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Abstract. Cellular Automata have been successfully used to model evolu-

tion of complex systems based on simples rules. In this paper we introduce
controlled cellular automata to depict the dynamics of systems with controls

that can affect their evolution. Using theory from discrete control systems, we

derive results for the control of cellular automata in specific cases. The paper
is mostly oriented toward two applications: fire spreading; morphogenesis and

tumor growth. In both cases, we illustrate the impact of a control on the evolu-

tion of the system. For the fire, the control is assumed to be either firelines or
firebreaks to prevent spreading or dumping of water, fire retardant and chemi-

cals (foam) on the fire to neutralize it. In the case of cellular growth, the control

describes mechanisms used to regulate growth factors and morphogenic events
based on the existence of extracellular matrix structures called fractones. The

hypothesis is that fractone distribution may coordinate the timing and location
of neural cell proliferation, thereby guiding morphogenesis, at several stages of

early brain development.

1. Introduction. The vast range of applications of cellular automata spans nu-
merous disciplines – mathematics, computer science, computer technology, biology,
business and many more. Several individual cellular automata are even known to
be Turing complete, meaning that any algorithm can be implemented by specifying
the initial configuration. This fact alone demonstrates that cellular automata are
capable of generating systems of boundless complexity.

Rather than analyzing any single application of cellular automata in detail, or
even focusing on a specific set of rules, we consider how we can apply control to
cellular automata to guide them toward particular outcomes. We consider controls
that fit into two categories: modifications to the states of the cells that do not
conform to the rules of the automaton and modifications to the rules that define
the automaton being run. Techniques from discrete control systems are used for
preliminary results and are illustrated by various examples and simulations. This
paper is a first approach to the development of systematic tools to analyze con-
trolled cellular automata. In particular, in Section 3.2, we establish fundamental
controlabllity results for cellular automata whose rules are linear which serve as a
foundation for future work in the field.

In order to illustrate the potential applications for control, we consider a sim-
ple model for the spreading of fire and a model for cell proliferation. Our main
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motivation comes from the fact that hybrid automata and cellular automata have
been increasingly used to mathematically model biological system, indeed CAs are
especially well-suited to create complex evolution dynamics with simple rules. For
instance, there is significant literature of cellular automata used in tumor growth
and related therapy ([1] and references therein). The model for cell proliferation
presented here represents a different approach to the co-evolving cellular automata
that the first and second authors developed in [2]. In that conference paper, we
introduced a morphogenetic cellular automaton to study how an embryo organizes
and directs cellular growth. It is based on the recent discovery of specialized extra-
cellular matrix structures. More precisely, some factors influencing growth have
been characterized, in particular forces between cells [4, 13] and growth factors de-
tected by the cells through receptors on the cell surface [14]. However, specialized
extra-cellular matrix structures, known as fractones [10], have been identified as
a control mechanism orchestrating the coordinated diffusion of the growth factors
through the extra-cellular space [5, 8, 11]. They were discovered in the neurogenic
zone of the adult mammalian brain [10, 12]. Fractones can promote cell proliferation
and can also inhibit cell proliferation in the adult brain. More precisely, since the
basal laminae is thought to contribute to morphogenesis, it was hypothesized that
fractones capture and store growth factors until this concentration reaches a pre-
scribed threshold to initiate binding with cell-surface receptors. It is believed that
several types of fractones may exist, each targeting specific growth factors, which
are bound, stored, concentrated, and presented to nearby cells, thus triggering a
reaction according to the type of growth factor. The distribution of the fractones
is model as the control function in the set of rules, and we also add cell death in
the model to allow for more complex and refined shapes. The model is then used as
a base for tumor growth where two types of cells are considered (STEM cells and
tumor cells). Section 4.2 describes the cell and tumor growth applications in details
and provides numerical simulations.

2. Cellular automaton. A Cellular Automaton (CA) is a collection of computing
cells which repeatedly update their internal states. A CA is defined on a grid G that
we will call the cellular space. In this paper, we consider continuous automaton.
More precisely, we have the following definition see [2, 9, 7, 6] for discrete version
of it.

Definition 2.1. A cellular automaton is a quadruple CA = (S, d,N, f) where:

1. S is the set of possible states for a cell. We consider a state to be string of
continuous values, and we assume k to be the length of the string. We have
S ⊆ Rk and this subset is determined by the state constraints.

2. The constant d is the dimension of the automaton, d = 1, 2 or 3.
3. N defines the neighborhood within which the local interaction of agents oc-

curs. N : G →P(G). The most common ones are the Von Neumann neigh-
borhood and the Moore neighborhood. Given a cell c ∈ G, we denote by n(c)
the dimension of its neighborhood (typically n(c) is constant over G but not
necessarily).

4. f is a function specifying the transition rule governing changes in an agent’s
state. The output depends on the state of the agent and its neighbors.

Note that in our definition the cells remain discretely separated from each other
and we will consider a discrete time evolution. Most common in the literature is a
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definition with S = [0, 1] where the state value is a bounded single value, but we
are extending to multi-valued states and possibly with no state constraints.

We introduce s : G → SG the state function which associates to a cell c its
states, and we denote by st(c) the state of cell c at time t. The function s defines
the notion of configuration for our automaton.

2.1. Metric. To compare two configurations for a given CA, we need a definition
of distance between them. They are multiple ways to do that, and the distance we
present is based on our intuition of what we think is relevant to our applications.

Definition 2.2. An extended Moore neighborhood of radius r, denoted Nr
M , is a

2r+ 1×2r+ 1 square-shaped neighborhood which contains (2r+ 1)2 + 1 cells. Note
that in our definition, the cell c is contained in the neighborhood.

Definition 2.3. Let s1t and s2t be two configurations at time t of a given CA. We
introduce

nip,t,r(c) =
∑

c′∈Nr
M (c)

sip,t(c
′) (1)

with p = 1, · · · , k be the component p of the state’s string. The distance between
s1t and s2t is given by:

d(s1t , s
2
t ) =

1

#G

∑
c∈G

∑k
p=1

∑2
r=0 |n1p,t,r(c)− n2p,t,r(c)|

P (c)
(2)

where P (c) is the cardinality of the set of neighbors of c over the three neighborhood

Nr
M (c). It will be typically 35 =

∑2
r=0(2r + 1)2 unless it is close to the boundary

of the grid G and will therefore be smaller.

Lemma 2.4. The function defined by d(., .) on the set of configurations of a given
CA is a distance.

Proof. By definition d is non-negative, and is symmetric: d(s1t , s
2
t ) = d(s2t , s

1
t ). It

is also obvious that if s1t = s2t then d(s1t , s
2
t ) = 0. Assume now that d(s1t , s

2
t ) = 0,

then n1p,t,0(c) = n2p,t,0(c) for all c and p which implies that s1t = s2t . The triangle

inequality d(s1t , s
3
t ) ≤ d(s1t , s

2
t ) + d(s2t , s

3
t ) follows directly from:

|n1p,t,r(c)− n3p,t,r(c)| ≤ |n1p,t,r(c)− n2p,t,r(c)|+ |n2p,t,r(c)− n3p,t,r(c)|. (3)

Example 1. To illustrate our metric, we use a simple example associated to a
m×m grid with single binary state s(c) ∈ {0, 1}. The configuration s0 to which we
will measure the distances from is the classical checkerboard, see Fig. 1 left. If we
denote by cij the cell in unit i, j of the grid with i representing the rows and j the
columns, we have that:

s0(cij) =

{
1 if i+ j = 0 (mod 2)
0 if i+ j = 1 (mod 2)

(4)

We associate the color black to the number 1 and the color white to 0. We now
consider the checkerboard such that the colors are alternated compare to s0, see
Fig. 1 right, i.e.:

s1(cij) =

{
0 if i+ j = 0 (mod 2)
1 if i+ j = 1 (mod 2)

(5)
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Figure 1. Left: Configuration s0 (classical checkerboard). Right:
Configuration s1 (alternate checkerboard).

Applying the formula, we can write explicitly the formula which can be approxi-
mated by:

d(s0, s1) ≈ 3m2 − 8m+ 8

35m2
(6)

where we assume for simplicity of the formula the cardinality of the set of neighbors
to be P (c) = 35 for all cells even the ones on the boundary.

Let us consider an additional configuration s2 with all cell having the same
value, for instance we assume s2(cij) = 0 for all i, j ∈ {1, · · · ,m} which means that

all cells are white. It can be shown that d(s0, s2) ≈ 1

2
and therefore d(s0, s1) ≈

3

35
= 0.086 is much smaller than d(s0, s2) = 0.5. The interpretation is as follows.

Even though configurations s0 and s1 are such that their value differs in each cell,
their appearance is the same (both are checkerboard with alternating colors). We
therefore want to consider to be close configurations and our choice of distance
reflects this. On the other side configurations s0 and s2 differ only for half of the
cells, however their appearance is much different since one is a checkerboard and
the other is uni-color. Our distance does take this into account and measure s0 and
s2 as much further apart than s0 and s1. This shows us that our metric depends on
the structure of automata more than it depends on the particular values in cells.

Definition 2.5. Let s1 and s2 be two arbitrary configurations of a given CA. We
introduce the difference between them as (s1 − s2)p(c) = s1p(c) − s2p(c). Note that

s1 − s2 might not be a configuration of CA since it does not necessarily satisfy the
constraint that s1(c)− s2(c) ∈ S.

Note that the distance defined in 2.3 can be applied to any two configurations
even if they do not belong to the same CA. It therefore make sense to compute
d(s1 − s2), s1, s2 ∈ CA even though s1 − s2 might not belong to CA. Clearly, we
have d(s1, s2) = d(s1−s2, 0) where 0 is the configuration taking the value 0 in every
cell.

The next lemma illustrates that if the difference in state’s values of two config-
urations are clustered, these two configurations are considered closer together than
if the same difference in state’s values was more spread out over the grid. See il-
lustration in Figure 2. We introduce the equivalence relation ∼ as follows. We say
that s1 − s0 ∼ s2 − s0 if for each value associated to a cell in s1 − s0, there exists a
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Configuration s1 Configuration s2 Configuration s3 Configuration s4

Figure 2. Let s0 be the configuration with value 0.5 in each cell
of the grid. Then we have: d(s0, s1) = d(s0, s2) = d(s0, s3) <
d(s0, s4).

cell c̃ ∈ s2 − s0 with the same value and vice-versa. In other words, s2 − s0 can be
seen as a reshuffling of the cells in s1 − s0 and their associated values.

Lemma 2.6. Let s0, s1 and s2 be three configurations such that the difference
s0 − s1 ∼ s0 − s2. Moreover, assume that for c ∈ s2 − s0 its Moore neighborhood of
maximum range considered in the calculation of the distance does not contain more
than one ell with a nonzero value. Then d(s0, s1) ≤ d(s0, s2). The equality holds
for instance when all cell’s values in s0− s1 (and so in s0− s2) are not negative (or
not positive).

2.2. Controlled transition function.

Definition 2.7. The uncontrolled transition function is defined as:

f : Sn(c) → S (7)

st(N(c)) 7→ st+1(c) (8)

where n associates to each cell c the dimension of its neighborhood. The global
dynamics is given by:

F : Sg → SG (9)

st 7→ st+1 (10)

where F (st)(c) = f(st(N(c))).

By definition the transition function is a map whose argument is the states of
the cells in the neighborhood of a prescribed central cell c and image is the new
state of the cell c:

f(st(N(c))) = st+1(c) = (s1,t+1(c), · · · , sk,t+1(c)). (11)

The function f can take many forms depending on the application under study.
Typical states constraints are of the form cp,min ≤ sp(c) ≤ cp,max, cp,min ≤ 0 ≤

cp,max for all c ∈ G and each component of the state string p = 1, · · · , k. In this
case, the transition between two states is expressed as:

sp,t+1(c) =

{
max{cp,max, f(st(N(c)))p} if f(st(N(c)) > 0
min{cp,min, f(st(N(c)))p} if f(st(N(c)) ≤ 0

(12)
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Example 2. The linear case corresponds to each component of the new state of
cell c at time t+ 1 being obtained as a linear combination of the states of c and its
neighbors:

sp,t+1(c) =
∑

c′∈N(c)

k∑
i=1

αpi,c′(t)si,t(c
′) (13)

where αpi,c′ : I 7→ R are real valued functions defined on I the discrete time interval.
Again, in case of state constraints the transition between states need to be modified
accordingly.

In our work we consider an external parameter that can affect the transition
function and therefore the evolution of the system.

Definition 2.8. The control of a cellular automaton is defined as a discrete-time
map:

u : I → U ⊂ Rl (14)

t 7→ (u1,t, · · · , ul,t) (15)

where l depends on the control mechanism for the application under study, see Sec-
tion 4 for specific examples. The control domain accounts for practical constraints
on the control, such as a bound on its magnitude. With presence of a control, the
transition function becomes:

f : Sn(c) × U → S (16)

(st(N(c)), ut) 7→ st+1(c) (17)

and the global dynamic is now F (st, ut)(c) = f(st(N(c), ut(c))) = st+1(c).

3. Evolution and control problem.

3.1. Evolution. We have to define the evolution (trajectory) for our system. Let
I = {0, 1, · · · , T} be a discrete time interval, and an initial configuration s0 : G →
SG. The evolution Evols0,uT for a given control u is a sequence of configuration
st, t = 0 · · · , T given by the global dynamics:

st = F t(s0, u) (18)

where F t represents t composition of the map F .

Example 3. For instance, let us consider an m × m grid and N(c) = N1
V (c) to

be the von Neumann neighborhood of range 1 which is composed of the central
cell c and the 4 adjacent cells. If we represent a cell in G by an ordered pair of
integers: cij where (i, j) ∈ {1, · · · ,m} × {1, · · · ,m}, then by definition we have
N1
V (cij) = {ci+r,j+s, | ci+r,j+s ∈ G and r, s ∈ {0,−1,+1}}. Note that for a cell on

the border of the grid the number of neighbors will be smaller. Assume that the
coefficients do not vary with time and that p = 1, we can therefore eliminate the
dependence on p in the transit function which is now expressed as:

st+1(cij) =

ci+r,j+s∈G∑
r,s∈{0,−1,+1}

αrsst(ci+r,j+s) (19)

Assume the following coefficients: α00 = 0, α10 = 0.24, α−10 = 0.24, α01 = 0.24 and
α0−1 = 0.24. We chose the initial configuration with ones in the diagonal and zeroes

elsewhere: s0(cij) =

{
1 if i = j
0 if i 6= j

. Figure 3 illustrates the evolution of this CA at
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(a) (b)

(c) (d)

Figure 3. In all the figures, red represents positive values and
blue represents negative values. The uncontrolled simulation at 4
different timesteps: (a) 0, (b) 5, (c) 20 and (d) 100. The average
value at the four timesteps: (a) 0.010, (b) 0.0079, (c) 0.0041 and
(d) 0.00014.

time t = 0, t = 5, t = 20 and t = 100. Notice the spreading and exponential decay
that occurs during the simulation. Assume we have a control that can alter the
transition rule over the entire grid. The control is designed to be an on-off switch,
u(t) ∈ {0, 1} and is implemented as follows:

st+1(cij) =

ci+r,j+s∈G∑
r,s∈{0,−1,+1}

(αrs + u(t)βrs)st(ci+r,j+s). (20)

The control changes the weight at which a cell’s evolution is impacted by the cells
in its neigborhood. Since it is a scalar control there are only two possible transition
rules though additional controls can be added to offer more flexibility as well as the
possibility to impact only a subset of the cells in the grid. Figure 4 provides an ex-

ample of controlled evolution with u(t) =

{
0 if 0 ≤ t < 20, 40 ≤ t < 50 or t ≥ 100

1 otherwise

and the coefficients β00 = 0, β10 = −0.34, β−10 = −0.24, β01 = −1.24 and β0−1 =
−0.24.

Section 4 provides additional examples with fire spreading and biological cell’s
growth.

3.2. Controllability.

Definition 3.1. A cellular automaton is said to be controllable if for any initial
s(0) = s0 and final s(T ) = sT configurations, T <∞, there exists a control u such
that sT = Evols0,uT .

In the sequel we will therefore focus on situations where the control acts in specific
ways. This is the case when for instance:
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. The pictures show a controlled simulation at the fol-
lowing timesteps: (a) 0, (b) 5, (c) 20, (d) 39, (e) 40, (f) 50, (g) 75,
(h) 100 and (i) 150. The control switches on at 20, off at 40, back
on at 50 and finally off again at 100. Notice that while the control
is off, the sign is constant and the magnitude diminishes at a slow
exponential rate. When the control is on, the sign alternates with
each timestep and the magnitude increases at a slow exponential
rate.

• the control can act only on a subset of the set of cells in the grid;
• the control is bounded;
• the value a control can take on one component of a state is constant over all

cells in the grid;
• etc.

For instance, the control can act on the grid as:

Btut (21)

where Bt is an k × l matrix and ut is a l × 1 vector. The matrix Bt indicates how
the control is acting on the k components of the state of cell c (Bt ≡ 0 means that
no control is applied to c at time t) and ut takes its value in the control domain
(determined by the application) which is a subset of Rl.
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Time Uncontrolled Avg Controlled Avg Distance
0 0.01 0.01 0
21 0.0041 -0.0046 60.96
40 0.0018 0.023 169.05
50 0.0012 0.015 108.48
100 0.00014 0.77 5470.71
150 0.000018 0.088 632.15

Figure 5. The average is negative for the odd numbered timesteps
for which the control is active. For reference, the distance from the
controlled simulation at timestep 150 to a grid of zeros is 632.06.

To find a general framework to study the controllability problem, we will express
our cellular automaton as a discrete control system. We introduce a configuration
vector q that represents the value of each component of the state of a cell for all
cells in the square lattice G. Since the state of a cell has k components and we
assume the grid is m×m, our state vector q belongs to a subset (Rm×Rm)k which
is determined by the state constraints. We introduce n = m2k the dimension of
vector q. The global dynamics can then be written as:

qt+1 = F (qt, ut). (22)

3.2.1. Linear case. Assume first that the control is fixed to 0 (u ≡ 0), the evolution
of the system is governed by the uncontrolled transition function (13). Our system
can be written as a linear discrete-time system:

qt+1 = Atqt +Btut, q0 = initial configuration. (23)

where At is a n× n matrix, Bt is a n× l matrix and l the dimension of the control
(typically a multiple of k as in section 4.1). The A matrix is typically a sparse
matrix since the non zero elements occur only through the notion of neighbors, and
in most problems the rules of the uncontrolled transition function do not depend
on time, which makes A constant. When both A and B are constants, the system
is said to be time invariant. Clearly, we have the following result.

Proposition 1. The solution to (23) is given by:

qt = φ(t, 0)q0 +

t−1∑
j=0

φ(t, j + 1)Bjuj (24)

where the state transition matrix φ(t, j) is defined by

φ(t, j) =

{
I if t = j

At−1At−2 · · ·Aj otherwise
(25)

Time Invariant System. In this case the solution is given by

qt = Atq0 +

t−1∑
j=0

At−j−1Buj (26)

where Ai denotes the matrix A to the power i. Assume that A is diagonalizable,
which means that there is an invertible matrix P such that A = PDP−1 and D is
diagonal. A necessary and sufficient condition is that A has n linearly independent
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eigenvectors which is true in particular if A is symmetric. The uncontrolled state
trajectory, also refereed to as the natural response, is then given by:

qt = Atq0 = PDtP−1q0 =

n∑
l=1

βlλ
t
lvl (27)

where λl are the eigenvalues of A associated to the eigenvectors vl and the coefficient
vector β = (β1, · · · , βn)t is given by the initial condition q0 when solving β = P−1q0,
P = (v1, · · · , vn)t.

We have well-known results about controllability for discrete linear systems, they
translate to CA as follows.

Proposition 2. A cellular automaton is controllable if and only if

rank[An−1B,An−2B, · · · , B] = n (28)

where A describes the uncontrolled transition function and B the action of the con-
trol. If A is diagonalizable, A = PDP−1, then the condition becomes rank[Dn−1B̃,

Dn−2B̃, · · · , B̃] = n where B̃ = P−1B.

Example 4. We continue here example 3. In this case, we have that the state of
our discrete linear system is given by:

q = (s(c11), · · · , s(c1m), s(c21), · · · , s(c2m), · · · , s(cm1), · · · , s(cmm)) (29)

and qt+1(cii) = F (qt(N
1
V (cii))) where F is deduced from (19). The matrix A corre-

sponding to the natural response is given by:

A =



A1 D2 0 0 · · · 0 0
D3 A1 D2 0 · · · 0 0
0 D3 A1 D2 · · · 0 0

0 0
...

...
... D2 0

0 0 · · · 0 D3 A1 D2

0 0 · · · 0 0 D3 A1


where A1 is an m×m tri-diagonal matrix, and D2, D3 are m×m diagonal matrices
given by:

A1 =



a b
c a b

c
. . .

. . .

. . .
. . . b
c a

 , (30)

D2 =

 d
. . .

d

 , D3 =

 e
. . .

e

 (31)

where to simplify the notations we introduced a = α0,0, b = α1,0, c = α−1,0, d =
α0,1, e = α0,−1. A is given by a band matrix and the evolution function Evols0T of
this uncontrolled system is determined by the eigenvalues of the matrix A. Table
1 contains the eigenvalues when assuming m = 5. It can be clearly seen by taking
the limit of e and d when they tend to zero that the 25 eigenvalues collapse to the
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a a±
√
ed a±

√
3ed

a+
√
bc a+

√
bc+ de± 2

√
bcde a+

√
bc+ 3de± 2

√
3bcde

a−
√
bc a−

√
bc+ de± 2

√
bcde a−

√
bc+ 3de± 2

√
3bcde

a+
√

3bc a+
√

3bc+ 3de± 6
√
bcde a+

√
3bc+ 3de+ 2

√
3bcde

a−
√

3bc a−
√

3bc+ 3de± 6
√
bcde a−

√
3bc+ 3de+ 2

√
3bcde

Table 1. Eigenvalues corresponding to Example 4 and m = 5.

five eigenvalues of the first column when e = d = 0. Notice that depending on the
sign of the coefficients a, b, c, d, e the eigenvalues might be complex.

We define the origin of a CA has the configuration with zeroes in all grid elements,
and we have the following proposition.

Proposition 3. The origin of the CA is asymptotically stable for the uncontrolled
system if and only if |λi| < 1 for all i = 1, · · · , n where λi are the eigenvalues of A.
It is unstable if there exists an eigenvalue |λi| > 1.

Proof. This is a direct consequence from the fact that if the largest eigenvalue of a
linear discrete control system is strictly less than 1, then the origin is asymptotically
stable [3].

In particular for our example with m = 5 assume that the coefficients of the

transition function are all positive, and such that a +
√

3bc+ 3de+ 6
√
bcde < 1,

then the origin is asymptotically stable. In other words, the CA converges toward
the equilibrium solution corresponding to a zero state value in each grid element.
If a = 0.4, b = 0.2, c = 0.1, e = d = 0.1, then maxi |λi| = 0.8537 < 1 and the
origin is asymptotically stable. Assume the initial configuration is such that every
grid element has state 10. After 30 time steps every state for our CA is less than
0.1 and after 90 time steps it is less than 10−6. Choosing the parameters as a =
0.4, b = 0.2, c = 0.4, e = d = 0.2 we have that the largest eigenvalue is 1.23 and
therefore strictly greater than 1. The origin is then unstable. It can be seen through
simulations, indeed if we choose the same initial configuration as before (state value
of 10 in each grid element) after 20 iteration all states are greater than 150, they
are all increasing rapidly.

The following proposition highlights a surprising result stating that under some
conditions a time invariant linear CA is controllable by controlling a single grid
element only.

Proposition 4. Assume e = d and all eigenvalues of A being distinct. We also
assume that P−1 has at least a column with non zero values. Then, the CA is
controllable with a scalar control on only one of the cell’s grid.

Proof. Since e = d, A is diagonalizable and we assume λi 6= λj for i 6= j where λi are

the eigenvalues. The rank condition rank[Dn−1B̃,Dn−2B̃, · · · , B̃] = n is equivalent

to the Vandermonde matrix V =


1 λ1 · · · λn−11

1 λ2 · · · λn−12
...

...
...

...
1 λn · · · λn−1n

 , being invertible. Since

detV = Π1≤i<j≤n(λj − λi) it is non zero and controllability is guaranteed for any

n × 1 vector B̃ with nonzero components. By construction B̃ = P−1B where P is
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the matrix of eigenvectors. If P−1 has a column non zero values, let us say column
r, then we simply set the r-component of B to 1 and B̃ satisfies the requirement.

4. Applications.

4.1. Fire spreading. The CA model presented here is a generalization of typical
cellular automaton applied to fire spreading where each cell is in only one of the fol-
lowing state: not flammable; the fuel cell unburned; burning cell; burned cell),and
the rules are based on the neighborhood (Moore or Von Neumann) states and proba-
bilities. Wind or external events can be incorporated in the transition rules through
the use of control functions. In our model a cell can be in more than one stage with
a fraction of it that can be burning and the rest of the cell already burned, moreover
the external parameters can be controlled and their impact understood.

The state of a cell c is given by four values: s0(c) is the not flammable part
of the cell, s1(c) represents the fraction of the cell that is not touched by the fire
(not burning nor burned), s2(c) is the fraction of the cell that is burning and s3(c)

the fraction that is burned. Clearly we have that
∑3
i=0 si(c) = 1 since it represents

100% of the cell, si(c) ≥ 0 for all i and the not flammable part of the cell is constant
throughout the evolution of the fire unless there is an external action. Therefore,
we have S ⊆ [0, 1]4.

The transition function is defined as follows:

s0,t+1(c) = s0,t(c) (32)

s1,t+1(c) = s1,t(c)− [α1s2,t(c) + α2

∑
c′∈N1

V (c),c′ 6=c

s2,t(c
′)]s1,t(c) (33)

s2,t+1(c) = s2,t(c) + (α1s1,t(c)− α3)s2,t(c) + α2s1,t(c)
∑

c′∈N1
V (c),c′ 6=c

s2,t(c
′) (34)

s3,t+1(c) = s3,t(c) + α3s2,t(c) (35)

where α1s1,t(c)s2,t(c) represents the fraction of untouched cell that starts burning

due to existing fire in the central cell, α2

∑
c′∈N1

V (c),c′ 6=c

s2,t(c
′)s1,t(c) is the fraction

of untouched cell that starts burning due to fire in neighbouring cells and α3s2,t(c)
depicts the quantify of burning land that is now completely burned. By definition
the state constraint

∑4
i=1 si(c) = 1 is always satisfied (provided it is satisfied by the

initial conditions) and the state’s components are positive provided that 1 ≥ α1+α2

and 1 ≥ α3. It is a discrete model with linear and quadratic terms.
The uncontrolled fire spreading CA can be written as a discrete control system

as follows:

qt+1 = Aqt +QtHqt (36)

where the second terms represents the quadratic part of the transition rules, see
equations (33-35). The matrix A is a block diagonal matrix:

A =


A1 0 · · · 0
0 A1 · · · 0

0 0
... 0

0 · · · 0 A1

 , A1 =


1 0 0 0
0 1 0 0
0 0 1− α3 0
0 0 α3 1

 (37)
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which is invertible with determinant (1 − α3)m
2

and A−1 is block diagonal with

A−11 = 1
1−α3


1− α3 0 0 0

0 1− α3 0 0
0 0 1 0
0 0 −α3 1− α3

. For the quadratic part, Qt =

(Qt1, · · · , Qt4m2) is a 4m2 × (4m2)2 with all the elements of the square matrices
Qti, i = 1, · · · , n being equal to zero except the i − th line, which equals qt and
H = (H1, · · · , H4m2) is a (4m2)2 × 4m2 matrix with each Hi constant with mostly
zeroes but some α1 and α2 based on the transition rules.

Remark 1. In our model, we consider N1
V but generalizations are easy, for instance

to the Moore neighborhood. Indeed, we could simply add a term in (33) (and then

substract it in 35) of the form αM
∑

c′′∈N1
M (c)\N1

V (c)

s1,t(c
′) with α4 < α2 to reflect

that cells on fire that are in diagonal of the central one will have less impact for the
central cell to get on fire than the adjacent ones. We also would need to adjust the
condition on the coefficients to be 1 ≥ α1 + α2 + α4.

Below we provide some simulations for our CA of fire spreading. Using the
red-green-blue (RGB) color model, we represent the amount of burning material
with the red component, the amount of flammable unburnt material with the green
component and the amount of burnt material with the blue component. Thus, the
amount of inflammable material can be inferred from the luminosity of the color.

First, we compare the two different basic neighborhoods – the Von Neumann
neighborhood and the Moore neighborhood. In Figure 6, we present two simula-
tions, both of which start with a single location that is partially burning. As the two
simulations progress, the different shapes that result from the two different neigh-
borhoods become clear. It should be noted that the Moore neighborhood progresses
much faster due to having more neighbors. Thus, the neighbor contribution is much
greater. At timestep 50, the distance (as defined above) between the states of the
two simulations is 6346.67. The timestep of the Moore neighborhood simulation
that is closest to timestep 50 of the Von Neumann simulation is timestep 29 with a
distance of 352.89.

Next, we compare different values of the αi’s and the effect it has on the rate
of spreading as well as the width of the burning band (see Figure 7). For all the
remaining fire simulations, we use the Von Neumann neighborhood. These two
simulations rapidly diverge. By timestep 10 the distance between them is 147.54,
by timestep 50 the distance is 4853.13 and by timestep 100 the distance is 15504.70.

For this example the control can be viewed as as an external input in the form of
any treatment applied directly to burning fuel (wetting, smothering, or chemically
quenching the fire) or by physically separating the burning from not burned fuel
(done by fire engines, fire personnel and aircraft applying water or fire retardant
directly to the burning fuel). It can also correspond to creating control lines: bound-
aries that contain no combustible material or by using fire retardants, fire-fighting
foams, and superabsorbent polymer gels. These can clearly act on either of our
three component of the state (independently or at the same time). The conditions
for controllability are more complex than in the linear case, but since the matrix H
is sparse the problem is easier. It will be studied in forthcoming work.

Assume we have the capability to build a barricade which for us translates into
act on the fraction of the fuel cell unburned and turn it into a not flammable
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(a) (b) (c)

(d) (e) (f)

Figure 6. Top row using the Von Neumann neighborhood.
Timesteps: (a) 1, (b) 50 and (c) 100. Bottom row using the Moore
neighborhood. Timesteps: (a) 1, (b) 25 and (c) 50. Note that the
Moore neighborhood promotes much faster evolution. For both
α1 = 0.1, α2 = 0.2 and α3 = 0.3.

(a) (b) (c)

(d) (e) (f)

Figure 7. Top row: α1 = 0.05, α2 = 0.1 and α3 = 0.15. Bottom
row: α1 = 0.15, α2 = 0.3 and α3 = 0.05. For both, the three times
steps are 1, 50 and 100.

component. This means that we need to introduce a control that will grow s0,t(c)
by the amount s1,t(c) and put the latter one to zero (for simplicity we do not consider
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(a) (b) (c)

(d) (e) (f)

Figure 8. Timesteps: (a) 1, (b) 125, (c) 175, (d) 200, (e) 210 and
(f) 250. The fire is diverted by the obstacles.

the case when only a fraction of the fuel cell unburned is turned into not flammable
since it is a straightforward extension but makes the equations unnecessarily more
complicated). This means that for the cells that can be affected by a barricade, the
controlled transfer function is now:

s0,t+1(c) = s0,t(c) + u0,t(c)s1,t(c) (38)

s1,t+1(c) = [s1,t(c)− f10 (s1,t(c), s2,t(c), s2,t(c
′))](1− u0,t(c)) (39)

s2,t+1(c) = (1− α3)s2,t(c) + f10 (s1,t(c), s2,t(c), s2,t(c
′))(1− u0,t(c)) (40)

s3,t+1(c) = s3,t(c) + α3s2,t(c) (41)

where f10 is given by (33-35), c′ ∈ N1
V (c), c′ 6= c, and u0,t(c) ∈ {0, 1}. If u0,t(c) = 0

it corresponds to the natural evolution, however when u0,t(c) is turned to 1 no more
fire can take place in cell c which corresponds to the barricade being constructed.

We will consider two examples involving barricades. Computationally, a barri-
cade is simply a region in which combustible material, burning material and burnt
material are all zero. The first example, shown in Figure 8, we consider a fixed
obstacle and we can see how the spreading fire has to divert around the obstacle.
This increases the amount of time it takes to reach locations on the far side of the
obstacles, but does not seem to have significant long-term impacts on the shape of
the fire. Second, we consider the siutation where an obstacle (or sequence of obsta-
cles) is introduced as the fire progresses. Notice that in Figure 9 a small region of
fire appears to materialize on the far side of the barricade. This is due to the fact
that, although it is not visible, by timestep 20, the fire has already reached beyond
the barricade. After a short period of time, that small amount of fire has grown to
a visible level. Creating barricades as the simulation progresses is one of the two
types of control we consider.

Let us assume now that we can put the fire down in a region (which is equivalent
to a subset of the cell in the grid), this means that no new fire will take place in
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(a) (b) (c)

(d) (e) (f)

Figure 9. Timesteps: (a) 1, (b) 20, (c) 30, (d) 38, (e) 45 and (f)
100. The fire is diverted by the obstacles.

such cell at that moment and the fire will go extinct. However, it does not convert
the “fuel” fraction of the cells into not flammable. The control would then be
introduced as follow:

s0,t+1(c) = s0,t(c) (42)

s1,t+1(c) = s1,t(c)− f10 (s1,t(c), s2,t(c), s2,t(c
′))(1− u2,t(c)) (43)

s2,t+1(c) = [(1− α3)s2,t(c) + f10 (s1,t(c), s2,t(c), s2,t(c
′))](1− u2,t(c)) (44)

s3,t+1(c) = s3,t(c) + (α3(1− u2,t(c)) + u2,t(c))s2,t(c) (45)

where u2,t(c) ∈ {0, 1} controls fire extinction.
We illustrate this second form of control with a simulation starting from the same

initial conditions. In Figure 10, we extinguish the fire in a small region at timestep
20. Notice that this has more significant long-term consequences on the shape of
the spreading fire than obstacles. Also, notice the darker region which remains after
the fire has passed. This artifact results from extinguishing an active fire, therefore
reducing the total amount of material in the region.

4.2. Morphogenesis and tumor growth.

4.2.1. Cell’s growth. In our model, the topographical organization of fractone ex-
pression reflects the shaping of the mass of cells. We hypothetize that the fractones
guide the shape of multicellular organisms, therefore the cellular automaton must
capture the interplay between the different types of cells and the fractones playing
the role of chemical effector for the molecular mechanisms that control stem-cell
fate. The CA in [2] was designed as two automata co-evolving in parallel and feed-
ing each other with information to adjust the corresponding transition functions.
One automaton, the diffusion automaton, was accounting for the evolution of the
growth factors, and the second automaton, the mitosis automaton, was designed
with a transition function depicting rules for cells division. In this paper, as a first
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(a) (b) (c)

(d) (e) (f)

Figure 10. Timesteps: (a) 1, (b) 20, (c) 25, (d) 35, (e) 50 and (f)
100. The fire is diverted by the obstacles.

step to develop control strategies to grow specific forms we neglect the growth fac-
tors and their diffusion process. Indeed, it was shown in [2] that the growth factor
diffusion mainly controls the time scale of cell growth and that the fractones are
dominant in determining shape. The main difficulty is to combine a fixed duration
and a dynamic spatial location of the fractones during that duration that will bring
an initial mass of cell to a desired one. The fact that the evolution has to occur
over a prescribed time frame is key in morphogenesis.

We introduce the state of a grid cell as a single value between 0 and 1. If
0 ≤ s(c) < 1 it is considered that no biological cell is present in the corresponding
unit c of the grid, and s(c) = 1 means the existence of a biological cell. Intuitively,
when s(c) ∈ (0, 1) the state expresses the probability that a biological cell will be
present in the next time step. The transition rule for the uncontrolled process is
for c ∈ G:

st+1(c) = max{1, st(c) +
∑

ci∈N(c)

αt(c, ci)st(ci)} (46)

where αt(c, ci) is some constant depending on the organism under consideration. It
captures the “natural” growth of a cellular mass without the action of fractones.
Here the coefficients depend on time, indeed once there is a biological cell, i.e.
st(c) = 1 the state of the cell does not evolve, unless there is an external event,
which is expressed by αt(c, ci) = 0 for all ci ∈ N(c) in that case. Note that contrary
to the other example and the fire application, we have for this example a state
constraint by imposing st+1(c) ≤ 1.

The neighborhood can be chosen in various ways depending again on the organ-
ism under study and the stage of the cellular mass under consideration (adult or
embryo). In Figure 11, we illustrate a simple example of cell growth, starting from
one cell and using the standard Von Neumann neighborhood. We contrast this with
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(a) (b)

(d) (e)

Figure 11. Timesteps: (a) 1, (b) 15, (c) 50 and (d) 100. A simple,
uncontrolled cell growth using the Von Neumann neighborhood.

(a) (b) (c)

(d) (e) (f)

Figure 12. Timesteps: (a) 1, (b) 5, (c) 10, (d) 30, (e) 60 and (f)
100. An uncontrolled cell growth using a neighborhood consisting
of the three grid units directly above the central unit and the three
side-by-side units in the row three rows below the central unit.

Figure 14 in which we use a non-standard neighborhood to acheive markedly differ-
ent results. Although we do not illustrate this here, we also admit the possibility
that the choice of neighborhood may vary with time or even be used as a control
mechanism.
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The natural growth without the introduction of fractones will provide a growth
directed by the constants αt(c, ci), in particular if we start with one cell and we
assume the coefficients αt(c, ci) do not depend on ci but are all the same for every
cell in the neighborhood we will grow a isotropic mass (see Figure 11).

To break the symmetry and create more sophisticated masses of cells we must ac-
tivate the controls (playing solely with the notion of neighborhood is not fine enough
and does not reflect our biological hypothesis). The controls are: the fractones that
can accelerate or decelerate growth; and spontaneous death for the cells.

Definition 4.1. If a fractone is associated to a cell, then its corresponding co-
efficient in the transition function is altered either by an increasing factor if the
fractone is inducing accelerated growth, in which case we call it a positive fractone,
or by a decreasing factor if the fractone is decelerating growth which is then called
a negative fractone.

More precisely, we have the following. Assume cj such that st(cj) = 1, i.e.
there is a biological cell in that grid unit, and that we have a positive fractone
associated to this biological cell. We introduce u+t (cj) a positive real number and
the coefficients αt(c, cj) are replaced by αt(c, cj)+u+t (cj) in all transition rules that
involve cj . In particular, if cj is in the neighborhood of c, we have:

st+1(c) = max{1, st(c) +
∑

ci 6=cj∈N(c)

αt(c, ci)st(ci) + (αt(c, cj) +u+t (cj))st(cj)} (47)

The value u+t (ci) depends on the chemical composition of that specific fractone. The
transition rule is modified the same way for negative fractones with the constraint
that αt(c, cj)− u−t (cj) ≥ 0, u−t (cj) is a positive real number.

The present model can be described in terms of a discrete control system as
follows. Assume the possible chemical composition of positive fractones is captured
by l positive real numbers (i.e. there is a finite number of speed at which fractones
can accelerate growth), and similarly for negative fractones we assume their possible
chemical composition is given by a finite vector of length s: β+ ∈ Rl, β− ∈ Rs.
Assume the dimension of the state vector q to be n, we then have:

qt+1 = Atqt + U+
t β

+ + U−t β
−, 0 ≤ qt+1 ≤ 1 (48)

where At is an n × n matrix that represents the natural growth, and U+ (resp.
U−) is a n × l (resp. n × s) control matrix whose entries are binary, 0 or 1, with
1 representing the existence of a positive (resp. negative) fractone. Notice that the
control part does not include the state since fractones are associated to existing
cells and therefore only to cj such that st(cj) = 1. The value of u+t (cj)) (u−t (cj)) is
deduced from U+

t β
+ (U−t β

−).
In Figure 13, we illustrate the affect that the fractones can have on the shape

of the results. One line of fractones increases the rate of growth and results in the
oblong shape of the cell mass. Below that is a line of fractones that stop cell growth.
Notice that these hardly have any impact on the shape, except that they stop cell
growth at their locations. Above the first line is a row of blocks of fractones that
stop cell growth. These have some impact on the shape of the cell mass simply
because they act as an barricade, much like the barricades in the fire simulations.

Definition 4.2. Death of cell can occur in a spontaneous way. If a biological cell
exists in grid unit c, i.e. st(c) = 1, the death of this specific cell means that its state
reset to the value zero: st+1(c) = 0.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Timesteps: (a) 1, (b) 5, (c) 15, (d) 30, (e) 60 and (f)
100. Fractones are placed along three horizontal lines. One is above
the initial cell and consists of fractones that stop cell growth; they
are arranged in blocks. One is in line with the initial cell (across the
middle of the simulation) and greatly increases cell growth. The
final line is below the intial cell and also stops cell growth. The
placement of the fractones is clearly visible in (f).

By definition the control corresponding to cell’s death is a vector udt ∈ Rn whose
entries are zero for state components qit that are not equal to 1 or correspond to
an existing biological cell not dying, and are 1 for grid units with a biological cell
undergoing spontaneous death. The system becomes:

qt+1 = Atqt + U+
t β

+ + U−t β
− + udt , 0 ≤ qt+1 ≤ 1. (49)

4.2.2. Tumor growth. A single grid cell of our two dimensional lattices will be oc-
cupied by either an empty space, a cancer cell or a normal cell (not cancerous).
The state for each grid cell is characterized by an ordered pair (s1, s2) ∈ [0, 1]2 to
mimic our model on cell’s growth 4.2.1 where s1 accounts for the probability to get
a normal cell and s2 for the probability to get a cancer cell. If s1,t = 1 there is a
biological cell in that grid unit and if s2,t = 1 there is a tumor cell.

The model is similar to that of cell growth, but a state is now a pair and the
transition rules for the natural growth are as follows:

s1,t+1(c) = max{1, s1,t(c) +
∑

ci∈N1(c)

α1,t(c, ci)s1,t(ci)} (50)

s2,t+1(c) = max{1, s2,t(c) +
∑

ci∈N2(c)

α2,t(c, ci)s2,t(ci)} (51)

with the additional state constraints:

if s1,t(c) = 1, then s2,t(c) = 0, (52)

if s2,t(c) = 1, then s1,t(c) = 0. (53)
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(a) (b)

(e) (d)

Figure 14. Timesteps: (a) 0, (b) 30, (c) 60 and (d) 100. The
interaction between growth of normal cells and tumor cells. The
competition between the cell masses plays out at the boundary
between the cell masses. The normal cells are in red, the probability
of a tumor cell developing is in blue.

The coefficients α are assumed such that α2,t(c, ci) ≥ α1,t(c, ci) to express that a
tumor cell will divide at a more rapid rate than normal cells. The constraints make
explicit that if there is a normal biological cell in grid unit c then the cell cannot
become a cancer cell and can only serve to influence its neighbours to become normal
cells. Also, note that N1 and N2 might differ since the radius of influence of an
aggressive tumor might be bigger than the one for healthy cells.

The role of fractones in tumor growth is unclear at this stage, it would be how-
ever interesting to create a virtual lab to test different hypotheses with chemical
composition and distribution of fractones related to the cancer cells.

5. Conclusion. This paper is a first approach to apply discrete control theory to
analyze the behavior of controlled cellular automata. The framework is designed to
be flexible enough to allow for heterogeneity regarding the grid cell’s states, indeed
as it can be observed in the fire application for instance some areas might be set
as completely inflammable while others are flammable or possibly at least partially.
The heterogeneity distribution can also evolve with time, which is illustrated with
the possibility to introduce obstacles throughout the evolution of the dynamical
system under study. In the tumor growth application, different types of cells can
be introduced to mimic organs various sensitivity to specific type of cancer.

We presented how different control strategies affect the evolution of the system,
and the next step will be to use more in depth results from discrete control systems
to come-up with systematic ways to design control strategies to reach a final goal.
It could be stabilize the size of the rumor for instance or determine the distribution
of fractones to grow a specific form during fixed time period. In addition, in forth-
coming work optimal control of discrete systems will be explorer to not only reach
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a prescribed goal but in the most efficient way given a cost. Based on this first
approach, the authors are optimistic regarding the application of discrete control
methods to this class of controlled cellular automata.
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