Controlled cellular automata

  • Cellular Automata have been successfully used to model evolution of complex systems based on simples rules. In this paper we introduce controlled cellular automata to depict the dynamics of systems with controls that can affect their evolution. Using theory from discrete control systems, we derive results for the control of cellular automata in specific cases. The paper is mostly oriented toward two applications: fire spreading; morphogenesis and tumor growth. In both cases, we illustrate the impact of a control on the evolution of the system. For the fire, the control is assumed to be either firelines or firebreaks to prevent spreading or dumping of water, fire retardant and chemicals (foam) on the fire to neutralize it. In the case of cellular growth, the control describes mechanisms used to regulate growth factors and morphogenic events based on the existence of extracellular matrix structures called fractones. The hypothesis is that fractone distribution may coordinate the timing and location of neural cell proliferation, thereby guiding morphogenesis, at several stages of early brain development.

    Citation: Achilles Beros, Monique Chyba, Oleksandr Markovichenko. Controlled cellular automata[J]. Networks and Heterogeneous Media, 2019, 14(1): 1-22. doi: 10.3934/nhm.2019001

    Related Papers:

    [1] Kyungkeun Kang, Dongkwang Kim . Existence of generalized solutions for Keller-Segel-Navier-Stokes equations with degradation in dimension three. Mathematics in Engineering, 2022, 4(5): 1-25. doi: 10.3934/mine.2022041
    [2] Lucio Boccardo . A "nonlinear duality" approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085
    [3] Lucas C. F. Ferreira . On the uniqueness of mild solutions for the parabolic-elliptic Keller-Segel system in the critical $ L^{p} $-space. Mathematics in Engineering, 2022, 4(6): 1-14. doi: 10.3934/mine.2022048
    [4] Alberto Farina . Some results about semilinear elliptic problems on half-spaces. Mathematics in Engineering, 2020, 2(4): 709-721. doi: 10.3934/mine.2020033
    [5] Takeyuki Nagasawa, Kohei Nakamura . Asymptotic analysis for non-local curvature flows for plane curves with a general rotation number. Mathematics in Engineering, 2021, 3(6): 1-26. doi: 10.3934/mine.2021047
    [6] Giuseppe Procopio, Massimiliano Giona . Bitensorial formulation of the singularity method for Stokes flows. Mathematics in Engineering, 2023, 5(2): 1-34. doi: 10.3934/mine.2023046
    [7] Italo Capuzzo Dolcetta . The weak maximum principle for degenerate elliptic equations: unbounded domains and systems. Mathematics in Engineering, 2020, 2(4): 772-786. doi: 10.3934/mine.2020036
    [8] Riccardo Adami, Raffaele Carlone, Michele Correggi, Lorenzo Tentarelli . Stability of the standing waves of the concentrated NLSE in dimension two. Mathematics in Engineering, 2021, 3(2): 1-15. doi: 10.3934/mine.2021011
    [9] L. Dieci, Fabio V. Difonzo, N. Sukumar . Nonnegative moment coordinates on finite element geometries. Mathematics in Engineering, 2024, 6(1): 81-99. doi: 10.3934/mine.2024004
    [10] Massimiliano Giona, Luigi Pucci . Hyperbolic heat/mass transport and stochastic modelling - Three simple problems. Mathematics in Engineering, 2019, 1(2): 224-251. doi: 10.3934/mine.2019.2.224
  • Cellular Automata have been successfully used to model evolution of complex systems based on simples rules. In this paper we introduce controlled cellular automata to depict the dynamics of systems with controls that can affect their evolution. Using theory from discrete control systems, we derive results for the control of cellular automata in specific cases. The paper is mostly oriented toward two applications: fire spreading; morphogenesis and tumor growth. In both cases, we illustrate the impact of a control on the evolution of the system. For the fire, the control is assumed to be either firelines or firebreaks to prevent spreading or dumping of water, fire retardant and chemicals (foam) on the fire to neutralize it. In the case of cellular growth, the control describes mechanisms used to regulate growth factors and morphogenic events based on the existence of extracellular matrix structures called fractones. The hypothesis is that fractone distribution may coordinate the timing and location of neural cell proliferation, thereby guiding morphogenesis, at several stages of early brain development.



    The main purpose of this note is to provide an alternative construction of nonnegative and nonradially symmetric initial data for some Keller–Segel-type models which will enforce finite or infinite blowup. Consider the following functional:

    $ F(u,v):=Ω(uloguuv+12|v|2+12v2)dx,
    $

    where $ \Omega \subset \mathbb{R}^2 $ is a bounded domain with $ C^2 $ boundary $ \partial \Omega $ and a pair of nonnegative smooth functions $ (u, v) $. The main result of this note is stated as follows.

    Theorem 1.1. For any $ M > 0 $ and $ \Lambda \in (4\pi, \infty) $ there exists a pair of nonnegative functions $ (u_0, v_0) \in (C^\infty(\overline{\Omega}))^2 $ satisfying

    $ {u0L1(Ω)=Λ,F(u0,v0)<M.
    $

    The above functional $ \mathcal{F}(u, v) $ appears in the study of the minimal Keller–Segel system:

    $ {ut=Δu(uv)xΩ,t>0,vt=Δvv+uxΩ,t>0,νu=νv=0xΩ,t>0,u(x,0)=u0(x),v(x,0)=v0(x),xΩ,
    $
    (1.1)

    and also one of the following chemotaxis model featuring a signal-dependent motility function of the negative exponential type:

    $ {ut=Δ(evu)xΩ,t>0,vt=Δvv+uxΩ,t>0,νu=νv=0xΩ,t>0,u(x,0)=u0(x),v(x,0)=v0(x),xΩ.
    $
    (1.2)

    Classical positive solutions of (1.1) satisfy the following energy-dissipation identity ([4,9]):

    $ ddtF(u,v)(t)+Ωu|loguv|2dx+vt2L2(Ω)=0,
    $

    while for the classical solutions to (1.2), there holds ([2]):

    $ ddtF(u,v)(t)+Ωuev|loguv|2dx+vt2L2(Ω)=0.
    $

    In both cases, the above energy identities will immediately give rise to the a priori upper bound for $ \mathcal{F}(u, v)(t) $. On the other hand, for any given initial data of small total mass such that $ \|u_0\|_{L^1(\Omega)} < 4\pi $, one could derive a lower bound for the energy functional and then the classical solutions of both systems (1.1) and (1.2) exist globally in time and remain bounded uniformly in the two-dimensional setting (see [2,4,7,9]). For large data, unbounded solutions of the above problems could be constructed based on observations of the variational structure of the stationary problem and by taking an advantage of the subtle connection between its associated functional with the energy $ \mathcal{F} $. In [5] the authors introduced a transformation problem of the original system (1.1) with the unknowns being the cell density and the relative signal concentration. Then they constructed unbounded solutions for the transformed problem, which in turn implied blowup of the original one.

    In this note we would rather to construct an unbounded solution to the original system (1.1) or (1.2) in a more direct way. To this aim, let us sketch the main idea of the construction of an unbounded solution following [11] (see also [5]). First, the corresponding stationary solutions $ (u_s, v_s) $ to (1.1) or (1.2) satisfy the following problem:

    $ {vsΔvs=ΛΩevsdxevsin Ω,us=ΛΩevsdxevsin Ω,vsν=0on Ω,
    $
    (1.3)

    for some $ \Lambda > 0 $. Denote

    $ \mathcal{S}(\Lambda) : = \left\{ (u_s, v_s) \in C^2(\overline{\Omega}) : (u_s, v_s ) \mbox{ is a solution to (1.3) } \right\} $

    for $ \Lambda > 0 $. By [5,Lemma 3.5] and [10,Theorem 1], for $ \Lambda \not\in 4\pi \mathbb{N} $ there exists some $ C > 0 $ such that

    $ \sup \{ \|(u_s, v_s)\|_{L^\infty (\Omega)} : (u_s, v_s) \in \mathcal{S}(\Lambda) \} \leq C $

    and

    $ \mathcal{F}_\ast(\Lambda) : = \inf \{ \mathcal{F}(u_s, v_s) : (u_s, v_s) \in \mathcal{S}(\Lambda) \} \geq - C. $

    On the other hand, let $ (u, v) $ be the classical positive solution to (1.1) or (1.2) in $ \Omega \times (0, \infty) $. If the solution is uniform-in-time bounded, by the compactness method (cf. [13,Lemma 3.1]), there exist a sequence of time $ \{t_k\} \subset (0, \infty) $ and a solution $ (u_s, v_s) $ to (1.3) with $ \Lambda = \|u_0\|_{L^1(\Omega)} $ such that $ \lim\limits_{k \rightarrow \infty} t_k = \infty $ and that

    $ \lim\limits_{k \rightarrow \infty} (u(t_k), v(t_k)) = (u_s, v_s) \quad \mbox{in}C^2(\overline{\Omega}), $

    as well as

    $ \mathcal{F}(u_s, v_s) \leq \mathcal{F}(u_0, v_0). $

    Thus taking account of the above discussion, for a pair of nonnegative functions $ (u_0, v_0) $ satisfying

    $ {u0L1(Ω)=Λ4πN,F(u0,v0)<F(Λ),
    $
    (1.4)

    the corresponding solution must be unbounded or blow up in finite time.

    Recently in [2], we constructed nonnegative initial data satisfying (1.4) when $ \Lambda \in (8\pi, \infty) $ in the radially symmetric case, which differs from those given in [5]. However, it was left open whether our idea for a construction of adequate initial data can be extended to the nonradial symmetric case if $ \Lambda \in (4\pi, 8 \pi) $. Theorem 1.1 of the present work gives an affirmative answer to this question and as a consequence, we have an alternative proof of the following corollaries ([5]).

    Corollary 1.2. For any $ \Lambda\in(4\pi, \infty)\backslash4\pi\mathbb{N} $ there exists a nonnegative initial datum $ (u_0, v_0) $ satisfying (1.4) such that the corresponding classical solution of $(1.1)$ satisfies either:

    exists globally in time and $ \limsup\limits_{t\rightarrow \infty}(\|u(t)\|_{L^\infty(\Omega)} + \|v(t)\|_{L^\infty(\Omega)}) = \infty $;

    blows up in finite time.

    Remark 1.3. Finite time blowup solutions of the corresponding parabolic-elliptic system are constructed if $ \Lambda > 4\pi $ in [8].

    As to the system (1.2), global existence of classical solutions with any nonnegative initial data was guaranteed in [2], which excluded the possibility of finite-time blowup. Hence, we arrive at the following:

    Corollary 1.4. For any $ \Lambda\in(4\pi, \infty)\backslash4\pi\mathbb{N} $ there exists a nonnegative initial datum $ (u_0, v_0) $ satisfying (1.4) such that the corresponding global classical solution of $(1.2)$ blows up at time infinity.

    In previous works [3,6,12,13], nonnegative initial data with large negative energy were constructed in several modified situations, e.g., the higher dimensional setting, the nonlinear diffusion case, the nonlinear sensitivity case and the indirect signal case. In those works, the initial datum has a concentration at an interior point of $ \Omega $. Similarly, in our precedent work [2], we constructed an initial datum which concentrates at the origin based on certain perturbation of the rescaled explicit solutions to the elliptic system

    $ {ΔV=UxR2,eV=UxR2,R2U=8π,
    $

    provided that the total mass $ \Lambda > 8\pi $. However, without the radially symmetric requirement and when $ 4\pi < \Lambda < 8\pi $, we need to construct an initial datum that concentrates at a boundary point. To this aim, some cut-off and folding-up techniques are introduced. Besides, a lemma of analysis (Lemma 2.2) plays a crucial role in estimating the value of each individual integral in the energy functional and in order to get vanishing estimations of the error terms, the radius of the cut-off function used in our case needs to depend on the rescaled parameter as well, which in contrast was fixed in the radially symmetric case in [2].

    A straightforward calculation leads us to the following lemma.

    Lemma 2.1. For any $ \lambda \geq 1 $ and $ r \in (0, 1) $, the functions

    $ u_\lambda (x) : = \frac{8\lambda^2}{(1+\lambda^2|x|^2)^2}, \quad v_{\lambda} (x) : = 2 \log \frac{1+\lambda^2}{1+\lambda^2|x|^2} + \log 8 \qquad \mathit{\mbox{for all}} \ x \in \mathbb{R}^2, $

    satisfy

    $ R2uλdx=8π,uλ(x)8λ2,vλ(x)>log8>0in Br(0):={xR2||x|<r}.
    $

    Since $ \partial \Omega $ is $ C^2 $ class, for any boundary point $ P\in \partial \Omega $ there exist some $ R^\prime = R^\prime_{P}\in (0, 1) $ and some $ C^2 $ function $ \gamma_{P}: \mathbb{R} \to \mathbb{R} $ such that

    $ \Omega \cap B_{R^\prime} (0) = \{ (x_1, x_2)\in B_{R^\prime}(0)\, |\, x_2 > \gamma_{P} (x_1) \} $

    (cf. [1,Appendix C.1]). Moreover since $ \Omega $ is a bounded domain, we can find some point $ P_0 = (P_1, P_2) \in \partial \Omega $ satisfying that there exists $ R \in (0, R^\prime) $ such that

    $ (γP0)(x1)0for all |P1x1|<R.
    $
    (2.1)

    By translation, we may assume $ P_0 = (0, 0) $. Hereafter we fix the above $ R \in (0, 1) $ and $ \gamma = \gamma_{P_0} $. In this setting, we have the following lemma:

    Lemma 2.2. Let $ f: \mathbb{R}^2 \to \mathbb{R} $ be a radially symmetric, nonnegative and continuous function. For any $ r\in(0, R) $ it follows that

    $ \frac{1}{2}\int_{B_r(0)} f(x)\, dx -K(R) \left(\sup\limits_{x\in B_r(0)}f(x)\right) \cdot r^3 \leq \int_{B_r(0) \cap \Omega} f(x)\, dx \leq \frac{1}{2}\int_{B_r(0)} f(x)\, dx, $

    where

    $ K(R):=max|ξ|Rγ(ξ)>0.
    $
    (2.2)

    Proof. We first note that for any $ r\in (0, R) $,

    $ \Omega \cap B_r(0) = \{ (x_1, x_2)\in B_r(0)\, |\, x_2 > \gamma (x_1) \}. $

    Since $ \gamma(0) = 0 $ and the assumption (2.1), it follows by Taylor's theorem that for all $ x_1 \in (-R, R) $ we have

    $ \gamma^\prime(0)x_1 \leq \gamma (x_1) \leq \gamma^\prime(0)x_1 + \frac{1}{2}K(R) \cdot x_1^2, $

    where $ K(R) : = \max_{|\xi| \leq R}\gamma^{\prime\prime}(\xi) > 0 $. Thus we can deduce that

    $ A_{+\varepsilon} \subset (\Omega \cap B_r(0)) \subset A, $

    where

    $ A+ε:={(x1,x2)Br(0)|x2>γ(0)x1+12K(R)r2},A:={(x1,x2)Br(0)|x2>γ(0)x1}.
    $

    By denoting

    $ B+ε:={(x1,x2)Br(0)|γ(0)x1+12K(R)r2x2>γ(0)x1},
    $

    we confirm that

    $ A_{+\varepsilon} = A \setminus B_{+\varepsilon}. $

    Since the radial symmetry of $ f $ implies

    $ \int_{A}f(x)\, dx = \frac{1}{2} \int_{B_r(0)}f(x)\, dx, $

    we have

    $ \frac{1}{2} \int_{B_r(0)}f(x)\, dx - \int_{B_{+\varepsilon}}f(x)\, dx \leq \int_{\Omega \cap B_r(0)} f(x)\, dx \leq \frac{1}{2} \int_{B_r(0)}f(x)\, dx. $

    Since

    $ |B_{+\varepsilon}| \leq \frac{1}{2} K(R) r^2 \cdot 2r = K(R) r^3, $

    we have that

    $ 12Br(0)f(x)dx(supxBr(0)f(x))K(R)r3ΩBr(0)f(x)dx12Br(0)f(x)dx,
    $

    which concludes the proof.

    For any $ 0 < \eta_1 < \eta_2 $ we can construct a radially symmetric function $ \phi_{\eta_2, \eta_1} \in C^\infty (\mathbb{R}^2) $ satisfying

    $ \phi_{\eta_2, \eta_1}(B(0, \eta_1)) = \{1\}, \ 0\leq \phi_{\eta_2, \eta_1} \leq 1, \ \phi_{\eta_2, \eta_1}( \mathbb{R}^2 \setminus B(0, \eta_2) ) = \{0\}, \ x \cdot \nabla \phi_{\eta_2, \eta_1}(x) \leq 0. $

    For any $ \lambda > \max\{1, (\frac{4}{R})^{\frac{6}{5}}\} $, we fix

    $ r:=λ56,r1:=r2,
    $

    and then $ 0 < r_1 < r < \min\{1, \frac{R}{4}\} $. Noting that

    $ f(\lambda): = 1 - \frac{1}{1+(\lambda r_1)^2} = 1-\frac{4}{4+\lambda^{\frac{1}{3}}} \nearrow 1 \quad \mbox{ as } \lambda \to \infty, $

    and by the increasing property of $ f $, we can find $ \lambda_\ast > \max\{1, (\frac{4}{R})^{\frac{6}{5}}\} $ such that

    $ 4 \pi \cdot f(\lambda_\ast)-8K(R) \lambda_{\ast}^{-\frac{1}{2}} > 2\pi, $

    where $ K(R) $ is defined in (2.2). Here we confirm that for any $ \lambda > \lambda_\ast $,

    $ 4 \pi \cdot f(\lambda)-8K(R) \lambda^{-\frac{1}{2}} > 2\pi. $

    Now we define the pair

    $ (u_0, v_0) : = (au_\lambda \phi_{r, r_1}\chi_{\Omega}, av_{\lambda } \phi_{\frac{R}{2}, \frac{R}{4}} \chi_{\Omega} ) $

    with some $ a > 0 $. Here we remark that $ u_0 $ and $ v_0 $ are nonnegative functions belonging to $ C^\infty(\overline{\Omega}) $.

    Lemma 2.3. Let $ \Lambda \in (4\pi, \infty) $. For $ \lambda > \lambda_\ast $ there exists

    $ a=a(λ)(Λ4π,Λ2π)
    $
    (2.3)

    such that

    $ Ωu0dx=Λ.
    $
    (2.4)

    Proof. Firstly by changing variables, we see that

    $ B(0,)uλdx=8B(0,λ)dy(1+|y|2)2=8π(λ)20dτ(1+τ)2=8π(111+(λ)2) for >0,
    $
    (2.5)

    and that

    $ 8π(111+(λr1)2)<Br(0)uλϕr,r1dx<8π(111+(λr)2).
    $

    Here in light of the radial symmetry of $ u_\lambda \phi_{r, r_1} $, we can invoke Lemma 2.2 to have

    $ 4π(111+(λr1)2)K(R)8λ2r3<Ωuλϕr,r1χΩdx<4π(111+(λr)2),
    $

    where we used

    $ \max\limits_{x\in B_r(0)} u_\lambda \phi_{r, r_1}(x) = 8\lambda^2\quad \mbox{and}\quad \int_\Omega u_\lambda \phi_{r, r_1}\chi_{\Omega}\, dx = \int_{B_r(0)\cap \Omega} u_\lambda \phi_{r, r_1}\, dx. $

    By the choice of $ r > 0 $, we have

    $ 4πf(λ)8K(R)λ12<Ωuλϕr,r1χΩdx.
    $

    Therefore for any $ \lambda > \lambda_\ast $ we find some $ a = a(\lambda) $ satisfying

    $ Λ4π<a<Λ2π
    $

    and (2.4). We conclude the proof.

    Lemma 2.4. There exists $ C > 0 $ such that for all $ \lambda > \lambda_\ast $,

    $ Ωu0logu0dx8πalogλ+C,
    $
    (2.6)

    where $ a = a(\lambda) $ is defined in Lemma 2.3.

    Proof. Since $ s\log s \leq t\log t +\frac{1}{e} $ for $ s\leq t $ and $ u_0 \leq a u_\lambda \chi_{B_r(0)\cap\Omega} $, it follows

    $ Ωu0logu0dxΩ(auλχBr(0)Ω)log(auλχBr(0)Ω)dx+|Ω|eaΩuλχBr(0)Ωloguλdx+(aloga+e1)Ωuλdx+|Ω|e.
    $

    Since $ \log u_\lambda \leq \log (8\lambda^2) = 2 \log \lambda +\log 8 $ and $ \int_\Omega u_\lambda \leq 8\pi $, we have

    $ Ωu0logu0dx2alogλΩuλχBr(0)Ωdx+8π(alog8+aloga+e1)+|Ω|e.
    $

    By Lemma 2.2 we obtain

    $ \int_\Omega u_\lambda\chi_{B_r(0)\cap\Omega} \leq \frac{1}{2}\int_{B_r(0)} u_\lambda \leq \frac{1}{2} \int_{ \mathbb{R}^2} u_\lambda = 4\pi. $

    Therefore

    $ Ωu0logu0dx8πalogλ+C,
    $

    where we remark that the constant $ C $ is independent of $ a $ and $ \lambda $ in view of (2.3). We conclude the proof.

    Lemma 2.5. There exists $ C > 0 $ such that for all $ \lambda > \lambda_\ast $,

    $ Ωu0v0dx16πa2logλ64πa2logλ4+λ13K(R)λ12(2log(1+λ2)+log8)C,
    $
    (2.7)

    where $ a = a(\lambda) $ is defined in Lemma 2.3.

    Proof. Using $ v_{\lambda } > 0 $ in $ B(0, r) $, $ u_0 = 0 $ on $ B(0, r)^c $ and $ r_1 < \frac{R}{4} $, we see that

    $ Ωu0v0dxa2B(0,r1)uλvλχBr1(0)Ωdx.
    $

    Since $ u_\lambda v_{\lambda} $ is radially symmetric and

    $ \max\limits_{x\in B_{r_1}(0)} u_\lambda v_{\lambda} (x) = 8\lambda^2 (2 \log (1+\lambda^2) + \log 8), $

    we apply Lemma 2.2 and recall $ r_1 = 2^{-1}\lambda^{-\frac{5}{6}} $ to deduce that

    $ Ωu0v0dx12a2B(0,r1)uλvλdxK(R)8λ2(2log(1+λ2)+log8)r31=12a2B(0,r1)uλvλdxK(R)λ12(2log(1+λ2)+log8).
    $

    Since

    $ v_{\lambda} (x) > 2 \log \frac{1+\lambda^2 }{1+\lambda^2 |x|^2} \quad \mbox{ for } x \in B(0, r_1), $

    we have that

    $ 12a2B(0,r1)uλvλdx12a2B(0,r1)uλ2log1+λ21+λ2|x|2dx>2a2logλB(0,r1)uλdxa2B(0,r1)uλlog(1+λ2|x|2)dx.
    $

    By (2.5), it follows

    $ 2a2logλB(0,r1)uλdx2a2logλ8π(111+(λr1)2)=16πa2logλ64πa2logλ4+λ13.
    $

    On the other hand, by (2.3) and direct calculations we see

    $ a2B(0,r1)uλlog(1+λ2|x|2)dx=8a2B(0,r1)λ2log(1+λ2|x|2)(1+λ2|x|2)2dx=16πa2λr10slog(1+s2)(1+s2)2ds<8πa20log(1+ξ)(1+ξ)2dξ<.
    $

    Combining above estimates, we obtain that

    $ Ωu0v0dx16πa2logλ64πa2logλ4+λ13K(R)λ12(2log(1+λ2)+log8)C
    $

    for $ \lambda > \lambda_\ast $ with some positive constant $ C $, which is independent of $ a $ and $ \lambda $ due to (2.3).

    Lemma 2.6. For any $ \varepsilon_1 > 0 $ there exists $ C(\varepsilon_1) > 0 $ such that for all $ \lambda > \lambda_\ast $,

    $ 12Ω(v20+|v0|2)dx8π(1+ε1)a2logλ+C(ε1),
    $
    (2.8)

    where $ a = a(\lambda) $ is defined in Lemma 2.3.

    Proof. Since

    $ \dfrac{1+\lambda^2 }{1+\lambda^2 |x|^2} \leq \dfrac{1+\lambda^2 }{\lambda^2 |x|^2} \leq \left(\dfrac{2}{|x|} \right)^2 \qquad \mbox{for }\lambda > 1, $

    we see that for $ \lambda > 1 $

    $ |v_{\lambda} (x)| \leq 4 \log \frac{2}{|x|} + \log 8 \ \mbox{ in } B_1(0). $

    Hence it follows from straightforward calculations that there is a positive constant $ C $ satisfying

    $ Ωv20dxa2B1(0)(4log2|x|+log8)2dxC,
    $
    (2.9)

    where the constant $ C $ is independent of $ a $ and $ \lambda $ due to (2.3).

    Moreover by Young's inequality, for any $ \varepsilon_1 > 0 $ there exists $ C^\prime (\varepsilon_1) > 0 $ such that

    $ |v0|2=a2|ϕR2,R4vλ+ϕR2,R4vλ|2χBR2(0)Ωa2(1+ε1)ϕ2R2,R4|vλ|2χBR2(0)Ω+C(ε1)a2|ϕR2,R4|2v2λχBR2(0)Ω.
    $

    Since by (2.9) we have some $ C > 0 $ such that

    $ a2Ω|ϕR2,R4|2v2λχBR2(0)ΩdxC
    $

    and by the direct calculations, we have

    $ |\nabla v_{\lambda} (x)| = \dfrac{4 \lambda^2 |x|}{1+\lambda^2 |x|^2}, $

    and then we infer that

    $ Ω|v0|2dxa2(1+ε1)Ωϕ2R2,R4|vλ|2χBR2(0)Ωdx+C(ε1)a2Ω|ϕR2,R4|2v2λdx16a2(1+ε1)BR2(0)Ωλ4|x|2(1+λ2|x|2)2dx+C(ε1)
    $

    with some $ C^{\prime\prime}(\varepsilon_1) > 0 $. Since $ \dfrac{ \lambda^4 |x|^2}{(1+\lambda^2 |x|^2)^2} $ is radially symmetric, we can invoke Lemma 2.2 to see

    $ Ω|v0|2dx8a2(1+ε1)BR2(0)λ4|x|2(1+λ2|x|2)2dx+C(ε1),
    $

    thus

    $ \frac{1}{2} \int_\Omega |\nabla v_0|^2 \, dx \leq 4a^2(1+ \varepsilon_1) \int_{B_1(0)} \dfrac{ \lambda^4 |x|^2}{(1+\lambda^2 |x|^2)^2} \, dx +\frac{C^{\prime\prime}( \varepsilon_1)}{2}. $

    On the other hand,

    $ B1(0)λ4|x|2(1+λ2|x|2)2dx=πλ20τ(1+τ)2dτπλ2011+τdτ=πlog(1+λ2).
    $

    Since $ \lambda > 1 $, it follows

    $ \log (1+ \lambda^2) \leq \log (2\lambda^2) = 2\log \lambda +\log 2. $

    Hence

    $ \frac{1}{2} \int_\Omega |\nabla v_0|^2 \, dx \leq 4 \pi a^2(1+ \varepsilon_1)\cdot (2\log \lambda +\log 2) +\frac{C^{\prime\prime}( \varepsilon_1)}{2}. $

    Therefore we conclude

    $ 12Ω|v0|2dx8πa2(1+ε1)logλ+C(ε1),
    $

    where the constant $ C(\varepsilon_1) $ is independent of $ a $ and $ \lambda $ due to (2.3).

    Proof of Theorem 1.1. For any $ \Lambda \in (4\pi, \infty) $, we have $ \Lambda/{4\pi} > 1 $. In view of (2.3), we can fix $ \varepsilon_1 > 0 $ independently of $ \lambda $ such that $ (1- \varepsilon_1)a-1 > (1- \varepsilon_1)\frac{\Lambda}{4\pi}-1 > 0 $, where $ a = a(\lambda) $ is defined in Lemma 2.3. Then it follows that

    $ a((1ε1)a1)>Λ4π((1ε1)Λ4π1)>0,for all λ>λ.
    $
    (2.10)

    Collecting (2.6), (2.7) and (2.8), we infer that there exists some $ C > 0 $ such that

    $ F(u0,v0)I1logλ+I2+C,
    $

    where

    $ I1:=8πa16πa2+8πa2(1+ε1)=8πa((1ε1)a1),I2:=64πa2logλ4+λ13+K(R)λ12(2log(1+λ2)+log8).
    $

    Here (2.10) implies $ I_1 < 0 $ for all $ \lambda > \lambda_{\ast} $. On the other hand, we note

    $ \lim\limits_{\lambda \to \infty} I_2 = 0. $

    Based on the above discussion, for $ \Lambda \in (4\pi, \infty) $ and $ M > 0 $, we can choose some $ \lambda > \lambda_{\ast} $ such that

    $ \mathcal{F}(u_0, v_0) < -M. $

    We conclude the proof.

    The authors thank the anonymous referee's careful reading and useful suggestions. K. Fujie is supported by Japan Society for the Promotion of Science (Grant-in-Aid for Early-Career Scientists; No. 19K14576). J. Jiang is supported by Hubei Provincial Natural Science Foundation under the grant No. 2020CFB602.

    The authors declare no conflict of interest.



    [1] A cellular automaton model for tumour growth in inhomogeneous environment. Journal of Theoretical Biology (2003) 225: 257-274.
    [2]

    A. Beros, M. Chyba, A. Fronville and F. Mercier, A morphogenetic cellular automaton, in 2018 Annual American Control Conference (ACC), IEEE, 2018, 1987–1992.

    [3]

    A. B. Bishop, Introduction to Discrete Linear Controls: Theory and Application, Elsevier, 2014.

    [4] Cell-level finite element studies of viscous cells in planar aggregates. Journal of Biomechanical Engineering (2000) 122: 394-401.
    [5] Fractone-heparan sulphates mediate fgf-2 stimulation of cell proliferation in the adult subventricular zone. Cell Proliferation (2013) 46: 137-145.
    [6]

    S. El Yacoubi and P. Jacewicz, Cellular automata and controllability problem, in CD-Rom Proceeding of the 14th Int. Symp. on Mathematical Theory of Networks and Systems, june, 2000, 19–23.

    [7] Analyse et contrôle par automates cellulaires. Annals of the University of Craiova-Mathematics and Computer Science Series (2003) 30: 210-221.
    [8] Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells (2007) 25: 2146-2157.
    [9] Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans (2005) 35: 337-348.
    [10] Fractones: Extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cellular and Molecular Life Sciences (2016) 73: 4661-4674.
    [11] Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone. Journal of Chemical Neuroanatomy (2014) 57: 54-61.
    [12] Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network. Journal of Comparative Neurology (2002) 451: 170-188.
    [13] Adhesion between cells, diffusion of growth factors, and elasticity of the aer produce the paddle shape of the chick limb. Physica A: Statistical Mechanics and its Applications (2007) 373: 521-532.
    [14] An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation. Journal of Theoretical Biology (2006) 242: 774-789.
  • This article has been cited by:

    1. Mario Fuest, Johannes Lankeit, Corners and collapse: Some simple observations concerning critical masses and boundary blow-up in the fully parabolic Keller–Segel system, 2023, 146, 08939659, 108788, 10.1016/j.aml.2023.108788
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6278) PDF downloads(472) Cited by(0)

Figures and Tables

Figures(14)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog