ry,

[ Alede’ =1
RN—1

We assume Ry > 1 without loss of generality. We have

N — 1)~z [
[ staaa = ST [T
RN-1 F(N+1) 0
2

where I' is the Gamma function. We put p(x’)=p(|z'|). Then p : R¥-1 — R
belongs to C>°(RY~1) and satisfies

/ p(x')dx' =1
RN-1

for all z’ € RN~ and 1 < j < n. Let p*h; be the convolution of p and h; given by

(p* hj)(fc’)=/ p(y)hj(x' —y')dy'.

RN-1

Using
(pradla) = [ ot es i)y’ = |

RN-1

p(y')dy’ — / yip(y') dy' =

RN—I
for ' e RV-1,1<i< N —1, we have
xh:)(x') = h:(x for all ' € RN-1,
(phj J

For all nonnegative integers j1, jo,...,jn—1 with 0 < Zg:l Jp < 3, we have

Dl D - DIy pla)

< Mip(z') for all ' € RV-1 (30)

where M; > 0 is a constant. Here we denote the p-th derivative by the j-th
component by DY, that is, DY p(x') = 9Pp/02¥(x'). We put p=p * h, that is,
@(w’)=/ plx’ =y )h(y)dy' =/ p(y)h(x’ —y')dy' (31)
RN-1 RN-1

for x’ € RV~ We call 2 = ¢(2') a mollified pyramid for a pyramid zx = h(z’).
We put
c

S(m’):w —k, (32)

where Vo(z') = (Dy1p(2’),...,Dn_1p(2")). We have the following properties.
Lemma 2.3 ([9]). Let ¢ and S be as in (31) and (32), respectively. Then one has

h(z') < p(x') < h(z') + m*/ Iy |p(y) dy’, for all ' € RN—1,
RN-1

Vo) <my, 0<S@)<c—k  foralaz' e RN7L,

and o '
D' Dy - Dy~ p(x')| < o0

sup
x’ERN-1
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for any fized (i1,...,in-1) #(0,...,0) withi, >0 (p=1,..,N —1).
Proposition 1 ([9]). One has

. p(a') — h(z') p(a') — h(z')
g AT ZNE) o gy BT
O< 3. " S@y =M., s@) <™

For every integer j, >0 forp=1,..,N —1 with 2 < Z;V:_ll Jp <3,
DD - Dl pla!)
sup < 00
x/ CRN-1 S(CL'/)

holds true.
We set
o(x)=p(z') — h(x') for x € RN -1,
and have @] e (mrv-1) < 00. For each 1 < j < n we have
B@') = p(@) — hi(@) = (px (h—hy)) (@) forall &' € Q.
Since p decays exponentially, as dist(z,U}_;I;) — +oo, we have either |zy —
h(z")| = oo or
[p(@)] =0, [VE(a')| — 0.

Then, as dist(z, U7_, I';) — +00, we have either |zy — h(z')| — oo or

[B(@)] =0, V@) = 0. Vo) —m., S(’)—0. (33)
3. Proof of Theorem 1.1. In this section we construct a pyramidal traveling front
solution and prove Theorem 1.1 by constructing a supersolution and a subsolution
with the methods of [10, 14, 9, 18].

We put € = (£1,...,6n) € RY and & = (&,...,6n_1) € RV7L We study
v = p(&'). For a € (0,1) we consider the graph of

{:1: eRN |2y = égp(am’) } (34)

Later we will choose a@ > 0 to be small enough. We note that

éh(aw’) = h(z').

Putting € = az, we have £y = (¢'). For a given constant b’ € RV =1, the tangent
plane of (34) at (b, (1/a)¢(ab’)) is expressed by

— (Vp(ab), (2’ = b)) + 2y — ég&(ab’) =0. (35)
We use
V€)= (D€ Dv-1pl€) = (S, 52 (€)).

The length of the perpendicular from b = (b',by) € RY onto the tangent plane is
given by
by — 2p(ab)]

V1I+[Ve(ab)2

~an—gelaz) 1 &y —p(g) (36)

/Tt Noaa)E a1t [Ne@)F

We set
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and have

o 1 o°f

— , =0.
Oz JT+|Ve(&)2 0%

Here i is the signed length of the perpendicular from x € R onto the tangent
plane of (34) at (', (1/a)p(ax’)). We have

Ofi _ Dip(&) aib (e LB (e o o2 (e
oz, = 1+|V80(€/)|2 + MFZ(S )7 8$22 = Gz(€)+ ,qu(ﬁ );
where
Fi(&)=v1+|Vep(€) 2% (W) ) (37)
) 9 Dip(€') Fi(§)Dip(£)
G;(&)=— — , 38
(©) 3 ( 1+|Vs0(£’)|2> V1+[Ve(&))? (%)
Hi(€)=D;Fy(&') + (Fi(§))? (39)
fori=1,...,N — 1. We define
v(z) = ®(h) + o ('), (40)

where 71 is as in (36) and
o(x')=eS(ax’) (p + x(1i)(q - P)) -

Here we will fix € > 0 later. We have

v 1 1
- = @' (u T "S(¢ . :
Dy e Qe o A RGOl )
%o 1 1~ R N T N
0%~ T veErT Wt ermaep X WSE)e-p).

For 1 <i< N — 1 we have

~

00— oD + x(@)la - p)) + X () (€ ) a ),
20. ~
ng = ea’D;S(¢)(p+ x(1)(q —p)) + 2a€x/(ﬁ)%DiS(€’)(q - p)

(2

+eS(E) (x”(ﬁ) (52) +x@5h ) (a-p)
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Thus we get

Vo) 20855 FE)Dip(E) | 520N~ e ) (g
><<1+|w<s>| e e i_lFlm)(q §

N-1

+eS(¢ (a Gi(&) +a*n Z Hi( ) p).
=1

Using

ov  ou
P’ —
ox; Oz, () + dz;”  Ox?

do 0w (0N ., - Oh., . Oc
<6xi) ® (H)Jraiwlg‘p(ﬂwrw

fori=1,...,N — 1, we have

Py P Dipl®) SEF (e ’
1(5%) _Z< T Ve @)F prale )>

= =1

veE)r | 3 <zam<s'>w<s'> (R <s'>2>

T 1+ [Ve(e)P 1+ [Vo(€)]?
and
N=1 g2 o N=1 925 L N=1 /om 2 o2
8x12):¢,(u)28xg+q’ () <85> ox?
i=1 i i=1 ¢ i=1 v 1 v
~ = ’ ~ / 1"~ \% )2
= ®() 3 (0Gi(€) + 0L (E) + () [
=1
N-—1 ~ N—-1
72N _QQMFi(gl)Di(p(E) 2 1~\2 "2
+@ + F; +
( )1:1 < R a” () (£)> 4

By taking ¢ as in (41), we have B(x) € [0,2]™ for all x € RY, and we can define
f (7). We calculate L[v] as

AT
L] = DY G —cg -~ f@)
i=1 g
"oy C I ~
= D) - = ¥ (1)~ f(3(@) + )

+aY (& ie,0) +eZ(&', ¢, ).
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Here we set

Y (¢, y;e,0)=—D®'(y <ZG +ayZH )
N—-1
+ D& (y) ( o |V<p 7F 2 Z )—ay® Y Fi(€/)2>

—ca <z_: D?S(E’)> D(p+x(y)(q —p))

and
2 e - X WIE) P 5)SE)

1+ V(&) T+ \w(e)rz(q P

N-1 ,
T 20y (1) (Z <1w>| - ayﬂ-(e/)) Disos’)) D(g - p)

i=1 1+ [Ve(&)
- X"()S(€)
Vo)l 20350 Fi(€)Diw(€) | o
><<1+|w<£'>|2 TrvAe = yZF ) =

- < Z Gi(¢) +a’y Z H;(¢ > —p).
Using
/ F(®(7) + so)dso = F(@(7) + o) — F(@(7)),

the profile equation of ® and the definitions of S and o, we obtain

L[v] = / f(®(n) +so)dso +aY (&, i;e,a) +eZ(€, ¢, )

_ (_ _5/ f'(®(f1) + so)ds(p + x(i) (g — p))

Y& se,0)  Z(E e, )
sE) T s )

There exists a constant vy > 0 with

+a

Z &) +1Gi(€)| + | Hi(€)| + |D:iS(€)| + | DIS(E)])

=1
<1 Z

2<y N ip<3

DYDY - DY pl€)

for all ¢ € RV—1. Using Proposition 1, we have a constant v, > 0 and get
Y (€ yie, )] _ 1Z (€', y;¢,0)

Vi,  —aren < Vs,
5(&) S5(€)
for all ¢ € RV"1 y € R, ¢ € (0,1) and o € (0,1). Constants vy and v, are
independent of &', o € (0,1) and € € (0, 1).
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We put
e gla) b))
/RN -1 S(iL'/)
by using Proposition 1. Now we choose € small enough to satisfy
O<s<min{15* Ax 4Ko }
27 ¢’ 4max{1,v,} max{1, M}’ ekroro

Then we choose a small enough to satisfy

€ (0,00)

1 pBe A k2w

22, dv,’ 4K,
2clog
ekkoroe

Using (41), the definition of Z(¢,y;¢e, ) and
Z(¢  y;e,a) =0 if |y > 1,

0 < a < min

(42)

we have

EW < ilg}ignm (—9%(y)) for all ¢ ¢ RV, y € R.

Then we continue to calculate L£[D] as
L[v]
S(€)

5 # ) = [ @) +s0)ds (0 x(@la ) +a T LY

1
@@ ¢ [ F@@) +so)ds (b4 x(@la-p) vl ()
0

Using Lemma 2.3, we have

Y

v

lo| < e(e— k) max{|pl,|q|} <ec < d..
When |fi] > p. we have
1
- / F(@®(@) + so)ds (p+ x(7)(q - p)) > B1,
0

and thus

- 1
5([;]) > %@’(ﬁ) - 5/0 F(@(i) + so)ds (p+ x(1i)(g — p)) — avs1

1
> —§<I>'(ﬁ) + (ef —avy)1 > 0.

When |fi] < p. we have

5([;]) > () - < [ F(@(@) + 50)ds (p+ x(P)a — ) — o
>~ J() (M + o)1 >~ () ~ arnl > 0.

Now we show that v is a supersolution and is larger than v.

Lemma 3.1. Assume € and o satisfy (41) and (42), respectively. Let v and T be
as in (17) and (40), respectively. Then

L[B] >0 in RY

holds true. Moreover one has v(x) < v(x) for all x € RV.
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Proof. Tt suffices to prove the latter statement. We put v = ¢(vy,...,7,,), that is,

() = ©(7i) + e(pi + x (1) (@ — pi))S(az’)

for 1 <i < m. We prove
k , _
@ (Zlan (@) ) <Ti(@)

forall 1 <j<nand1<i<m. Let1<1i<m be fixed. If we have
k

p<—(ay - hj(z')),

we get
k , —~
L (xn = hj(x')) ) < (1) < vi(x)
for all 1 < 57 < n. Thus it suffices to consider the case of

B ow i) <

Substituting the definition of ji into this inequality, we obtain

ﬁ (mN _ h(a:')) < IN — é@(&l) _ IN — hj(:c') + (h](a:’) — égo(g'))
c ’ 1+ V(€] ERE D

and thus

c p(&)—h;(&) ¢ IV
a\/1+|V<p(£’)|2 < <\/1+V<p(§’)|2 >( N i(@'))

By (32), we have
c 1 p(&) —h;(£)
a1+ V()P  SE&)

By the definition of w and Lemma 2.3 we have

<IN — hj(m').

kw ¢ w ,
Since
! ]- / ]- ’ ]. /
hi(a) = ~hy(€) < —h(E) < —pl€),
we have

-, (w) el x() s~ p)SE) — 0 (£ o e )

) - o (k (zn — hj(iv’))) +e(pi + x(1) (@i — pi))S (&)
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Combining this inequality and

_ xN_hj(w/) &, ﬁl‘ bl
‘I’Z<1+|w<e>|2> @(C(N By >>)

_(xN_hj(w/))S(gl) ! / 0 ﬁ _ on — halx
B ¢ /o@<< N 0)>(N v ))>d9’

we find
— k /
vi(x) — D; C(xN—h (x

(xN - hj( k /
> +-(1-6 zy — hj(x do
. e ) ey @)
+e(pi + x (1) (g S(€).
By Lemma 2.3 we have
Fe 0 Ry p<n
¢ 1+ [Ve(&)]? ¢
Then using (44), we get
k S(¢
(o)~ @ (o - y(@)) = -2E sup L0+ erosie)
c C | |ch2
, 1
= S(E) [ero— 1 s ()
lyl> %2
By virtue of (25) we have
Ko
< == _
y®}(y)| exp (=51
Using (42), we get
1 er
7 sw y®(y)] < 453
PEE=
Then we obtain
(o)~ @ (Slow — i@ ) > GS(E) > 0
This completes the proof. O

Now we prove the main theorem in this paper.
Proof of Theorem 1.1. Recall (17) and (40), and consider solutions of (10) given
by w(x,t;v) and w(x,t; D) respectively. Since v is a weak subsolution and v is a
supersolution, we have

v <w(z, t;v) <w(z,t;v) <V
for x € RY and t > 0 by using [13, Theorem 3.4]. Then
V(z)= lim w(z,t;v) (45)

exists in L (RY) with
v(z) < V(x) < v(x) for x € RY.
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This V() is a solution of (11). See Sattinger [13, Theorem 3.6] for detailed argu-
ments.
Now we prove (21). For any given £ > 0 we prove
sup |v(z) —v(x)| < 2ce, (46)
zeD(v)
if v > 0 is large enough. Indeed, let assume the contrary. Then there exist sequences
()22, C R and (z;)3°; C RY such that we have

lim ~; = oo, xz; € D(v), (47)
71— 00
and
. k /
Qi) — @ | —(zn: — M) || > cs, (48)
C

where ©; = "(z14,...,on,) and x, = "(z14,...,an-1,) for i« € N. Here we put
E; = O[.’I}; Wlth 5/ = t(glﬂ', e ,§N7Z‘) and

G = 1 Enva—(8) _ xni—h(=) - 2 (&) — h(&))
a1+ [Ve(&)? 1+ [Ve(&)I?
_ TN, — h(w;) - é@(fi)
1+ [Ve(&)?

If lim; o0 |2n,; — h(2])| = 00, we have lim; o [fi;| = oo by using [|@]| e @r-1) < 00
and Lemma 2.3, and get a contradiction in (48). Otherwise we can assume that
SUp; o0 TN, — h(x})| < 00, and using

lim [3(&;)] =0, lim [Vp(&)] =m., lim S(&) =0

1—> 00 11— 00 71— 00

in (33), we obtain

lim
1—00

.k
Hi — E(xl\” - h(m;))‘ =0.
This implies

lim
11— 00

25 - @ (S - i) )| =0

This contradicts (48). Since we can take € in (41) arbitrarily small, we complete
the proof of Theorem 1.1.

The uniqueness and stability of pyramidal traveling fronts in RY remain as in-
teresting open problems.
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