Citation: Takeyuki Nagasawa, Kohei Nakamura. Asymptotic analysis for non-local curvature flows for plane curves with a general rotation number[J]. Mathematics in Engineering, 2021, 3(6): 1-26. doi: 10.3934/mine.2021047
[1] | B. Andrews, J. McCoy, G. Wheeler, V. M. Wheeler, Closed ideal planar curves, arXiv: 1810.06154. |
[2] | B. Chow, P. Lu, L. Ni, Hamilton's Ricci flow, New York: American Mathematical Society, 2006. |
[3] | M. Gage, On an area-preserving evolution equation for plane curves, In: Nonlinear problems in geometry, Providence: American Mathematical Society, 1986, 51–62. |
[4] |
J. W. Hagood, B. S. Thomson, Recovering a function from a Dini derivative, Am. Math. Mon., 113 (2006), 34–46. doi: 10.1080/00029890.2006.11920276
![]() |
[5] |
L. Jiang, S. Pan, On a non-local curve evolution problem in the plane, Commun. Anal. Geom., 16 (2008), 1–26. doi: 10.4310/CAG.2008.v16.n1.a1
![]() |
[6] |
L. Ma, A. Zhu, On a length preserving curve flow, Monatsh. Math., 165 (2012), 57–78. doi: 10.1007/s00605-011-0302-8
![]() |
[7] | T. Nagasawa, K. Nakamura, Interpolation inequalities between the deviation of curvature and the isoperimetric ratio with applications to geometric flows, Adv. Differential Equ., 24 (2019), 581–608. |
[8] | K. Nakamura, An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow, Discrete Contin. Dyn. S, doi: 10.3934/dcdss.2020385. |
[9] |
X. L. Wang, L. H. Kong, Area-preserving evolution of nonsimple symmetric plane curves, J. Evol. Equ., 14 (2014), 387–401. doi: 10.1007/s00028-014-0219-5
![]() |
[10] | G. Wheeler, Convergence for global curve diffusion flows, arXiv: 2004.08494. |