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ABSTRACT. We use the results of a pedestrian tracking experiment to identify
a follow-the-leader model for pedestrians walking-in-line. We demonstrate the
existence of a time-delay between a subject’s response and the predecessor’s
corresponding behavior. This time-delay induces an instability which can be
damped out by a suitable relaxation. By comparisons with the experimental
data, we show that the model reproduces well the emergence of large-scale
structures such as congestions waves. The resulting model can be used ei-
ther for modeling pedestrian queuing behavior or can be incorporated into
bi-dimensional models of pedestrian traffic.

1. Introduction. The need for accurate predictions of pedestrian behavior is rap-
idly growing, due to the constant increase of urban populations worldwide and to the
strengthening of safety regulations imposed to buildings and public areas. Yet there
is no consensus about what model of pedestrian behavior is the most appropriate.
This is probably due to the difficulty of precisely assessing the validity of models
in an unambiguous way. Indeed, in natural conditions, many factors which are
difficult to entangle may influence pedestrian behavior, such as the environment,
the topology of the premises, the social and psychological state of the pedestrians,
etc. On the other hand, the design of experiments in fully controlled situations is
costly, time-consuming and strongly impeded by experimental constraints.

Many models of pedestrian dynamics have been proposed in the literature. A
recent review on crowd modeling can be found in [5]. A vast majority of the
models are based on Individual-Based Models (IBM), which describe the behavior of
each pedestrian and its interactions with the neighboring pedestrians individually.
Such models can be roughly categorized as follows. There are models based on
e.g. heuristic rules [44, 37], mechanical models [18, 20, 21], optimal control theory
models, [23], Cellular-Automata [7, 38] and Vision-Based models [13, 24, 41, 47]. All
these models partially reproduce the behavior of real crowds, each of them having
its pros and cons.

For the sake of completeness, we briefly review continuum models, although they
will not be used in the present paper. These types of models are primarily based
on a fluid dynamics vision of othe crowd [19, 22]. However, other approaches may
be found in the literature. Such approaches rely e.g. on optimal control theory
[25, 26, 27, 31] or on the analogy with car traffic [1, 4, 6, 10, 11, 42]. The treatment
of the volume exclusion constraint for dense crowds has been investigated e.g. in
[16, 35]. More mathematically oriented existence results can be found e.g. in [17].

One of the difficulties in reproducing actual pedestrian dynamics comes from its
two-dimensional nature and the fact that the transversal and longitudinal dynamics
(with respect to the walking direction) combine in a complex way which is hard to
desantangle. Collision avoidance manoeuvres by pedestrians involve controls on
both their velocity direction and amplitude [39, 40], a feature that has already
been implemented in some models [14, 15, 33, 37]. In order to better understand
the role of each of these controls, in this paper we consider a one-dimensional
configuration where pedestrians walk on line without being able to pass each other.
This situation is a paradigm for narrow corridors [9] or dense situations where lane
form and pedestrians tend to follow a predecessor walking in the same direction
[36, 48]. Moreover, following behavior as observed in one-dimensional experiments
can be used for analyzing or modeling two-dimensional situations [32, 46]. The
study of one-dimensional pedestrian following behavior has also triggered interest
for its own sake [28, 29, 30, 45].
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In this paper, we rely on experimental results using motion capture techniques re-
ported in [34] to calibrate the parameters of a follow-the-leader model inspired from
car traffic [8, 12]. However, on the basis of the experimental data, we demonstrate
that it is necessary to consider a non-zero time delay in the model, i.e. that the
acceleration of a pedestrian at a given time is determined by the relative position
and velocity of this pedestrian with respect to his predecessor at an earlier time.
This results in a system of delay differential equations. It is well known that such
delay differential systems may not be stable depending of the choice of the model
parameters [3]. In this paper, we show that, within the range of parameters found
from the calibration of the model, the model is actually not stable. This leads us to
introduce some dissipation mechanism in the form of a relaxation of the pedestrian
velocity to the average velocity of a certain number of his predecessors. Thanks to
the introduction of this additional mechanism, the model becomes well-posed. We
numerically show that, with a physically consistent choice of the parameters of the
relaxation operator, the model does indeed provide extremely good agreement with
the experiments for large pedestrian densities. For lower density however, it seems
that additional mechanisms which are not included in the model are at play.

The paper is organized as follows. In Section 2 we describe the experiments and
the filtering method that is applied to the data. In Section 3 we discuss the model
and show that a delay term must be added. We perform a stability analysis of the
resulting delay-differential system and show that a relaxation term must be added
to obtain a stable model. We then estimate the parameters of the model from the
experimental data. In Section 4 we present the result of the so-obtained calibrated
model and we assess the quality of the calibration by looking at macroscopic observ-
ables such as the statistics of jams. We show that the model is able to reproduce
the experimental data in a very satisfactorily manner. The paper is concluded by a
discusion in Section 5. A technical annex explores how the results of the calibration
depends on the data processing parameters and shows that apart from the choice
of the cutoff frequency in the data filtering step, they are insensitive to this choice.
The cutoff frequency is chosen fo filter out the pedestrian stepping frequency while
keeping all phenomena occuring at lower frequencies.

2. Materials and methods.

2.1. Experiments. The description of the experimental setup can be found in
[28]. We recall it briefly for the sake of completeness. In this experiments, subjects
were instructed to walk in line on a circular path without passing each other. The
trajectory of each pedestrian was recorded using high precision motion capture
technology [36]. Experiments took place in a ring-shaped arena. The imposed
circular path was chosen close to either the inner or the outer boundary of the
arena. This provided a way to modify the density of pedestrians (another way
being by changing the number of subjects enrolled in the experiment). The choice
of circular paths was made in order to avoid spurious clogging effects arising at the
ends of a rectilinear path when the subjects enter or exit the path. The trajectories
of the pedestrians were reconstructed using data processing methods described in
[34].

Up to 28 subjects were enrolled in the experiments. They were volonteers and
uninformed of the purpose of the experiment. They were instructed to walk at
their natural pace and forbidden to talk to each other. Although uninformed of the
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purpose of the experiment, participants were presumably affected by a “psycholog-
ical bias” due to the fact that they were moving in a quite artificial environment.
However, for the purpose of observing the following behavior of the pedestrians,
we believe that this effect was small as the velocity adjustments needed to prevent
collisions are of the reflex type.

The inner and outer radii of the circular arena were respectively 2 and 4.5 m (see
Figure 1). The observed average radius of the pedestrians’ circular trajectory in
the experiments using the inner radius was 2.4 m (implying an average perimeter
of 15.08 m). For the experiments using the outer radius, the respective figures were
4.1 m and 25.76 m. Table I of [28] gives a summary of the experimental parameters
(number of subjects, use of inner or outer circle, pedestrian density and number of
replications). The typical duration of each replication was 1 minute. Each subject
was equipped with 4 markers, one on the left shoulder, two on the right shoulder, and
one on the forehead. The ring-shaped arena was surrounded by 12 infra-red cameras
which detected the markers. A dedicated software converted this information into
the three-dimensional coordinates of each marker. After some processing of the
data described in [34], the planar two-dimensional coordinates of the barycenter of
the four markers of each subject was reconstructed with a frequency of 120 Hz.

2.2. Experimental data. The experimental data keep records of the planar po-
sitions (z(t,), y(tn)) of each pedestrian at sampling times t,,, with a sampling fre-
quency of 120 Hz (i.e. two consecutive sampling times are separated by At =
1/120s). To exploit the fact that the pedestrians are moving on a circle, we trans-
form the cartesian coordinates (z(t.),y(tn)) into polar coordinates (r(tn),0(t,))
relative to the center of the circle and to some reference axis. We can then estimate
the angular velocity w:

.1
w=60=—(—sinfz + cosby), (1)
r

where dots denote time derivatives and & and gy are approximated by finite differ-
ences.

The experimental data are perturbed by quasi-periodic oscillations due to the
pedestrian stepping behavior. We will discard the effect of steps in the models as
we are interested in longer time scales where they have no predominant influence.
For this reason, we strongly reduce the amplitude of these oscillations by applying
a linear fourth order filter to the position data. In the frequency domain v, and for
any quantity u(t) whose Fourier transform in time is denoted by @(v), the resulting
filtered quantity uy(t) has Fourier transform @y (v)given by:

B 1

14 crt
Due to its high order, this filter also reduces the amplitude of the oscillations of
the first and second order time-derivatives (i.e. the velocity and the acceleration of
the pedestrians). The cutoff frequency associated to the low-pass filter (2) is the

frequency above which harmonic signals have their power reduced by more than a
factor 2. In the case of the filter defined by (2) it is v, = 2% where w, satisfies

1 1
— = 3)
1+caw? 2
The cutoff frequency is chosen in such a way that as much information in the data is
kept as possible. From the experiments, the step period is about 2 s. Consequently,

uf(v) u(v) for some constant ¢ > 0. (2)
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the cutoff frequency 0.5 Hz has been chosen. A study of the influence of the cut-off
frequency on the results supports this conclusion (see section 5).

3. Theory: The Follow-The-Leader model.

3.1. The model. The Follow-The-Leader (FTL) model is a microscopic model
which describes the individual behavior of each agent and his interactions with his
neighbors. It has been first used in the context of car traffic [8, 12]. There are
many variants of the FTL model but a fairly common one is written as follows
(adopting notations of polar geometry which are best suited to the experimental
setup). We consider N pedestrians on the 1D circle with angular positions 6;(t),
and angular velocities w;(t), for ¢ = 1,--+ , N functions of time ¢. These quantities

evolve according to the following system of delay-differential equations, written for
i=1,--- N:

0i(t) = wi(?), (4)
C (wi-i-l _wz)(t) ) (5)

1051 — 0;]" 17 (1)

Here C > 0, 7 > 0 and v > —1 are modeling constants to be calibrated on the
data. The (i + 1)-th pedestrian is the leader of (i.e. the one exactly before) the i-th
pedestrian. This model can be interpreted as follows. There is a first phase where
the pedestrians observes his leader, acquires the knowledge of the quantities w;11(¢)
and 6;11(t) and makes a decision about what reaction should be implemented in
response to these observations. This decision-making is represented by the right-
hand side of (5). The second phase is the action phase where the pedestrian acts
on his own velocity to comply with his decision-making rule. It is represented
by the left-hand side of (5). The time delay 7 corresponds to the time needed
between the decision and its translation into action. The decision-making rule itself
describes how the pedestrian adjusts his velocity to that of his leader. To this aim, he
decelerates if he is faster than his leader and accelerates if he is slower, in proportion
to the speed difference, as shown at the numerator of the right-hand side of (5).
This adjustment is modulated by the proximity of the pedestrian to his leader, a
short distance inducing a stronger reaction, as expressed by the denominator of the
right-hand side of (5). The constant C' quantifies the intensity of the reaction and
~y its dependence upon the distance to the leader. Note that (6,11 — 6;)(¢) is always
positive if the pedestrians are moving counterclockwise and always negative if they
are moving clockwise. Since angles are quantities defined up to the addition of a
multiple of 27, we take for (6;11 — 6;)(t) the smallest positive (respectively largest
negative) quantity among all such possible values.

While the general FTL model used in traffic incorporates a time-delay [8, 12],
it has often been neglected in the literature (see e.g. [2]). Here, the experimental
data suggest that a non-zero time-delay should be used. Indeed, Fig. 1 shows the
quantities (w;+1 — w;)(t) and w;(t) as functions of time, for a typical pedestrian
trajectory. From this figure, it appears clearly that these quantities are correlated
but with some time shift. This observation is generic: it applies to a large proportion
of our experimental data. Then, for the sake of simplicity, we restrict ourselves to
v = —1 and will consider the following model, written for ¢ = 1,--- , N:

0;(t) = wi(t), (6)
Wit +7) = Clwit1 — wi)(t). (7)

Wit +7) =
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w' [red], w(leader)-w(pedestrian) [blue]
1 T T T T T

80

FIGURE 1. (w;y1—w;)(t) (in blue) and w;(¢) (in red) as functions of
time ¢ for a typical pedestrian trajectory. For the sake of a better
representation, both functions are normalized by their maximal
value. We notice that w;(t) has roughly the same features as (w; 41—
w;)(t) with some time delay.

Indeed, later on, it will prove interesting to consider even more general models in
which the constants C' and 7 are density-dependent, which contains the previous
model as a particular case.

Unfortunately, time-delay differential equations are not always linearly stable.
Linear stability means that if a steady-state solution (here for instance, a solution
where all velocities w; are equal) is slightly perturbed, the linearized system has
bounded solutions. The stability analysis of the FTL model (6), (7) has been
performed in [8]. It is shown that the model is stable if C7 < 1/2. With the
values of C and 7 calibrated from the experiments, we find that this condition is
not always fulfilled and that the FTL model can be ustable. After the development
of the instability, it is observed that the solution does not fit with the observed
trajectories. In particular, we observe particle crossings that are forbidden in the
experiments. Therefore, in order to be usable, the FTL model has to be stabilized.

Here, the stabilization consists in adding a relaxation term which describes the
relaxation of the subject’s velocity to an averaged velocity over a certain number
of neighbors. It is intended to model the fact that a given pedestrian may perceive
other subjects than just his leader and take them into account in the decision-
making process. Since it is not precisely known how the informations on the various
neighbors are combined, the choice of a relaxation model, being the simplest possible
one, is the most reasonable. Additionally, by tuning how the average velocity is
computed, it allows some flexibility and calibration by comparisons with the data.
Therefore, the considered relaxed form of the FTL model is as follows, for i =
1,...,N:

Bi(t) = wi(t), (8)
d}i(t +7)= (1 — oz)C(wZ-H - wi)(t) + OtC(L:}l — wi)(t), (9)
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where the most general form of the weighted average velocity @; is

N-1
w; = Z bew(ive)y, (i+€)|y = (i+¢) modulo N, (10)
=0

for positive by such that 22\51 by = 1. The quantity o € [0, 1] gives the balance
between the follow-the-leader term and the relaxation term. When b, = %, w; =
w is independent of i and corresponds to the global average velocity. When by
is more strongly peaked about ¢ = 0, the average velocity becomes more local.
In (9), we have chosen to write w;(t + 7) as a convex combination of the two
terms (respectively corresponding to the relaxation towards the leader’s velocity
and towards the neighbors’ average velocity) rather than writing them as a sum.
The reason for this is that the leader also appears in the neighbors’ average velocity
and that the actual measured reaction rate C' should be distributed among these
two terms. It is also the choice which provides the best fit with the experimental
data as we will see below.

Remark 1. The model (9) is equivalent to the model
o:)i(t—‘rT):C(LNui—wi), i=1,---,N,

where the average relaxation speed w; is defined by
N-1 _
Wi = Z bew (i)| s
£=0

and is associated with averaging coefficients by = (1 — @) 4+ aby and by = ab for
£ > 2. The coeflicients I;} are positive and sum up to 1. In other words, one can
restrict to the case @ = 1 for the analysis. However the parameter « provides
a tuning between the FTL model and the relaxation-to-the-mean model, and the
interpretation of this parameter is intuitive. We thus propose an analysis depending
on « (and the parameters b, will remain fixed).

In the following section, we perform a stability analysis of model (8), (9) in the
special case where C' and 7 are constant. In this case, the two equations (8), (9)
decouple. Indeed, eq. (9) can be solved for w;(t), i = 1,..., N without knowing the
values of §;. Once the functions w;(t) are determined, Eq. (8) can be integrated and
the values of the functions 6;(t), determined. Additionally, the delay differential
equation (9) becomes linear. This makes the stability analysis performed in the
section below tractable.

In the most general setting considered in the present paper, the quantities C' and
7 depend on the local density, i.e. C' = C(p;) and 7 = 7(p;) where p; is computed
by enumerating the number of agents in a neigborhood of 6;. In this case, Egs. (8),
(9) are coupled, since p; depends on the values of §; for all j. Furthermore, this
coupling makes the problem nonlinear. We have not attempted to develop a stability
analysis in this nonlinear case as it would certainly be highly technical and would
provide little additional insight. Rather, we have performed numerical simulations.
These tend to indicate that with the values of the parameters calibrated from the
experiments, the model without relaxation is unstable. We have manually tuned
the relaxation parameters so that they provide at the same time stable solutions
and good approximations to the experimental data.
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3.2. Stability analysis. We write the model (9) in vector form:
w(t+7)=CAw(t), (11)

where w is the vector
w=(wi,...,wn)7,
and the exponent T' denotes the transpose of a vector or a matrix. The matrix A
is such that the vector Aw has entries (Aw); given by
N—1
(Aw); = (1= a)(wit1 — wi) + a( Y bewgire)y — wi)-
£=0

Concerning this matrix, we have the following

Proposition 1. All the eigenvalues of the matriz A have a non-positive real part.
More precisely, 0 is an eigenvalue, and all the other eigenvalues have a negative real
part. The non zero eigenvalues lie in the closed disk of center -1 and radius 1.

Proof. A is a circulant matrix. If we denote by K the matrix of entries k;; such
that kj; =1if j =7+ 1, ky1 =1 and k;; = 0 otherwise, we can write:
N-1
A=-Id+(1-a)K+a ) b K"
£=0
Now, we introduce y = exp(2i7/N). The eigenvalues of K are u* for k =0,..., N—
1. Hence the eigenvalues of A, which will be denoted by 8 are given by:

N-1
Br :—1+(1—a),uk+ozz by (12)
£=0
N-1
= (I—a)(=1+pu") +a Y be (=14 ")
£=0

Therefore if k = 0 then 8y = 0. Let us now consider the case k # 0. Then, —1 + u*
has a negative real part and —1 + ;* has a non-positive real part. Then, since S,
is a convex combination of all these terms, it has a non-positive real part. More
precisely, By is a barycenter of —1 4+ p* which lies on the circle centered at —1
of radius 1, and of Zévzf)l be(—1 + pF%) wich is a barycenter of points of the same
circle, and hence, which lies in the disk centered at —1 of radius 1. Therefore, by
convexity, B also belongs to the disk of center -1 and radius 1. (|

As an illustration, in Figure 2, we represent the eigenvalues of (9) in the complex
plane in the case N = 28, a = 0.2 and for two examples of relaxation operator
(i.e. two different choices for the coefficients by). The case of a relaxation to the
global average (i.e. all the by being equal and summing up to 1) is represented
in red and that of a relaxation to a local average computed on the seven closest
neighbors in front (with equal weight) is represented in blue. In both cases, we see
that the eigenvalues of A have non-positive real part, and consequently, the linear
ODE w(t) = CAw is stable for any value of C' > 0.

The following stability analysis for the ODE with delay (9) follows standard
works on delay ODEs [43, 3]. The characteristic equation, i.e. the equation that
A € C must satisfy for the existence of a solution of the form w(t) = wpe™* with
wo # 0, reads:

det(—A1d + CAe™™) = 0. (13)
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FIGURE 2. Eigenvalues of the system (9) for N = 28 with relax-
ation to the global mean velocity in red (by = 1/28 for all £) and
relaxation to the local mean velocity in blue (by = 1/7 for £ =1..7
and 0 otherwise), with & = 0.2. The black circle is centered at -1
and has radius 1 — a = 0.8.

The value A = 0 is always a solution to (13) (corresponding to the eigenvalue 5y = 0
of A), whatever the value of 7 > 0 is, and corresponds to a state where all the agents
have the same constant velocity. The system without delay is stable, as stated in
the previous proposition. Since the eigenvalues depend continuously on the delay
T, the system with delay is stable for delays 7 such that 7 < 7*, where the critical
delay 7* is the smallest delay 7 such that the associated eigenequation (13) admits
a non-zero pure imaginary solution.

Proposition 2. The critical delay 7 for the model (9) satisfies

1
* _—
T2 55
Moreover, in the particular case o = 0 the critical delay satisfies the equality:
N
20T = ull

sin(r/N)’
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Proof. The critical delay 7* is the smallest value of 7 such that the characteristic
equation (13) admits a non-zero pure imaginary solution, i.e. the smallest 7 such
that there exists wy € R and some k € {1,..., N — 1} satisfying

—iwq + Cﬂke_i‘rwo =0,

where we recall that 8k, k € {0,..., N}, denote the eigenvalues of A. Decomposing
Br = pe'?, we get:

—iwp + Cpete im0 = 0, (14)
Since S belongs to the disk centered at -1 of radius 1, we can choose 8 € [r/2, 37/2]
and p < 2|cosf|. Let € € {—1,1} denote the sign of wg. Then (14) reads

ewo=Cp and (0770 = ¢, (15)

Thanks to the second equation (15), there exists an integer m € Z such that 6 =
Two +€em /24 2mm, and with the first equation (15), this leads to = ¢(Cpr+m/2)+
2mm, or Cpr = —7/2 + €6 + 2mm. Then, we distinguish the two cases ¢ = 1 and
e=—1:

Case 1. € = 1. Then, we have:

., 0—7/2 0—m/2 1
= > > ..
’ pC T 2C|cosf| — 2C (16)

Case 2. ¢ = —1. Then:
3r/2—0 _ 3n/2—0 1
= > >
pC 7 2C|cosf] — 2C

T*

In both cases, we find that 7* is bounded from below by %, which ends the proof
of the first statement. In the case o = 0 the eigenvalues are exactly By = —1 + p*
where we denote as above p = exp(2im/N). Since By = 2sin(kw/N) exp(ikn/N +
im/2) we follow the same reasoning as above with § = kx/N 4+ 7/2 and p =
2sin(kw/N). The equation (16) with k = 1 reads:

. 0—m/2 _ /N
pC 2C sin(m/N)’
which ends the proof of the second statement. |

In the case of a relaxation to the global mean velocity (i.e. when all the b,’s are
equal), we can prove some refined bounds on the critical delay 7*, as shown in the
following.

Proposition 3. Let us assume that by = 1/N for £ =0,...,N — 1. If N is even,
then the critical delay satisfies
max (1, arccos(1 — a)) << T .
2-—a)C - T 22-a)C
The lower bound is also valid if N is odd. It improves that given in Prop. 2 if
a <1—cos(l) ~ 0.46.

Proof. By elementary properties of N-th roots of unity, we have Eé\:)l bt =
+ ZéV:Bl pFt = 0. Then, from (12), we deduce that S = —1 + (1 — a)u”* belongs
to the circle of center —1 and radius 1 — a. If we write 8, = pe’? (and assume by
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True value (red), upper and lower bounds (black)

1.6 ‘

0 0.2 0.4 0.6 0.8 1
(%

F1GURE 3. The maximal delay 7% which maintains the stability of
the delay differential system, plotted as a function of « in the case
of a relaxation to the global average velocity (by = 1/N for all £).
Here, we have chosen C' = 1.01. The upper and lower bounds given
by Prop. 3 are plotted in black for comparison.

symmetry that 6 € [0, 7]) then simple geometric considerations show that p < 2—«
and sin(m — 0) <1 — a. Hence 6 — w/2 > arccos(1 — a). Therefore
. 6 —m/2 _ arccos(l — )
pC  —  (2—a)C
Another possibility is to note that all the eigenvalues Sy lie in the disk of center
(1—a/2) and of radius 1—a/2. Hence as above, if 8, = pe’ then p < (2—a)| cos ).
This provides the following lower bound:

1
>
~(2-aC
If N is even, then —2 4 « is an eigenvalue of A and is such that p = 2 — a and
0 = 7. Then, by (16), the delay at which the corresponding eigenvalue of the delay
problem reaches the imaginary axis is equal to ﬁ Therefore, we deduce that
T* a

*
T

< 2(27101) .
The precise value of 7* can also be computed numerically since all the eigenvalues
Bk are known. The result is presented in Figure 3. The quantity 7* is plotted as a
function of « (in red). By comparisons, the lower and upper bounds given by Prop.
3 are displayed in black color.

3.3. Model calibration. In order to estimate the model parameters, i.e. the
delay 7 and the reaction constant C' from experimental data we proceed by cross
correlation. However we will consider small sub-windows since the parameters are
not strictly constant over time. The procedure for the estimation of the delay is as
follows:
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We consider a time-window I. For each pedestrian ¢, we estimate the delay 7 that
accounts the best for the measurements in this time window. This delay maximizes

Lobs _ argmax <wl( + T)’ (Wi+1 - wl)(»L"}
7€ [Tmin ;s Tmax] oo (- +T)||L§

)

where for two functions of time f(¢) and g(t) defined on I, we denote by (f, g) 12 and
If ||i§ the L? inner product of f and g and the squared L? norm of f, respectively
defined by

Uy = [ 109 0 = [ 1s0P
tel tel

In this work, the delay 7°P% is searched within the interval [Tinin, Tmax] = [—25, 35].

For the same given pedestrian and the same time window, the best constant C
is then determined by least-squares minimization, which reads

(Wil +7°%), (Wit —wi) (")) L2

I(wirr — w72

Associated to these quantities, the correlation coefficient is a quantity which belongs
to [—1,1] and which provides a reliability measurement. It is defined by:

(Wi +7), (Wit1 —wi)(-)) 2

[l (- + 7l L2 |witr — willzz

We say that the model appropriately describes the data from a given pedestrian
and a given time-window I (or that “the data from I are compliant with the model”)
if the following two constraints are simultaneously satisfied:

(i) the correlation e is close to 1, i.e. is larger than a given threshold ¢,. We

choose ¢; = 0.6 unless stated otherwise.
(ii) the resulting time-delay 7 satisfies 0 < 7 < Typax — 0.05, where [Tinin, Tmax] 1S
the interval where 7 is sought.
We also discard all the data from one given pedestrian, if there are less than 1/3
compliant data for this pedestrian, collected on all the given time windows. These
outliers originate either from intrinsic differences in the subject’s behavior or more
likely from incorrect data reconstruction. They are discarded to avoid pollution of
the calibrated parameters by incorrect data.

Thanks to this procedure, for each experiment, we collect samples which consist
of all the values of 7 (or of C) for all the considered time-windows and all the
pedestrians. In our data processing, a set of windows is defined by shifting by steps
equal to 50At = 5/12s.

3.4. Numerical approximation. We now describe the numerical scheme that
was implemented to solve the model (9). The model is a delay differential equation.
We implemented a 4th order Runge-Kutta method to solve this model. Due to
the delay, an interval of initial condition is required and the resolution on a time
interval [tq, 2] requires the knowledge of the data in the interval [t; — 7,¢1].

We present below simulations with different values of the delay, or with density-
dependent delay, however the delays are always less than 10s. In all our simulations,
we therefore used the observations on the interval [0,10s] as initial condition and
performed a simulation on the interval [10s, 80s].
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4. Results.
4.1. Model calibration.

4.1.1. Calibration of model parameters: Case of constant parameters. In a first
step, we suppose that the model parameters 7 and C' are constant and in particular
independent of the local pedestrian density. In a forthcoming section, we will see
that the calibration is improved by making the parameters 7 and C' dependent of
the local density.

The estimated values of the model constants 7 and C' from the experimental
data are presented in Figs. 4 and 5 respectively. More precisely, Fig. 4 and 5 show
histograms of the estimated values of 7 and C' where the samples are defined as being
pairs (pedestrian, time window) and the samples range through all experiments with
the same average pedestrian density. The average density pay is defined as the total
number of pedestrian involved in a given experiment divided by the average walking
radius for that experiment.

Four different histograms, corresponding to four different values of the aver-
age pedestrian density p,, are shown by order of decreasing density: (a) pay =
1.86 ped m™ ; (b) pay = 1.59 ped m™' ; (¢) pay = 0.93 ped m~ ' ; (d) pay =
0.31 ped m™* (with “ped” standing for “pedestrian”). In these histograms, only
the time windows where the data are compliant with the model are retained. For
these Figures, the following parameters were used: cut-off frequency v, = 0.5 Hz ;
window width w,, = 6.67 s, correlation threshold ¢; = 0.6.

In Table 1, we summarize the proportion of compliant data as a function of
the total number of pedestrians (we do not distinguish between the inner or outer
circles). The proportion of compliant data is small for the low average density cases
(for the experiments with 8 pedestrians, the average density is 0.31 ped m~!) but
quite large above 16 pedestrians (average density of 0.6 ped m~!). This indicates
that the delay-differential model (7) is well-adapted for densities above 0.6 ped m~*
but has poorer match with the data for lower densities.

Number of pedestrians | percentage of compliant data
8 44.96 %
16 74.91%
20 82.34%
21 84.96%
24 79.75%
28 77.44%

TABLE 1. Proportion of compliant data as a function of the total
number of pedestrians.

For all the experiments where the model is relevant (all cases but low average
density) the delay 7 has a distribution around a mean value of the order of 0.8 s,
with a standard deviation of the order of 0.45 s, see Figs. 4 (a), (b) and (c). We can
conclude that there is no fixed value for the delay 7 but rather a range of values.
Similarly, for the experiments other than the low average density experiments, the
constant C' has a distribution around a mean value of the order of 1 m'/2s~!, with
a standard deviation of the order of 0.4 m'/?s~!, see Figs. 5 (a), (b) and (c). The
choice of the delay model (7) or its stabilized version (9) is comforted by the fact
that a large amount of data fits the model (see Table 1).
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(a) High density (28 pedestrians walking on the
inner circle: average density 1.86 ped m~1!),
mean=0.82, std=0.51.

(b) medium high density case (24 pedestrians
walking on the inner circle: average density 1.59
ped m~1), mean=0.71, std=0.45.
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(¢) Medium low density case (24 pedestrians

walking on the outer circle: average density
0.93 ped m~ 1), mean=0.8, std=0.42.

(d) Low density case (8 pedestrians: average
density 0.31 ped m~—1!), mean=1.04, std=0.58.

FIGURE 4. Histograms of the time delay 7 for different average
densities pay: (a) pay = 1.86 ped m~'; (b) pay = 1.59 ped m™*;
(¢) pav = 0.93 ped m™' ; (d) pay = 0.31 ped m™" (with “ped”
standing for “pedestrian”). The samples are defined as being pairs
(pedestrian, time window) and the samples range through all ex-
periments with the same average pedestrian density. For each
case we indicate the mean value and the standard deviation of 7.
For each pedestrian, the time delay is estimated within the range
[Tmin, Tmax] = [—28,3s]. The time windows are shifted by steps
equal to 50At = 0.417s.

4.1.2. Sensitivity with respect to the processing parameters. The calibration proce-

dure of the model from the data depends on several processing parameters, namely

the correlation threshold €; for a sample defined by a (pedestrian, time-window) pair

to be compliant with the model, the time window width w,,, the cut-off frequency

V.. We have tested the influence of each parameter on the estimation of 7 and C.

The detailed analysis is presented in the appendix B and summarized in Table 2.
As a summary, the following observations can be made:

1. The parameters ¢; and w,, have a little influence on the results, and therefore
our analysis is stable with respect to these parameters.
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(a) High density case (28 pedestrians walking (b) Medium high density case (24 pedestrians
along the inner circle: average density 1.86 ped  walking along the inner circle: average density
m~1), mean=0.95, std=0.4. 1.59 ped m~1), mean=1.09, std=0.44.
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(¢) Medium low density case(24 pedestrians (d) Low density case (8 pedestrians: average
walking along the outer circle: average density  density 0.31 ped m~!), mean=0.62, std=0.37.
0.93 ped m~ 1), mean=0.84, std=0.36.

FIGURE 5. Histogram of the reaction constant C for differ-
ent average densities pu: (a) pa = 1.86 ped m~' ; (b)
pav = 159 ped m™" ; (c) pay = 0.93 ped m™ ' ; (d) pav =
0.31 ped m™! (with “ped” standing for “pedestrian”). The sam-
ples are defined as being pairs (pedestrian, time window) and
the samples range through all experiments with the same aver-
age pedestrian density. For each case we indicate the mean value
and the standard deviation of C'. For each pedestrian, the values
of C is estimated within the range [Tmin, Tmax] = [—28,3s]. The
time windows are shifted by steps equal to 50At = 0.417s.

2. The parameter v, has a strong influence on the estimated time-delay 7 and
reaction constant C. Therefore the choice of this parameter is of importance,
and its value must be chosen according to ‘physics-based’ criteria. In the rest
of the work we use v, = 0.5 Hz, which is of the order of magnitude of the
stepping frequency. Therefore, this value allows to smooth out the oscillations
due to the stepping of the pedestrians without perturbing phenomena occuring
at longer time-scales.
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parameter range relative | relative varia- | relative varia
range tion of 7 tion of C
€t 0.6 - 0.8 29 % 1.6 % 5.5 %
Wy 5-8s 46 % 25 % 53 %
Ve 02-12Hz|143 % 90 % 45 %

TABLE 2. Sensitivity of 7 and C with respect to the correlation
cut-off €;, time-window width w,, and cut-off frequency v.. For
each parameter, we indicate the range, i.e. the interval of values
where this parameter was tested, the relative range (in %), i.e. the
interval length divided by the median value, and the associated
relative variations of the two parameters 7 and C (in %)

4.1.3. Calibration of local density-dependent model parameters. In Figures 4-5, we
observe that the distribution of 7 and C' depend on the average density of the pedes-
trians. The value of 7 is decreasing with respect to the average density while that
of C' is increasing. Both quantities tend to be only mildly varying upon the average
density when this density is large. On the other hand, we observe a strong vari-
ability of 7 and C among the different samples. This suggests that these quantities
could actually depend on the local density at the location of pedestrian ¢ defined as
pi =1/d; 41, with d; ;41 = Ray (041 — 0;) and Ry, being the average radius of the
walking trajectory.

In order to investigate this hypothesis, we use density-dependent fits of 7 and C,
using the compliant data collected during the complete set of experiments. Here,
following the general form of the FTL model (4), (5), we use piecewise power laws.
More precisely, we use the following forms of 7 and C:

P G = {26
Oél(p%)BQ ag(p%)ﬁ‘l
The functions of 7 and C' are required to be continuous with respect to p. This is
a nonlinear regression problem since we want to determine the thresholds p, and
pc. To estimate ai, as, B1, B2, pr, pc, we performed a least squares regression
after taking the log. For comparison, we performed a robust regression in L' norm,
which reduces the influence of outliers. We also fitted a single power law for C' and
T, i.e.

for p < p; for p < pc

(17)

for p > p,; for p > pc

T =a1p’,C = azp™, (18)

using robust regression. We finally estimated constants 7 and C by taking the
median values of their distributions.

The results are presented in Fig. 6 for the estimation of the time-delay 7 (left)
and of the reaction constant C' (right). We present two-dimensional color-coded
histograms of of the (density p, time-delay 7) pairs (left) and (density p, reaction
constant C') pairs (right) and associated fitted curves. The fitted curves for piecewise
laws (17) using the standard and robust regression are represented by the green and
red color broken lines respectively. The fitted curves for a single power law (18) are
represented by the black lines.

From Fig. 6, it seems that the robust regression to the dual power law (17)
provides a better match than the standard regression to the dual power law or the
robust regression to the single power law (18). However, the differences between



TIME-DELAYED FOLLOW-THE-LEADER MODEL 595

log T: linear (black); piecewise (green); robust (red) log C: linear (black); piecewise (green); robust (red)
0.2 .
800
1500
0
600
¢
'_é, E: 1000
0.2 400
H: 500
| 200
-0.4
-0.2 0 0.2 0.4 0 -0.2 0 0.2 0.4 0
log p log p
(a) Horizontal: log;q p , vertical: log o T (b) Horizontal: log,q p , vertical: log;q C

FIGURE 6. Two-dimensional color coded histograms of the (density
p, time-delay 7) pairs (left) and (density p, reaction constant C')
pairs (right) and associated fitted curves. The fitted curves for
piecewise laws (17) using the standard and robust regression are
represented by the green and red color broken lines respectively.
The fitted curves for a single power law (18) are represented by the
black lines.

these three calibrations as read from Fig. 6 is not striking. In order to better assess
the quality of each of these calibrations, in the next section, we perform numerical
simulations of all these models and compare them with the experimental data. More
precisely, we select the three different sets of the parameters for 7 and C given by
the robust fit to the dual power law (17), the robust linear fit to the single power
law (18) and the constant values defined by the median of the data. These choices
give rise to the following model parameters, where p is given in ped m~!, 7 is given
insand C in s™':

1. Piecewise power laws (Pml):

~fom2p052 <122 o [08645050%, <122 19)
062500145, p>1.22 "7 ~]1.000p°96,  p>122 "
2. Single power law (Pm2):
T =0.726p %212, C = 0.862p"4%5 (20)
3. Constant parameters (Pm3):
7=0643, C =101 (21)

It follows from the analysis of Section 3.2 that the model with o = 0 is unstable
for the constant values (21) of the parameters since the stability condition is 2CT <
/N
sin(mw/N)
N = 28. The other fits (19) and (20) appear numerically unstable. For this reason,
we need to add a relaxation term. To this effect, we consider o« > 0 and the
relaxation model (9). The value we chose for the relaxation velocity j; is the
average of the velocities of the n’ pedestrians in front of the considered pedestrian
i. Our trials with n’ equal to 1/4 of the total number of pedestrians showed a

, and this condition is not fulfilled by the constant parameters (21) for
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reasonnable agreement with the experimental data and this value n’ = 1/4 is the
one retained in all the numerical simulations.

4.2. Comparisons between simulations and experimental data. In this sec-
tion we present comparisons of the simulation results with the experimental data.
We consider model (9) where C, 7 are given by (Pm1), (Pm2) or (Pm3) and oo = 0.2,
0.25 or 0.3. These comparisons are first presented in detail for an experiment (called
experiment (A)) corresponding to a large average density. We then briefly present
comparisons for two other experiments, one also for a large average density (called
experiment (B)) and one for a smaller average density (called experiment (C)) in
order to document the versatility of the model and its range of validity.

We first consider experiment (A). This experiment involved 24 pedestrians walk-
ing on the inner circle with an average walking radius of 2.35 m. Initially, the
pedestrians were instructed to form a compact group where each subject (except
the leader) was almost in contact with his predecessor. We simulated the model
taking as initial values the data extracted from the experiment, i.e. the initial data
were taken as the observations on the time interval [0s, 10 s]. Indeed, for a delay
differential system, we need initial conditions on a whole time interval. The simu-
lations were run on the time interval [10s, 80s], which corresponded to the duration
of the experiments.

Fig. 7 shows the positions of the pedestrians (in units of radians on their circular
path) as a function of time (in s) in experiment (A). Since several laps were per-
formed during one experiment, the position angle is incremented by 27 times the
number of laps performed at the corresponding time so as to make the trajectories
continuous. Each of the pedestrians gives rise to a different trajectory represented
by a different curve. The portions of the trajectory of a given pedestrian where he
is caught in a jam are highlighted in red, where a jam is defined as a connected
set of pedestrians whose velocity is less than 0.8 times the average velocity. Fig. 7
shows the experimental data (top left) and the simulation with model parameters
(Pm1) (top right), (Pm2) (bottom left) and (Pm3) (bottom right). For each set
of parameters we display the results obtained with the value of a that gives the
closest similarity between the simulations and the experimental data. Model pa-
rameters (Pm1) (Fig. 7 top right) and (Pm3) (Fig. 7 bottom right) seem to give
the best match to the experimental data (compare with Fig. 7 (top left)). Indeed,
the number of jams is about the same in these two simulations and in the experi-
ments. By contrast, model parameters (Pm2) (Fig. 7 bottom left) seem to lead to
an excessive damping of the jams and a too fast convergence towards a state where
the pedestrians are equidistant and move with the same velocity.

Likewise, Fig. 8 displays the velocities of the pedestrians (in ms~!) as a function
of time (in s) in experiment (A) (Fig. 8 (top left)) and for model parameters (Pm1)
(Fig. 8 (top right)), (Pm2) (Fig. 8 (bottom left)) and (Pm3) (Fig. 8 (bottom
right)). These figures confirm that model parameters (Pm1) and (Pm3) give better
results that model parameters (Pm2). Indeed, in the latter, pedestrian velocities
are too much damped. We observe however, that model parameters (Pm1) and
(Pm3) also produce too much velocity damping, but to a much lesser extent than
model parameters (Pm2).

In order to assess the quality of the model, we test its ability to reproduce
macroscopic features of the system, such as the dynamics of jams. Indeed, from
the definition of a jam as being a connected set of pedestrians whose velocity is less
than 0.8 times the average velocity, we can retrieve descriptors of the jam dynamics
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(a) Experimental data (b) Parameters (Pml) and oo = 0.3
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(c) Parameters (Pm2) and o = 0.2 (d) Parameters (Pm3) and oo = 0.3

FIGURE 7. Positions of the pedestrians (in radians, on the circle) as
functions of time (in s) in experiment (A). Experimental data (top
left) and models with model parameters (Pm1) (top right), (Pm2)
(bottom left) and (Pm3) (bottom right). Portions of a pedestrian
trajectory corresponding to a jam are highlighted in red. During
the time interval between 0 and 10s (left-hand side of the vertical
bar) the delay system is initialized by the experimental data.

such as the velocity of the jam head, the average velocity of the pedestrians in jams
or the number of pedestrian in jams.

Fig. 9 (left) displays the average jam head velocity in ms™" as a function of time
in s in experiment (A). Experimental values are shown in solid red line and the stan-
dard deviation is shown in black dotted line. Simulations with model parameters
(Pm1) to (Pm3) are displayed with dotted blue lines (thick dots for (Pm1), medium
thick dots for (Pm2) and light dots for (Pm3)). The three models provide average
jam head velocities that are consistent with the uncertainties of the measurements
but there are no jams for (Pm2) after time 70 s, by contrast with experimental
values or models (Pm1) and (Pm3).

Fig. 9 (right) displays the average velocity of pedestrians in jams in ms~! as
a function of time in s in experiment (A). Experimental values are shown in thick
red line, while simulation results for models (Pm1), (Pm2) and (Pm3) are shown
with dotted green, blue and magenta lines respectively. Experimental values for
the average velocity in jams have a greater dispersion than simulated ones. On the
other hand, values obtained by models (Pml) and (Pm3) are within the range of

1
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FIGURE 8. Velocities of the pedestrians in experiment (A). Exper-
imental data (top left) and model parameters (Pm1) (top right),
(Pm2) (bottom left) and (Pm3) (bottom right).

uncertainties of the experimental data. By contrast, model (Pm2) is off by almost
100 %.

Fig. 10 shows the number of pedestrians in jams as a function of time in s in
experiment (A). Experimental values are shown in thick red line, while simulation
results for models (Pml), (Pm2) and (Pm3) are shown with dotted green, blue
and magenta lines respectively. We observe that models (Pm1) and (Pm3) provide
values within the uncertainties of the measurements. Measurements have more
variability and the two models tend to slightly overestimate the average number of
pedestrian in jams. By contrast, model (Pm2) confirms the tendency to overdamp
jams and displays fewer pedestrians in jams than experimental measurements.

We now briefly present comparisons between experimental data and simulations
of models (Pm1) and (Pm3) (we discard model (Pm2) on the basis of the poor
matches it provided to the previous experiment) in two other experiments. The
first one, called experiment (B) is, like the previous one, a large density experiment,
with 24 pedestrians walking along the inner circle with average walking radius of
2.50 m and initially arranged in a compact group. Fig. 11 provides the positions of
the pedestrians (in radians, on the circle) as functions of time (in s). Experimental
data are shown in the left figure, while models (Pm1) and (Pm3) are shown in the
middle and right figures respectively. Parameter a was set to 0.3 in both (Pml)
and (Pm3). Here model (Pm1) provides a better match than model (Pm3). Model
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(a) Jam head velocity. (b) Average velocity in jams.

FIGURE 9. Left: Average Jam head velocity in ms™! as a function
of time in s in experiment (A). Experimental values are displayed in
solid red line and the standard deviation is displayed in black dot-
ted line. Simulations with model parameters (Pm1) to (Pm3) are
displayed with dotted blue lines. Right: Average velocity of pedes-
trians in jams in ms™! as a function of time in s in experiment (A).
Experimental values are displayed in thick red line, while simula-
tion results for models (Pm1), (Pm2) and (Pm3) are displayed in
dotted green, blue and magenta lines respectively.

(Pm3) exhibits an excessive damping of the jams, with jams disappearing after
70 s of time. By contrast, jams are maintained with model (Pm1) but they seem
to travel more quickly than in the experimental data. This is correlated with the
observation that the pedestrians seem also to travel faster than in the experiment.
In the experiment, pedestrians seem to slow down after a time of about 10-20 s.
This could explain the observed discrepancy with the numerical simulation since
the initialization of the delay differential system is set by using the data over the
first interval of 10 s duration. This change of pace of the pedestrians could be due
to the transition from a compact group to an equally spaced group. This tends
to indicate that the model is not precise enough for the very large densities that
prevail in the compact group. It is not very surprising since very few experimental
data were available in that density range, and so, the calibration does simply not
take it into account.

The final experiment, called experiment (C) is a small density experiment, with
8 pedestrians walking along the outer circle with an average walking radius of 4.15
m and initially arranged in an equidistant manner. Fig. 12 provides the positions of
the pedestrians (in radians, on the circle) as functions of time (in s). Experimental
data are shown in the left figure, while models (Pm1) and (Pm3) are shown in the
middle and right figures respectively. Parameter a was set to 0.3 in both (Pml)
and (Pm3). Here, the density is too low and no jam forms, so we cannot use jams
to assess the quality of the model. But we easily notice that simulations provide too
fast pedestrian velocities compared to the experiments. Also, some clustering of the
pedestrians emerges (though not affecting their velocity and thus, not qualifying
as jams according to our previous definition). Indeed, there are essentially four
clusters at the end of the experiments, with respectively 1, 2, 3, and 2 pedestrians
separated by bigger gaps. This clustering is midly reproduced in the two models
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FIGURE 10. Number of pedestrians in jams as a function of time
in s in experiment (A). Experimental values are displayed with the
thick red line, while simulation results for models (Pml), (Pm2)
and (Pm3) are displayed with dotted green, blue and magenta lines
respectively. Again, the values provided by models (Pml) and
(Pm3) are within the uncertainties of the measurements, with a
slight tendency to overestimate this number. By contrast, model
(Pm2) has too few pedestrians in jams.

(a) Experimental data. (b) Parameters (Pml). (c) Parameters (Pm3).

FIGURE 11. Positions of the pedestrians (in radians, on the circle)
as functions of time (in s) in experiment (B). Experimental data
(left), model (Pm1) (middle) and model (Pm3) (right). Portions of
a pedestrian trajectory corresponding to a jam are highlighted in
red. During the time interval between 0 and 10s (left-hand side of
the vertical bar) the delay system is initialized by the experimental
data. Parameter  was set to 0.3 in both (Pm1) and (Pm3). Here
model (Pm1) provides a better match than model (Pm3).

(a little bit more accurately by model (Pm3)) but does not look as sharp as in the
experiments. Therefore, different observables than those defined above should be
set up for assessing the validity of the models in the low density case.

5. Discussion. The present study of pedestrians walking in line has demonstrated
the existence of a significant time-delay, i.e. that the acceleration of a pedestrian at
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' (a) Experimental data. () Parameters (Pm1). (c) Parameters (Pm3).
FIGURE 12. Positions of the pedestrians (in radians, on the circle)
as functions of time (in s) in experiment (C). Experimental data
(left), model (Pm1) (middle) and model (Pm3) (right). During the
time interval between 0 and 10s (left-hand side of the vertical bar)
the delay system is initialized by the experimental data. Parameter
a was set to 0.3 in both (Pm1) and (Pm3). Here both models lead

to slightly too fast pedestrian velocities.

a given time is determined by the relative position and velocity of this pedestrian
with respect to his predecessor at an earlier time. This time delay is about 0.6
s. Given that finding, we have developed three different time-delayed Follow-the-
Leader models. The first model (Pm3) considers that both the time delay 7 and
the reaction constant C' (i.e. the acceleration intensity) are constant. The second
model (Pm2) considers that 7 and C' are power laws of the local density. Finally,
the third model (Pm1) supposes that there are two density regimes and that the
power law dependences of 7 and C' are different at low and high local densities, with
a larger power at small density than at large density.

In all cases, the models needed to be stabilized by the addition of a relaxation
of each pedestrian’s velocity to the average velocity of a certain number of his
predecessors. In our simulation, the number of predecessors was equal to 25 % of
the total number of pedestrians involved in the experiment and about 30 % of the
reaction of a given pedestrian was triggered by this relaxation and 70 % by the
leader following behavior itself.

Our finding is that the model that matches the experimental results with the
highest degree of accuracy is model (Pml), i.e. the model where the power law
dependences of 7 and C' are different at low and high local densities. This model
was carefully assessed by investigating the ability of the simulation to reproduce
large-scale dynamical features of the experimental data such as jam formation and
dynamics.

According to this model, the leader-following behavior of the pedestrians is dif-
ferent at low and high local densities. Refering to (19), we notice that 7 decreases
like 1/,/p as long as the density is lower than a crossover value of about 1.2 ped m~!
and then stays approximately constant. A possible interpretation of this behavior
is that pedestrians become increasingly aware of their leader’s behavior when their
distance to him decreases. But once this distance exceeds a certain value, there is
no further decay of this time-delay as information processing and decision-making
take an incompressible amount of time. In a similar way, the reaction constant
increases almost linearly with the density at low density but saturates to a constant
once the crossover value of the density if reached.
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It is instructive to remember that the worse model has been shown to be model
(Pm2), where 7 and C are given by a single power law throughout the whole range
of values of the local density. Even if, in that case, the decay of 7 and the increase of
C' at small density is less pronounced that in model (Pm1), it seems that keeping the
same law above the critical density leads to a significant detoriation of the result.
Therefore, it seems essential to take into account the saturation of the time delay
and response intensity at large densities. This is confirmed by the fact that model
(Pm3) which keeps 7 and C' constant and independent of p performs better than
(Pm2), as if the request that 7 and C should be constant at large density overrid the
necessity of making them p-dependent at low density. To some extent, the model
with constant 7 and C' is the simplest, and offers a very attractive cost-benefit ratio
for large-scale simulations. In [33], it has been shown to compare favorably to other
models in the literature such as [20, 44].

To assess the model, we compared the simulated jam dynamics with the exper-
imentally observed one. This assessment methodology is restricted to the large
average density case. Indeed, in the small average density case, no jam is formed.
In this case, different assessment methods need to be developed. During calibra-
tion, we observed that, in the low density case, there were significantly less samples
which were compliant with the model than in the large density case. This seems
to indicate that the Follow-the-Leader model alone is unable to correctly account
for the low-density observations. New theoretical models need to be developped in
that case.

This model, either in the form (Pm3), or in the form (Pml), can be used as a
building block for two-dimensional models. Indeed, it can account for the speed
adjustments of the pedestrians due to the presence of other pedestrians walking in
front of them in the same direction. It can be complemented by a model describing
how the direction of motion is changed to account for the presence of obstacles or
other pedestrians moving in the opposite direction, in the spirit of [14, 15, 37]. Such
an approach has been already outlined in [33] and will be pursued in the future.

Appendix. The pre-processing of the experimental data depends on several param-
eters, namely the cutoff frequency v., the window width w,,, the model parameter -
and the correlation threshold ¢, below which a sample (pedestrian, time window) is
discarded. We study the influence of each of these parameters on the retrieved time
delay 7 and constant C. The data are gathered by local density and the influence
of each parameter is studied by letting the other ones fixed.

Influence of the parameter v.. To test the effect of the parameter v., we process
the data of all experiments with the following values: ¢, = 0.6, w,, = 6.67 s, v = —1.
The cutoff frequency v, is given the following values v, € {0.2, 0.5, 1, 1.2} Hz. The
medians of the estimated values of 7 and C' over the set of samples consisting of
(pedestrian, time window) pairs ranging through the whole set of experiments are
presented in Fig. 13 as functions of the local density p (see section 4.1.3 for the
definition of the local density).

From Fig. 13, we notice that as v, increases, the median of 7 decreases while
the median of C increases. The medians of 7 and C' are only slightly influenced by
v, when v, > 1 Hz and in this range of cut-off frequencies, the dependence of these
medians with respect to the local density p is mild. By contrast, the medians of
and C' depend much more strongly on v, for v, < 1 Hz and their dependence on
the local density if stiffer. We have also noticed (not illustrated by a figure) that
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FIGURE 13. Median of estimated delay 7 in s (left) and constant C
in m'/2s~ ! (right) over the set of samples consisting of (pedestrian,
time window) pairs ranging through the whole set of experiments
as functions of the local density p in ped m~!, for different values
of the cutoff frequency v.. The curves were obtained with v, €
{0.2, 0.5, 1, 1.2} Hz and are respectively displayed in blue, red,
green and black, while the other parameters ¢; = 0.6, w,, = 6.67s,
v = —1 are fixed.

the percentage of compliant data increases as v, decreases until reaching the value
v, = 0.2 Hz. In this last case, the time-delay found from the calibration is too large
for the interval in which it is searched for and the percentage of compliant data
then drops dramatically. Given these observations, we choose a cut-off frequency
v. = 0.5 Hz as it roughly corresponds to the stepping frequency of the pedestrians.
This choice allows us to retain all phenomena occuring at a frequency larger that
0.5 Hz.

Influence of the window width w,,. To test the effect of the parameter w,,, we
process the data of all experiments with ¢; = 0.6, v. = 0.5 Hz, v = —1 and w,, is
given the following values: w,, € {5, 6.67, 8} s. The median and quartiles of the
estimated 7 and C over the set of samples consisting of (pedestrian, time window)
pairs ranging through the whole set of experiments are presented in Fig. 14 (left
and right respectively) as functions of the local density p (see section 4.1.3 for the
definition of the local density).

The estimated values of of 7, C' are only very midly dependent of the window
width. The variations of 7 as a function of w,, are of the order of 2.5 %, and
the variations of C' are of the order of 5.3 %. The distributions of 7 and C are
slightly more concentrated as the window length w,, becomes larger (as shown
by the interval between two quartiles becoming narrower) but this effect is really
small. These findings show that the dependence of the results on the window width
is negligible.

Influence of the model parameter . To test the effect of the model parameter
v, we process the data of all experiments with ¢, = 0.6, w,, = 6.67 s, v. = 0.5
Hz, and ~ is given the following values: v € {—1, —0.5, 0, 1}. The median of the
estimated delay 7 over the set of samples consisting of (pedestrian, time window)
pairs ranging through the whole set of experiments are presented in Fig. 15 as
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FIGURE 14. Median and quartiles of estimated delay 7 in s (left)
and constant C'in m*/2s~! (right) over the set of samples consisting
of (pedestrian, time window) pairs ranging through the whole set
of experiments as functions of the local density p in ped m~!, for
different values of the window width w,,. The different curves were
obtained with w,, =5 s, 6.67 s, 8 s and are respectively displayed
in blue, red and green while the other parameters ¢, = 0.6, v, = 0.5
Hz, v = —1 are fixed. Medians are displayed in solid lines while
quartiles are shown in dotted lines of the corresponding color.

a function of the local density p (see section 4.1.3 for the definition of the local
density).

0.5 1 1.5 2 25
local p

FIGURE 15. Median of estimated delay 7 over the set of sam-
ples consisting of (pedestrian, time window) pairs ranging through
the whole set of experiments for different values of the param-
eter v. The different curves are obtained with the values v =
—1, —0.5, 0, 1 and represented in blue, red, green and black respec-
tively, while the other parameters ¢, = 0.6, w,, = 6.67 s, v. = 0.5
Hz are fixed.

From Fig. 15, it can be observed that there is no significant dependence of the
values of the median of the time delay 7 on the model parameter . Indeed, the
variations of the median of 7 are of the order 2.6 %, which is almost negligible.



TIME-DELAYED FOLLOW-THE-LEADER MODEL 605

The values of C' are actually of different physical dimensions for different values of
v, which makes their simple comparison not meaningful. Since all cases seem to
perform well, we keep the value v = —1 when we deal with model (Pm3) (i.e. when
we deal with local-density independent values of 7 and C).

Influence of the correlation threshold ¢;. We remind that the correlation
threshold is used to discard samples which are not compliant with the model. For
a given sample consisting of a pair (pedestrian, time window), we compute the cor-
relation parameter (see section 3.3) and if this parameter is less that e;, we discard
this sample as being ‘not compliant with the model’. To test the effect of this
parameter, we process all experiments with w,, = 6.67 s, v, = 0.5 Hz, v = —1.
We test the following values: ¢; € {0.6, 0.7, 0.8}. The median and quartile of the
estimated delay 7 and the median of the estimated constant C over the set of sam-
ples consisting of (pedestrian, time window) pairs ranging through the whole set of
experiments are presented in Fig. 16 (left and right respectively) as functions of
the local density p (see section 4.1.3 for the definition of the local density).

Y : ! ! ! ey 1.2
12f —~or7 L1f
% 0.8
\ 1t
0.9r
O gl
0.7p
08 ——06
R 0.5 =07
0.4f 1 0.8
0.5 1 15 2 25 0.5 1 15 2 25
local p local p

FIGURE 16. Median and quartile of the estimated delay 7 (left) and
median of the estimated constant C' (right) over the set of samples
consisting of (pedestrian, time window) pairs ranging through the
whole set of experiments, for different values of the threshold e;.
The curves were obtained with ¢, = 0.6, 0.7, 0.8 and correspond to
the blue, red and green curves respectively, while the other param-
eters are fixed to the values w,, = 6.67 s, v. = 0.5 Hz, v = —1.
Medians are displayed in solid lines while quartiles are shown in
dotted lines of the corresponding color.

We observe that the parameter ¢; has little influence on the medians and quartiles
of the estimated values of 7 and on the medians of the estimated values of C'. The
relative variations of 7 are of the order of 1.6 %, and the relative variations of C
are of the order of 5.5 %.

Acknowledgments. This work has been supported by the french ‘Agence Na-
tionale pour la Recherche (ANR)’ in the frame of the contract “Pedigree” (ANR-
08-SYSC-015-01). JH acknowledges support of the ANR and the Institut de Mathé-
matiques de Toulouse, where he conducted this research. AJ acknowledges support



606

JEROME FEHRENBACH ET AL

of the ANR and of the Laboratoire de physique théorique in Orsay where she con-
ducted this research. PD is on leave from CNRS, Institut de Mathématiques de
Toulouse, France.

1]
2]
3]
[4]
[5]
[6]
(7]
(8]
[9]
(10]
(11]
[12]

(13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]

21]

[22]

23]

REFERENCES

C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestri-
ans in corridors, Netw. Heter. Media., 6 (2011), 351-381.

A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from
microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.

R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New-York,
1963.

N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic
macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.

N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models,
speculations and perspectives, STAM Review, 53 (2011), 409-463.

S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for
a model of two-phase pedestrian flow, Netw. Heter. Media., 6 (2011), 401-423.

C. Burstedde, K. Klauck , A. Schadschneider and J. Zittartz, Simulation of pedestrian dy-
namics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525.

R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following,
Operations Res., 6 (1958), 165-184.

M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal-force model for pedes-
trian dynamics, Phys. Rev. E, 82 (2010), 046111.

R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods
Appl. Sci., 28 (2005), 1553-1567.

V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics,
Math. Models Methods Appl. Sci., 18 (2008), 1217-1247.

D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow,
Operations Res., 9 (1961), 545-567.

S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey,
Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2009, 177-187.

P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of
heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.

P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, Vision-based macroscopic pedes-
trian models, Kinet. Relat. Models, 6 (2013), 809-839.

P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation
in crowds, J. Comput. Phys., 237 (2013), 299-319.

M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes’
model for pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362.
D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36
(1991), 298-310.

D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6
(1992), 391-415.

D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Phys. Rev. E, 51
(1995), 4282-4286.

D. Helbing and P. Molnar, Self-organization phenomena in pedestrian crowds, in Self-
Organization of Compler Structures: From Individual to Collective Dynamics (ed. F.
Schweitzer), Gordon and Breach, London, 1997, 569-577.

L. F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res., 8 (1974),
509-515.

S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and
differential games, Optimal Control Appl. Methods, 24 (2003), 153-172.


http://www.ams.org/mathscinet-getitem?mr=MR2826750&return=pdf
http://dx.doi.org/10.3934/nhm.2011.6.351
http://dx.doi.org/10.3934/nhm.2011.6.351
http://www.ams.org/mathscinet-getitem?mr=MR1952895&return=pdf
http://dx.doi.org/10.1137/S0036139900380955
http://dx.doi.org/10.1137/S0036139900380955
http://www.ams.org/mathscinet-getitem?mr=MR0147745&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2438218&return=pdf
http://dx.doi.org/10.1142/S0218202508003054
http://dx.doi.org/10.1142/S0218202508003054
http://www.ams.org/mathscinet-getitem?mr=MR2834083&return=pdf
http://dx.doi.org/10.1137/090746677
http://dx.doi.org/10.1137/090746677
http://www.ams.org/mathscinet-getitem?mr=MR2826752&return=pdf
http://dx.doi.org/10.3934/nhm.2011.6.401
http://dx.doi.org/10.3934/nhm.2011.6.401
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://www.ams.org/mathscinet-getitem?mr=MR0094251&return=pdf
http://dx.doi.org/10.1287/opre.6.2.165
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://dx.doi.org/10.1103/PhysRevE.82.046111
http://www.ams.org/mathscinet-getitem?mr=MR2158218&return=pdf
http://dx.doi.org/10.1002/mma.624
http://www.ams.org/mathscinet-getitem?mr=MR2438214&return=pdf
http://dx.doi.org/10.1142/S0218202508003017
http://www.ams.org/mathscinet-getitem?mr=MR0129013&return=pdf
http://dx.doi.org/10.1287/opre.9.4.545
http://dx.doi.org/10.1145/1599470.1599494
http://www.ams.org/mathscinet-getitem?mr=MR3101476&return=pdf
http://dx.doi.org/10.1007/s10955-013-0805-x
http://dx.doi.org/10.1007/s10955-013-0805-x
http://www.ams.org/mathscinet-getitem?mr=MR3177630&return=pdf
http://dx.doi.org/10.3934/krm.2013.6.809
http://dx.doi.org/10.3934/krm.2013.6.809
http://www.ams.org/mathscinet-getitem?mr=MR3020033&return=pdf
http://dx.doi.org/10.1016/j.jcp.2012.11.033
http://dx.doi.org/10.1016/j.jcp.2012.11.033
http://www.ams.org/mathscinet-getitem?mr=MR2737207&return=pdf
http://dx.doi.org/10.1016/j.jde.2010.10.015
http://dx.doi.org/10.1016/j.jde.2010.10.015
http://dx.doi.org/10.1002/bs.3830360405
http://www.ams.org/mathscinet-getitem?mr=MR1211939&return=pdf
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1016/0041-1647(74)90027-6
http://www.ams.org/mathscinet-getitem?mr=MR1988582&return=pdf
http://dx.doi.org/10.1002/oca.727
http://dx.doi.org/10.1002/oca.727

[24]

[25]

[26]

27)
(28]

29]
(30]
(31]
(32]

(33]

(34]

(35]

(36]

[37]
[38]
[39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]

(47)

TIME-DELAYED FOLLOW-THE-LEADER MODEL 607

W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle
avoidance using a steering potential function, Robotic and Autonomous Systems, 54 (2006),
288-299.

L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes’ dynamic
continuum model for pedestrian flow and the development of an efficient solution algorithm,
Transp. Res. B, 43 (2009), 127-141.

R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002),
507-535.

R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech., 35 (2003), 169-182.

A. Jeli¢, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in
line - Fundamental diagrams, Phys. Rev. E, 85 (2012), 036111.

A. Jeli¢, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in
line. II. stepping behavior, Phys. Rev. E, 86 (2012), 046111.

D. Jezbera, D. Kordek, J. Kiiz, Petr Seba and P. éroll, Walkers on the circle, J. Stat. Mech.
Theory Ezp., 2010 (2010), L01001.

Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for
pedestrian flows, Physica A, 389 (2010), 4623-4635.

A. Johansson, Constant-net-time headway as a key mechanism behind pedestrian flow dy-
namics, Phys. Rev. E, 80 (2009), 026120.

S. Lemercier, A. Jeli¢, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland,
S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer
Graphics Forum, 31 (2012), 489-498.

S. Lemercier, M. Moreau, M. Moussaid, G. Theraulaz, S. Donikian and J. Pettré, Recon-
structing motion capture data for human crowd study, in Motion in Games, Lecture Notes
in Computer Science, 7060, Springer, Berlin-Heidelberg, 2011, 365—-376.

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd
motion models, Netw. Heterog. Media, 6 (2011), 485-519.

M. Moussaid, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré,
C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-organized Pedes-
trian Crowds, PLoS Comput. Biol., 8 (2012), e1002442.

M. Moussaid, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior
and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884—6888.

K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model
for evacuation dynamics, IEICE Transp. Inf. € Syst., E87-D (2004), 726-732.

J. Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach
for crowd simulation, in SIGGRAPH’10, 29 (2010), p123.

S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A
predictive approach, Eurographics, 26 (2007), 665-674.

J. Pettré, J. Ondfej, A.-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling,
simulation and validation of interactions between virtual walkers, in SCA ’09: Proceedings of
the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 189
198.

B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech.
Thermodyn., 21 (2009), 85-107.

L. Pontrjagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc.
Transl. Ser. 2, 1 (1955), 95-110.

C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game De-
velopers Conference, San Jose, California, 1999, 763-782.

A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian
movement revisited, J. Stat. Mech. Theory Ezp., 2005 (2005), P10002.

A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Phys. A, 368
(2006), 232-238.

J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably
moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294.


http://dx.doi.org/10.1016/j.robot.2005.11.004
http://dx.doi.org/10.1016/j.robot.2005.11.004
http://dx.doi.org/10.1016/j.trb.2008.06.003
http://dx.doi.org/10.1016/j.trb.2008.06.003
http://dx.doi.org/10.1016/S0191-2615(01)00015-7
http://www.ams.org/mathscinet-getitem?mr=MR1967012&return=pdf
http://dx.doi.org/10.1146/annurev.fluid.35.101101.161136
http://dx.doi.org/10.1088/1742-5468/2010/01/L01001
http://dx.doi.org/10.1016/j.physa.2010.05.003
http://dx.doi.org/10.1016/j.physa.2010.05.003
http://dx.doi.org/10.1103/PhysRevE.80.026120
http://dx.doi.org/10.1103/PhysRevE.80.026120
http://dx.doi.org/10.1111/j.1467-8659.2012.03028.x
http://dx.doi.org/10.1007/978-3-642-25090-3_31
http://dx.doi.org/10.1007/978-3-642-25090-3_31
http://www.ams.org/mathscinet-getitem?mr=MR2826756&return=pdf
http://dx.doi.org/10.3934/nhm.2011.6.485
http://dx.doi.org/10.3934/nhm.2011.6.485
http://dx.doi.org/10.1145/1833349.1778860
http://dx.doi.org/10.1145/1833349.1778860
http://dx.doi.org/10.1111/j.1467-8659.2007.01090.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01090.x
http://www.ams.org/mathscinet-getitem?mr=MR2516256&return=pdf
http://dx.doi.org/10.1007/s00161-009-0100-x
http://www.ams.org/mathscinet-getitem?mr=MR0073686&return=pdf
http://dx.doi.org/10.1088/1742-5468/2005/10/P10002
http://dx.doi.org/10.1088/1742-5468/2005/10/P10002
http://dx.doi.org/10.1016/j.physa.2005.11.052

608

JEROME FEHRENBACH ET AL

[48] J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedes-
trian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Ezp., 2012
(2012), P02002.

Received October 2014; revised January 2015.

E-mazil address:
E-mail address:
E-mazil address:
E-mail address:
E-mazil address:
E-mail address:
E-mazil address:
E-mail address:
E-mazil address:

jerome.fehrenbach@math.univ-toulouse.fr
jacek.narski@math.univ-toulouse.fr
jiale.hua@dhu.edu.cn
samuelemercier@hotmail.com
asja.jelicOgmail.com
Cecile.Appert-Rolland@th.u-psud.fr
stephane.donikian@golaem.com
julien.pettre@irisa.fr
pdegond@imperial.ac.uk


http://dx.doi.org/10.1088/1742-5468/2012/02/P02002
http://dx.doi.org/10.1088/1742-5468/2012/02/P02002
mailto:jerome.fehrenbach@math.univ-toulouse.fr
mailto:jacek.narski@math.univ-toulouse.fr
mailto:jiale.hua@dhu.edu.cn
mailto:samuelemercier@hotmail.com
mailto:asja.jelic@gmail.com
mailto:Cecile.Appert-Rolland@th.u-psud.fr
mailto:stephane.donikian@golaem.com
mailto:julien.pettre@irisa.fr
mailto:pdegond@imperial.ac.uk

	1. Introduction
	2. Materials and methods
	2.1. Experiments
	2.2. Experimental data

	3. Theory: The Follow-The-Leader model
	3.1. The model
	3.2. Stability analysis
	3.3. Model calibration
	3.4. Numerical approximation

	4. Results
	4.1. Model calibration
	4.2. Comparisons between simulations and experimental data

	5. Discussion
	Appendix
	Influence of the parameter c
	Influence of the window width ww
	Influence of the model parameter 
	Influence of the correlation threshold t

	Acknowledgments
	REFERENCES

