Citation: Mattia Fogagnolo, Andrea Pinamonti. Strict starshapedness of solutions to the horizontal p-Laplacian in the Heisenberg group[J]. Mathematics in Engineering, 2021, 3(6): 1-15. doi: 10.3934/mine.2021046
[1] | V. Agostiniani, M. Fogagnolo, L. Mazzieri, Minkowski inequalities via nonlinear potential theory, 2019. Available from: https://arXiv.org/abs/1906.00322. |
[2] | C. Bianchini, G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Part. Diff. Eq., 43 (2018), 790-820. |
[3] | A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer, 2007. |
[4] | S. Brendle, P. K. Hung, M. T. Wang, A Minkowski inequality for hypersurfaces in the Antide Sitter-Schwarzschild manifold, Commun. Pure Appl. Math., 69 (2016), 124-144. |
[5] | L. Capogna, Regularity of quasi-linear equations in the heisenberg group, Commun. Pure Appl. Math., 50 (1997), 867-889. |
[6] | L. Capogna, D. Danielli, N. Garofalo, An embedding theorem and the harnack inequality for nonlinear subelliptic equations, Commun. Part. Diff. Eq., 18 (1993), 1765-1794. |
[7] | L. Capogna, D. Danielli, N. Garofalo, Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations, Am. J. Math., 118 (1996), 1153-1196. |
[8] | L. Capogna, N. Garofalo, D. M. Nhieu, A version of a theorem of Dahlberg for the subelliptic Dirichlet problem, Math. Res. Lett., 5 (1998), 541-549. |
[9] | D. Danielli, Regularity at the boundary for solutions of nonlinear subelliptic equations, Indiana U. Math. J., 44 (1995), 269-286. |
[10] | D. Danielli, N. Garofalo, Geometric properties of solutions to subelliptic equations in nilpotent lie groups, In: Reaction diffusion sytems, New York: Dekker, 1998, 89-105. |
[11] | E. DiBenedetto, C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850. |
[12] | A. Domokos, J. Manfredi, c1, α-regularity for p-harmonic functions in the heisenberg group for p near 2, Contemp. Math., 370 (2005), 2126699. |
[13] | F. Dragoni, D. Filali, Starshaped and convex sets in carnot groups and in the geometries of vector fields, J. Convex Anal., 26 (2019), 1349-1372. |
[14] | F. Dragoni, N. Garofalo, P. Salani, Starshapedeness for fully non-linear equations in Carnot groups, J. Lond. Math. Soc., 99 (2019), 901-918. |
[15] | M. Fogagnolo, L. Mazzieri, A. Pinamonti, Geometric aspects of p-capacitary potentials, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36 (2019), 1151-1179. |
[16] | R. M. Gabriel, An extended principle of the maximum for harmonic functions in 3- dimensions, J. London Math. Soc., 30 (1955), 388-401. |
[17] | R. M. Gabriel, Further results concerning the level surfaces of the Green's function for a 3-dimensional convex domain (I), J. London Math. Soc., 32 (1957), 295-302. |
[18] | R. M. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions, J. London Math. Soc., 32 (1957), 286-294. |
[19] | N. Garofalo, N. C. Phuc, Boundary behavior of p-harmonic functions in the heisenberg group, Math. Ann., 351 (2011), 587-632. |
[20] | J. J. Gergen, Note on the green function of a star-shaped three dimensional region, Am. J. Math., 53 (1931), 746-752. |
[21] | C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Differ. Geom., 32 (1990), 299-314. |
[22] | J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations, Mineola, NY: Dover Publications, Inc., 2006. |
[23] | G. Huisken, T. Ilmanen, The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom., 59 (2001), 353-437. |
[24] | D. S. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I, J. Funct. Anal., 43 (1981), 97-142. |
[25] | D. S. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. Ⅱ, J. Funct. Anal., 43 (1981), 224-257. |
[26] | J. L. Lewis, Capacitary functions in convex rings, Arch. Ration. Mech. Anal., 66 (1977), 201-224. |
[27] | J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana U. Math. J., 32 (1983), 849-858. |
[28] | J. J. Manfredi, G. Mingione, Regularity results for quasilinear elliptic equations in the heisenberg group, Math. Ann., 339 (2007), 485-544. |
[29] | V. Martino, G. Tralli, On the hopf-oleinik lemma for degenerate-elliptic equations at characteristic points, Calc. Var., 55 (2016), 115. |
[30] | G. Mingione, A. Z. Goldstein, X. Zhong, On the regularity of p-harmonic functions in the heisenberg group, Bollettino dell'Unione Matematica Italiana, 1 (2008), 243-253. |
[31] | R. Monti, Isoperimetric problem and minimal surfaces in the heisenberg group, In: Geometric measure theory and real analysis, Pisa: Scuola Normale Superiore, 2014, 57-129. |
[32] | R. Moser, The inverse mean curvature flow and p-harmonic functions, J. Eur. Math. Soc., 9 (2007), 77-83. |
[33] | S. Mukherjee, X. Zhong, c1, α-regularity for variational problems in the heisenberg group, arXiv: 1711.04671, 2017. |
[34] | J. A. Pfaltzgraff, Radial symmetrization and capacities in space, Duke Math. J., 34 (1967), 747-756. |
[35] | G. Pipoli, Inverse mean curvature flow in complex hyperbolic space, Annales scientifiques de l'ENS, 52 (2019), 1107-1135. |
[36] | D. Ricciotti, p-Laplace equation in the Heisenberg group, Cham: Springer, 2015. |
[37] | D. Ricciotti, On the c1, α regularity of p-harmonic functions in the heisenberg group, P. Am. Math. Soc., 146 (2016), 2937-2952. |
[38] | P. Salani, Starshapedness of level sets of solutions to elliptic PDEs, Appl. Anal., 84 (2005), 1185-1197. |
[39] | P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126-150. |
[40] | F. Uguzzoni, E. Lanconelli, On the Poisson kernel for the Kohn Laplacian, Rend. Mat. Appl., 17 (1998), 659-677. |
[41] | J. I. E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z., 205 (1990), 355-372. |