Citation: Mauro Garavello. Boundary value problem for a phase transition model[J]. Networks and Heterogeneous Media, 2016, 11(1): 89-105. doi: 10.3934/nhm.2016.11.89
[1] | Francesca Marcellini . Existence of solutions to a boundary value problem for a phase transition traffic model. Networks and Heterogeneous Media, 2017, 12(2): 259-275. doi: 10.3934/nhm.2017011 |
[2] | Mauro Garavello . Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11(1): 89-105. doi: 10.3934/nhm.2016.11.89 |
[3] | Frederike Kissling, Christian Rohde . The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks and Heterogeneous Media, 2010, 5(3): 661-674. doi: 10.3934/nhm.2010.5.661 |
[4] | Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433 |
[5] | Flavia Smarrazzo, Alberto Tesei . Entropy solutions of forward-backward parabolic equations with Devonshire free energy. Networks and Heterogeneous Media, 2012, 7(4): 941-966. doi: 10.3934/nhm.2012.7.941 |
[6] | Mauro Garavello, Benedetto Piccoli . Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8(3): 649-661. doi: 10.3934/nhm.2013.8.649 |
[7] | Laura Caravenna, Laura V. Spinolo . New interaction estimates for the Baiti-Jenssen system. Networks and Heterogeneous Media, 2016, 11(2): 263-280. doi: 10.3934/nhm.2016.11.263 |
[8] | Giuseppe Maria Coclite, Lorenzo di Ruvo, Jan Ernest, Siddhartha Mishra . Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes. Networks and Heterogeneous Media, 2013, 8(4): 969-984. doi: 10.3934/nhm.2013.8.969 |
[9] | Boris Andreianov, Mohamed Karimou Gazibo . Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11(2): 203-222. doi: 10.3934/nhm.2016.11.203 |
[10] | Maya Briani, Benedetto Piccoli . Fluvial to torrential phase transition in open canals. Networks and Heterogeneous Media, 2018, 13(4): 663-690. doi: 10.3934/nhm.2018030 |
[1] |
D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws, NoDEA Nonlinear Differential Equations Appl., 4 (1997), 1-42. doi: 10.1007/PL00001406
![]() |
[2] |
D. Amadori and R. M. Colombo, Continuous dependence for 2×2 conservation laws with boundary, J. Differential Equations, 138 (1997), 229-266. doi: 10.1006/jdeq.1997.3274
![]() |
[3] |
A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic). doi: 10.1137/S0036139997332099
![]() |
[4] |
S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467
![]() |
[5] | A. Bressan, Hyperbolic Systems of Conservation Laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. |
[6] |
R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721 (electronic). doi: 10.1137/S0036139901393184
![]() |
[7] |
R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468
![]() |
[8] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 2005. doi: 10.1007/3-540-29089-3
![]() |
[9] |
F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations, 71 (1988), 93-122. doi: 10.1016/0022-0396(88)90040-X
![]() |
[10] |
M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636. doi: 10.1142/S0219891613500215
![]() |
[11] |
H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, volume 152 of Applied Mathematical Sciences, Springer-Verlag, New York, 2002. doi: 10.1007/978-3-642-56139-9
![]() |
[12] |
M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089
![]() |
[13] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42
![]() |
[14] |
H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3
![]() |
1. | Francesca Marcellini, Existence of solutions to a boundary value problem for a phase transition traffic model, 2017, 12, 1556-181X, 259, 10.3934/nhm.2017011 |