[1]
|
C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heter. Media., 6 (2011), 351-381. doi: 10.3934/nhm.2011.6.351
|
[2]
|
A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278. doi: 10.1137/S0036139900380955
|
[3]
|
R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New-York, 1963.
|
[4]
|
N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345. doi: 10.1142/S0218202508003054
|
[5]
|
N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations and perspectives, SIAM Review, 53 (2011), 409-463. doi: 10.1137/090746677
|
[6]
|
S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heter. Media., 6 (2011), 401-423. doi: 10.3934/nhm.2011.6.401
|
[7]
|
C. Burstedde, K. Klauck , A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525. doi: 10.1016/S0378-4371(01)00141-8
|
[8]
|
R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operations Res., 6 (1958), 165-184. doi: 10.1287/opre.6.2.165
|
[9]
|
M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal-force model for pedestrian dynamics, Phys. Rev. E, 82 (2010), 046111. doi: 10.1103/PhysRevE.82.046111
|
[10]
|
R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
|
[11]
|
V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247. doi: 10.1142/S0218202508003017
|
[12]
|
D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567. doi: 10.1287/opre.9.4.545
|
[13]
|
S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey, Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 177-187. doi: 10.1145/1599470.1599494
|
[14]
|
P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068. doi: 10.1007/s10955-013-0805-x
|
[15]
|
P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839. doi: 10.3934/krm.2013.6.809
|
[16]
|
P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319. doi: 10.1016/j.jcp.2012.11.033
|
[17]
|
M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362. doi: 10.1016/j.jde.2010.10.015
|
[18]
|
D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310. doi: 10.1002/bs.3830360405
|
[19]
|
D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415.
|
[20]
|
D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286. doi: 10.1103/PhysRevE.51.4282
|
[21]
|
D. Helbing and P. Molnàr, Self-organization phenomena in pedestrian crowds, in Self-Organization of Complex Structures: From Individual to Collective Dynamics (ed. F. Schweitzer), Gordon and Breach, London, 1997, 569-577.
|
[22]
|
L. F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res., 8 (1974), 509-515. doi: 10.1016/0041-1647(74)90027-6
|
[23]
|
S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, 24 (2003), 153-172. doi: 10.1002/oca.727
|
[24]
|
W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle avoidance using a steering potential function, Robotic and Autonomous Systems, 54 (2006), 288-299. doi: 10.1016/j.robot.2005.11.004
|
[25]
|
L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. B, 43 (2009), 127-141. doi: 10.1016/j.trb.2008.06.003
|
[26]
|
R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002), 507-535. doi: 10.1016/S0191-2615(01)00015-7
|
[27]
|
R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech., 35 (2003), 169-182. doi: 10.1146/annurev.fluid.35.101101.161136
|
[28]
|
A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line - Fundamental diagrams, Phys. Rev. E, 85 (2012), 036111.
|
[29]
|
A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line. II. stepping behavior, Phys. Rev. E, 86 (2012), 046111.
|
[30]
|
D. Jezbera, D. Kordek, J. Kříž, Petr Šeba and P. Šroll, Walkers on the circle, J. Stat. Mech. Theory Exp., 2010 (2010), L01001. doi: 10.1088/1742-5468/2010/01/L01001
|
[31]
|
Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635. doi: 10.1016/j.physa.2010.05.003
|
[32]
|
A. Johansson, Constant-net-time headway as a key mechanism behind pedestrian flow dynamics, Phys. Rev. E, 80 (2009), 026120. doi: 10.1103/PhysRevE.80.026120
|
[33]
|
S. Lemercier, A. Jelić, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498. doi: 10.1111/j.1467-8659.2012.03028.x
|
[34]
|
S. Lemercier, M. Moreau, M. Moussaïd, G. Theraulaz, S. Donikian and J. Pettré, Reconstructing motion capture data for human crowd study, in Motion in Games, Lecture Notes in Computer Science, 7060, Springer, Berlin-Heidelberg, 2011, 365-376. doi: 10.1007/978-3-642-25090-3_31
|
[35]
|
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), 485-519. doi: 10.3934/nhm.2011.6.485
|
[36]
|
M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-organized Pedestrian Crowds, PLoS Comput. Biol., 8 (2012), e1002442.
|
[37]
|
M. Moussaïd, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884-6888.
|
[38]
|
K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model for evacuation dynamics, IEICE Transp. Inf. & Syst., E87-D (2004), 726-732.
|
[39]
|
J. Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach for crowd simulation, in SIGGRAPH'10, 29 (2010), p123. doi: 10.1145/1833349.1778860
|
[40]
|
S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Eurographics, 26 (2007), 665-674. doi: 10.1111/j.1467-8659.2007.01090.x
|
[41]
|
J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 189-198.
|
[42]
|
B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107. doi: 10.1007/s00161-009-0100-x
|
[43]
|
L. Pontrjagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 95-110.
|
[44]
|
C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game Developers Conference, San Jose, California, 1999, 763-782.
|
[45]
|
A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. Theory Exp., 2005 (2005), P10002. doi: 10.1088/1742-5468/2005/10/P10002
|
[46]
|
A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Phys. A, 368 (2006), 232-238. doi: 10.1016/j.physa.2005.11.052
|
[47]
|
J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294.
|
[48]
|
J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Exp., 2012 (2012), P02002. doi: 10.1088/1742-5468/2012/02/P02002
|