Citation: Jacek Banasiak, Proscovia Namayanja. Asymptotic behaviour of flows on reducible networks[J]. Networks and Heterogeneous Media, 2014, 9(2): 197-216. doi: 10.3934/nhm.2014.9.197
[1] | Jacek Banasiak, Proscovia Namayanja . Asymptotic behaviour of flows on reducible networks. Networks and Heterogeneous Media, 2014, 9(2): 197-216. doi: 10.3934/nhm.2014.9.197 |
[2] | Yongqiang Zhao, Yanbin Tang . Approximation of solutions to integro-differential time fractional wave equations in $ L^{p}- $space. Networks and Heterogeneous Media, 2023, 18(3): 1024-1058. doi: 10.3934/nhm.2023045 |
[3] | Fatih Bayazit, Britta Dorn, Marjeta Kramar Fijavž . Asymptotic periodicity of flows in time-depending networks. Networks and Heterogeneous Media, 2013, 8(4): 843-855. doi: 10.3934/nhm.2013.8.843 |
[4] | Nurehemaiti Yiming . Spectral distribution and semigroup properties of a queueing model with exceptional service time. Networks and Heterogeneous Media, 2024, 19(2): 800-821. doi: 10.3934/nhm.2024036 |
[5] | Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497 |
[6] | Christian Budde, Marjeta Kramar Fijavž . Bi-Continuous semigroups for flows on infinite networks. Networks and Heterogeneous Media, 2021, 16(4): 553-567. doi: 10.3934/nhm.2021017 |
[7] | Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151 |
[8] | Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477 |
[9] | András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon . Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks and Heterogeneous Media, 2012, 7(1): 43-58. doi: 10.3934/nhm.2012.7.43 |
[10] | Dirk Helbing, Jan Siegmeier, Stefan Lämmer . Self-organized network flows. Networks and Heterogeneous Media, 2007, 2(2): 193-210. doi: 10.3934/nhm.2007.2.193 |
[1] |
W. J. Anderson, Continuous-Time Markov Chains. An Application Oriented Approach, Springer Verlag, New York, 1991. doi: 10.1007/978-1-4612-3038-0
![]() |
[2] |
W. Arendt, Resolvent positive operators, Proc. Lond. Math. Soc., 54 (1987), 321-349. doi: 10.1112/plms/s3-54.2.321
![]() |
[3] | J. Banasiak and L. Arlotti, Perturbation of Positive Semigroups with Applications, Springer Verlag, London, 2006. |
[4] |
J. Banasiak and P. Namayanja, Relative entropy and discrete Poincaré inequalities for reducible matrices, Appl. Math. Lett., 25 (2012), 2193-2197. doi: 10.1016/j.aml.2012.06.001
![]() |
[5] |
J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, 2nd ed., Springer Verlag, London, 2009. doi: 10.1007/978-1-84800-998-1
![]() |
[6] | N. Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall, Inc., Englewood Cliffs, 1974. |
[7] | B. Dorn, Flows in Infinite Networks - A Semigroup Aproach, Ph.D thesis, University of Tübingen, 2008. |
[8] |
B. Dorn, Semigroups for flows in infinite networks, Semigroup Forum, 76 (2008), 341-356. doi: 10.1007/s00233-007-9036-2
![]() |
[9] |
B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to transport processes in networks, Physica D, 239 (2010), 1416-1421. doi: 10.1016/j.physd.2009.06.012
![]() |
[10] |
B. Dorn, V. Keicher and E. Sikolya, Asymptotic periodicity of recurrent flows in infinite networks, Math. Z., 263 (2009), 69-87. doi: 10.1007/s00209-008-0410-x
![]() |
[11] | K.-J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations, Springer Verlag, New York, 2000. |
[12] | F. R. Gantmacher, Applications of the Theory of Matrices, Interscience Publishers, Inc. New York, 1959. |
[13] |
Ch. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag, New York, 2001. doi: 10.1007/978-1-4613-0163-9
![]() |
[14] |
F.M. Hante, G. Leugering and T. I. Seidman, Modeling and analysis of modal switching in networked transport systems, Appl. Math. & Optimization, 59 (2009), 275-292. doi: 10.1007/s00245-008-9057-6
![]() |
[15] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162. doi: 10.1007/s00209-004-0695-3
![]() |
[16] |
T. Matrai and E. Sikolya, Asymptotic behaviour of flows in networks, Forum Math., 19 (2007), 429-461. doi: 10.1515/FORUM.2007.018
![]() |
[17] |
C. D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000. doi: 10.1137/1.9780898719512
![]() |
[18] | H. Minc, Nonnegative Matrices, John Wiley & Sons, New York, 1988. |
[19] | R. Nagel, ed., One-parameter Semigroups of Positive Operators, Springer Verlag, Berlin, 1986. |
[20] | P. Namayanja, Transport on Network Structures, Ph.D thesis, UKZN, 2012. |
[21] |
E. Seneta, Nonnegative Matrices and Markov Chains, Springer Verlag, New York, 1981. doi: 10.1007/0-387-32792-4
![]() |
[22] | E. Sikolya, Semigroups for Flows in Networks, Ph.D dissertation, University of Tübingen, 2004. |
[23] |
E. Sikolya, Flows in networks with dynamic ramification nodes, J. Evol. Equ., 5 (2005), 441-463. doi: 10.1007/s00028-005-0221-z
![]() |
1. | J. Banasiak, Explicit formulae for limit periodic flows on networks, 2016, 500, 00243795, 30, 10.1016/j.laa.2016.03.010 | |
2. | Jacek Banasiak, Adam Błoch, Telegraph systems on networks and port-Hamiltonians. Ⅲ. Explicit representation and long-term behaviour, 2022, 11, 2163-2480, 2165, 10.3934/eect.2022016 | |
3. | Jacek Banasiak, Aleksandra Falkiewicz, Proscovia Namayanja, Semigroup approach to diffusion and transport problems on networks, 2016, 93, 0037-1912, 427, 10.1007/s00233-015-9730-4 | |
4. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
5. | Alexander Dobrick, On the asymptotic behaviour of semigroups for flows in infinite networks, 2022, 104, 0037-1912, 256, 10.1007/s00233-021-10250-6 | |
6. | Jacek Banasiak, Adam Błoch, Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness, 2022, 11, 2163-2480, 1331, 10.3934/eect.2021046 | |
7. | Jacek Banasiak, Aleksandra Falkiewicz, Proscovia Namayanja, Asymptotic state lumping in transport and diffusion problems on networks with applications to population problems, 2016, 26, 0218-2025, 215, 10.1142/S0218202516400017 | |
8. | Klaus-Jochen Engel, Marjeta Kramar Fijavž, Flows on metric graphs with general boundary conditions, 2022, 513, 0022247X, 126214, 10.1016/j.jmaa.2022.126214 | |
9. | Yassine El Gantouh, Said Hadd, Well-posedness and approximate controllability of neutral network systems, 2021, 16, 1556-1801, 569, 10.3934/nhm.2021018 | |
10. | Jacek Banasiak, Adam Błoch, Telegraph systems on networks and port-Hamiltonians. Ⅱ. Network realizability, 2022, 17, 1556-1801, 73, 10.3934/nhm.2021024 | |
11. | Marjeta Kramar Fijavž, Aleksandra Puchalska, Semigroups for dynamical processes on metric graphs, 2020, 378, 1364-503X, 20190619, 10.1098/rsta.2019.0619 | |
12. | Christian Budde, Marjeta Kramar Fijavž, Bi-Continuous semigroups for flows on infinite networks, 2021, 16, 1556-1801, 553, 10.3934/nhm.2021017 | |
13. | Jacek Banasiak, 2015, Chapter 4, 978-3-319-11321-0, 133, 10.1007/978-3-319-11322-7_4 | |
14. | Marjeta Kramar Fijavž, Delio Mugnolo, Serge Nicaise, Dynamic transmission conditions for linear hyperbolic systems on networks, 2021, 21, 1424-3199, 3639, 10.1007/s00028-021-00715-0 | |
15. | J. Banasiak, A. Falkiewicz, Some transport and diffusion processes on networks and their graph realizability, 2015, 45, 08939659, 25, 10.1016/j.aml.2015.01.006 | |
16. | Yassine El Gantouh, Well-posedness and stability of a class of linear systems, 2024, 28, 1385-1292, 10.1007/s11117-024-01035-6 | |
17. | Adam Błoch, Explicit representation of a semigroup related to flows on networks with unbounded edges, 2025, 0, 1531-3492, 0, 10.3934/dcdsb.2025048 |