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Abstract. In this paper we extend some of the previous results for a system
of transport equations on a closed network. We consider the Cauchy problem
for a flow on a reducible network; that is, a network represented by a diagraph
which is not strongly connected. In particular, such a network can contain
sources and sinks. We prove well-posedness of the problem with generalized
Kirchhoff’s conditions, which allow for amplification and/or reduction of the
flow at the nodes, on such reducible networks with sources but show that the
problem becomes ill-posed if the network has a sink. Furthermore, we extend
the existing results on the asymptotic periodicity of the flow to such networks.
In particular, in contrast to previous papers, we consider networks with acyclic
parts and we prove that such parts of the network become depleted in a finite
time, an estimate of which is also provided. Finally, we show how to apply these
results to open networks where a portion of the flowing material is allowed to
leave the network.

1. Introduction. Transport on networks recently has received much attention. In
general, the problem consists of a system of first order transport equations posed on
the edges of a graph G, coupled by Kirchhoff’s type laws at the nodes of G. In par-
ticular, in a series of papers, [8, 9, 10, 15, 16, 23], the semigroup approach has been
employed to study the well-posedness, long term asymptotics and controllability of
flows on network structures. It allowed, in particular, for a development of an ele-
gant theory that relates the long time behaviour of the flow to the graph-theoretic
structure of the network.

The problem has been studied in many variants, which are comprehensively dis-
cussed in [9]. In this paper we revisit the model discussed in [15]; that is, we consider
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a flow on a finite network and thus, for simplicity, we confine ourselves to the setting
of that paper. Our main aim is the extend the results of [15] to reducible networks;
that is, networks represented by directed graphs (diagraphs) which are not strongly
connected, see e.g. [5]. We mention that a class of not strongly connected diagraphs
has been considered in [15] but here we extend the existing theory to cater for dia-
graphs with acyclic parts. In particular, such diagraphs may have vertices (nodes)
with only outgoing edges as well as vertices with only incoming edges. According to
the graph theoretical terminology, [13], such vertices are called, respectively, sources
and sinks.

Moreover, we allow for amplification and/or absorption of the flow at the nodes
(which makes the problem different from that considered in [16], where only absorp-
tion was allowed along the edges). We note that allowing for the amplification of
the flow makes the problem non-dissipative and requires a different than in [15, 16]
approach to the proof of well-posedness, based on the theory of resolvent positive
operators. Using this approach, in Section 2, Theorem 2.1, we prove that the prob-
lem is well posed if and only if there are no nodes with only incoming edges. We
emphasize that we consider the Kirchhoff conditions in the correct form, balancing
the flow in the nodes, in contrast to the conditions considered in [15, 16] which only
balanced the densities at the nodes (note, that the correct Kirchhoff’s conditions
were used already in [14]).

Further we study the long time behaviour of the semigroup under the assumption
of [15] that the velocities along the edges are rational multiples of a single real
number. Under this so-called LDQ condition, it was proven in [15] that on a strongly
connected (as well as on not strongly connected but containing no sources) network,
the flow is asymptotically periodic in the sense that it exponentially converges to a
periodic flow on invariant strongly connected components of the network. If LDQ
condition is not satisfied, the flow is not asymptotically periodic, [16], and hence
we shall not consider such a situation here.

As we mentioned above, the main contribution of this part of the paper, extending
the results of [15], is to consider the case when there is an acyclic part of G generated
by nodes with no incoming edges (sources). Following and slightly refining the
approach of [7, 8, 15], in Section 3 we transform the original problem to an equivalent
one, posed on an extended graph with unit velocity along each edge. For such a
graph, in Section 4 we propose a modification of the topological sorting algorithm,
[6] (or the acyclic ordering algorithm, [5]). While in the existing literature the
algorithm is used to provide an ordering of an acyclic graph, we show that it can be
used to simultaneously separate the acyclic and the cyclic parts in both diagraph
and its line graph. We note that the cyclic part may be not strongly connected
(such as in [15]). Though the results of Section 4 are of graph theoretical nature,
they have a direct impact on the dynamics of the flow by allowing for a separation
of its nilpotent part. In Section 5, by systematically using the adjacency matrix of
the line graph of G and the representation of the semigroup as in [7, 8], we show
that the acyclic part of the network becomes depleted in a finite time (for which we
provide an estimate) and, at the same time, we recover in a more elementary and
constructive way Theorem 4.10 of [15] for the cyclic reducible part of the graph.
Finally, in Section 6 we discuss a case of on open network where a certain amount
of the flowing substance is allowed to leave the network at a sink. We show how
such a problem can be incorporated into the theory developed earlier in the paper
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by constructing a virtual enlargement of the original network and illustrate this
approach with an example.

2. Well-posedness of the problem. We use the notation consistent with that
in the above mentioned papers. The network under consideration is represented by
a simple directed graph G = (V (G), E(G)) = ({v1, . . . , vn}, {e1, . . . , em}) with n
vertices v1, . . . , vn and m edges (arcs), e1, . . . , em. We suppose that G is connected
but not necessarily strongly connected. Each edge is normalized so as to be identi-
fied with [0, 1] with the head at 0 and the tail at 1. We use standard terminology
from graph theory, as in [5, 6], and only define the terms which are of basic rele-
vance in this paper. The outgoing incidence matrix, Φ− = (φ−ij)1≤i≤n,1≤j≤m, and
the incoming incidence matrix, Φ+ = (φ+

ij)1≤i≤n,1≤j≤m, of this graph are defined,
respectively as

φ−ij =

{
1 if vi

ej→
0 otherwise.

φ+
ij =

{
1 if

ej→ vi
0 otherwise.

If the vertex vi has more than one outgoing edge, we place a non negative weight
wij on the outgoing edge ej such that for this vertex vi,∑

j∈Ei

wij = 1,

where Ei is defined by saying that j ∈ Ei if the edge ej is outgoing from vi.
Naturally, wij = 1 if Ei = {j} and, to shorten notation, we adopt the convention
that wij = 1 for any j if Ei = ∅. Then the weighted outgoing incidence matrix,
Φ−w , is obtained from Φ− by replacing each nonzero φ−ij entry by wij . If each
vertex has an outgoing edge, then Φ−w is row stochastic, hence Φ− (Φ−w)

T
= In

(where the superscript T denotes the transpose). The (weighted) adjacency matrix
A = (aij)1≤i,j≤n of the graph is defined be taking aij = wjk if there is ek such that
vj

ek→ vi and 0 otherwise, that is, A = Φ+(Φ−w)T . An important role is played by
the line graph Q of G. To recall Q = (V (Q), E(Q)) = (E(G), E(Q)), where

E(Q) = {uv; u, v ∈ E(G), the head of u coincides with the tail of v} = {εj}1≤j≤k.

By B we denote the weighted adjacency matrix for the line graph, that is,

B = (Φ−w)TΦ+. (1)

If there is an outgoing edge at each vertex, then from the definition of B, we see that
it is column stochastic. A vertex v will be called a source if there are no incoming
edges towards it and a sink if there are no edges outgoing from it.

We are interested in a flow on a closed network G. Then the standard assumption
is that the flow satisfies a generalization of the Kirchhoff law at the vertices

m∑
j=1

φ−ijcjuj(1, t) =

m∑
j=1

φ+
ijcjuj(0, t), t > 0, i ∈ 1, . . . , n, (2)

which, in this context, is the conservation of mass law: the total inflow of mass per
unit time equals the total outflow at each node (vertex) of the network. Note that
due to definitions of the matrices Φ− and Φ+, the summation on the right hand
side is over all incoming edges of the vertex vi and on the left hand side over all
outgoing edges of vi.
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Remark 1. It should be noted that the Kirchhoff law used in [15, Eqn. (3)] and
[16, Eqn. (3)] is correct only in the special case when the speed of the flow is
constant along each edge and the same for each edge, as it balances the densities
and not the flows. This resulted in an awkward result, [15, Proposition 2.5], that a
semigroup satisfying supposedly the Kirchhoff conservation of mass law fails to be
conservative.

Let uj(x, t) be the density of particles at position x and at time t ≥ 0 flowing
along edge ej for x ∈ [0, 1]. The particles on ej are assumed to move with velocity
cj > 0 which is constant for each j. We consider a generalized Kirchhoff’s law by
allowing for decrease/amplification of the flow at the entrances and exits at each
vertex. Then, following [15], we describe the flow by the system

∂tuj(x, t) = cj∂xuj(x, t), x ∈ (0, 1), t ≥ 0,
uj(x, 0) = fj(x),

φ−ijξjcjuj(1, t) = wij
m∑
k=1

φ+
ik(γkckuk(0, t)).

(3)

where γj > 0 and ξj > 0 are the absorption/amplification coefficients at, respec-
tively, the head and the tail of the edge ej . If γj = ξj = 1 for all j = 1, · · · ,m,
then the boundary conditions simply describe the Kirchhoff law at the vertices.
Note that we could simplify the problem by introducing Uj = ξjcjuj . However, this
would make further norm estimates less explicit.

Remark 2. We observe that the boundary condition in (3) takes a special form if
vi is either a sink or a source. If it is a sink, then Ei = ∅ and, by the convention
above,

0 =

m∑
k=1

φ+
ik(γkckuk(0, t)), t > 0, (4)

and
φ−ijξjcjuj(1, t) = 0, t > 0, j = 1, . . . ,m, (5)

if it is a source. Clearly the last condition is nontrivial only if j ∈ Ei as then φ−ij 6= 0.

Let us denote C = diag(cj)1≤j≤m,K = diag(ξj)1≤j≤m and G = diag(γj)1≤j≤m.
We consider (3) as an Abstract Cauchy Problem

ut = Au, u(0) = f , (6)

in X = (L1([0, 1]))m, where A is the realization of the expression A = (cj∂x)1≤j≤m
on the domain

D(A) = {u ∈ (W 1
1 ([0, 1]))m; u satisfies the boundary conditions in (3)}. (7)

Theorem 2.1. The following conditions are equivalent:
1. (A,D(A)) generates a C0 semigroup;
2. Φ− : Rm → Rn is surjective;
3. Each vertex of G has an outgoing edge.

Proof. 2.⇔ 3. If Φ− is not surjective, then its row rank is less than n which means
that the rows are not linearly independent, that is,

0 =

n∑
i=1

βi(Φ
−)i (8)
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for some constants {βi}1≤i≤n not all equal to 0, where (Φ−)i denotes the ith row of
Φ−. However, by construction, for each i the row (Φ−)i contains at least one entry
1 unless there is no outgoing edge from the vertex vi. Thus, for (8) to hold, there
must be a zero row in Φ− and thus a vertex in G with no outgoing edge. Conversely,
if a vertex vi has no outgoing edge, then (Φ−)i is a row of zeroes and therefore Φ−

is not surjective.
1.⇒ 3. Assume that there is a semigroup (TA(t))t≥0 generated by A and consider

a classical solution u(t) = TA(t)f with f ∈ D(A). Suppose that a vertex, say, vi has
no outgoing edge. Then, by (4),

0 =

m∑
k=1

φ+
ikγkckuk(0, t), t > 0.

In particular, uk(x, t) = fk(x + ckt) for 0 ≤ x + ckt ≤ 1 so uk(0, t) = f(ckt) for
0 ≤ t ≤ 1

ck
. Thus

0 =

m∑
k=1

φ+
ikγkckfk(ckt), 0 ≤ t ≤ c−1 := min{c−1

k }.

There is a sequence (fr)r∈N, f
r ∈ D(A), approximating 1 = (1, 1, . . . , 1) in X. Then

0 ≤ ‖1|(0,c−1) − (frk (ck·))1≤k≤m‖X =

m∑
k=1

1

ck

c−1ck∫
0

|1− frk (z)|dz

≤
m∑
k=1

1

ck

1∫
0

|1− frk (z)|dz → 0

as r → ∞. Since X−convergence implies convergence almost everywhere of a
subsequence, we have

0 =

m∑
k=1

φ+
ikγkck

almost everywhere on (0, c−1), and thus everywhere. Since, however, the graph is
connected and we assumed that there is no outgoing edge at vi, there must be an
incoming edge and thus at least one term of the sum is positive while all other
terms are nonnegative. Thus, if there is a vertex with no outgoing edge, then the
set of initial conditions satisfying the boundary conditions is not dense in X and
thus (A,D(A)) cannot generate a C0-semigroup.

Finally, suppose that Φ− is surjective. Then it has at least one nonzero entry
in each row. Since these rows are linearly independent, its a full row rank matrix.
So the system of equations Φ−x = y is consistent for any vector y ∈ Rm. First we
note that

D(A) = {u ∈ (W 1
1 ([0, 1]))m; u(1) = K−1C−1BGCu(0)}, (9)

where B is the adjacency matrix defined in (1). The proof of this fact is analogous
to that of [8, Proposition 3.1] and thus is omitted. Clearly, (C∞0 ((0, 1)))m ⊂ D(A)
and hence D(A) is dense in X. Let us consider the resolvent equation for A. We
have to solve

λuj − cj∂xuj = fj , j = 1, . . . ,m, x ∈ (0, 1),
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with u ∈ D(A). Integrating, we find the general solution

cjuj(x) = cje
λ
cj
x
vj +

1∫
x

e
λ
cj

(x−s)
fj(s)ds, (10)

where v = (v1, . . . , vm) is an arbitrary vector. Let Eλ(s) = diag
(
e
λ
cj
s
)

1≤j≤m
.

Then (10) takes the form

Cu(x) = CEλ(x)v +

1∫
x

Eλ(x− s)f(s)ds.

To determine v such that u ∈ D(A), we use the boundary conditions. At x = 1 we
obtain

Cu(1) = CEλ(1)v

and at x = 0

Cu(0) = Cv +

1∫
0

Eλ(−s)f(s)ds

so that

KCEλ(1)v = KCu(1) = BGCu(0) = BG

Cv +

1∫
0

Eλ(−s)f(s)ds

 ,

which can be written as

(I− Eλ(−1)C−1K−1BGC)v = Eλ(−1)C−1K−1BG
1∫

0

Eλ(−s)f(s)ds.

Since the norm of Eλ(−1) can be made as small as one wishes by taking large λ, we
see that v is uniquely defined by the Neumann series provided λ is sufficiently large
and hence the resolvent of A exists. We need to find an estimate for it. First we
observe that the Neumann series expansion ensures that A is a resolvent positive
operator and hence the norm estimates can be obtained for nonnegative entries.
Next, we recall that B is column stochastic, that is, each column sums to 1. Adding
together the rows in

KCEλ(1)v = BGCv + BG
1∫

0

Eλ(−s)f(s)ds,

we obtain
m∑
j=1

ξjcje
λ
cj vj =

m∑
j=1

γjcjvj +

m∑
j=1

γj

1∫
0

e
− λ
cj
s
fj(s)ds.

By (10), we can evaluate, for j ∈ {1, . . . ,m},
1∫

0

uj(x)dx = vj

1∫
0

e
λ
cj
x
dx+

1

cj

1∫
0

1∫
x

e
λ
cj

(x−s)
fj(s)ds
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=
vjcj
λ

(
e
λ
cj − 1

)
+

1

λ

1∫
0

(
1− e−

λ
cj
s
)
fj(s)ds

hence, introducing a weighted space XΞ with the norm ‖u‖Ξ =
m∑
j=1

ξj‖uj‖L1([0,1]),

we have

‖u‖Ξ (11)

=

m∑
j=1

ξj

1∫
0

uj(x)dx=
1

λ

m∑
j=1

ξjvjcj

(
e
λ
cj − 1

)
+

1

λ

m∑
j=1

ξj

1∫
0

(
1− e−

λ
cj
s
)
fj(s)ds

=
1

λ

m∑
j=1

cjvj(γj − ξj) +
1

λ

m∑
j=1

(γj − ξj)
1∫

0

e
− λ
cj
s
fj(s)ds+

1

λ

m∑
j=1

ξj

1∫
0

fj(s)ds.

We consider three cases (the first one essentially coincides with [8, Proposition 3.3]).

(a) γj ≤ ξj for j = 1, . . . ,m. Let us consider the iterates in the Neumann series for
v, (Eλ(−1)C−1K−1BGC)n. Using the fact that C,G and K are diagonal so that
they commute, we find

Eλ(−1)C−1K−1BGC ≤ (CK)−1Eλ(−1)B(CK).

Since B is (column) stochastic, its spectral radius satisfies r(Eλ(−1)C−1K−1BGC) <
1 for any λ > 0. Hence R(λ,A) is defined and positive for any λ > 0. Under the
assumption of this item, by dropping two first terms in the second line, (11) gives

‖u‖Ξ ≤
1

λ

m∑
j=1

ξj

1∫
0

fj(s)ds =
1

λ
‖f‖Ξ, λ > 0.

Since D(A) is dense in X, (A,D(A)) generates a positive semigroup of contractions
in X.
(b) γj ≥ ξj for j = 1, . . . ,m and γj > ξj for at least one j. Then (11) implies that
for some λ > 0 and c = 1/λ we have

‖R(λ,A)f‖Ξ ≥ c‖f‖Ξ

and, by density of D(A), the application of the Arendt-Batty-Robinson theorem,
[2, 3], gives the existence of a positive semigroup generated by A in XΞ. Since,
however, the norm ‖ · ‖Ξ and the standard norm ‖ · ‖ are equivalent, we see that A
generates a positive semigroup in X.
(c) γj ≤ ξj for j ∈ I1 and γj > ξj for j ∈ I2, where I1 ∩ I2 = ∅ and I1 ∪ I2 =
{1, . . . ,m}. Let L = diag(lj) where lj = ξj for j ∈ I1 and lj = γj for j ∈ I2. Then

Eλ(−1)C−1K−1BGC ≤ (CK)−1Eλ(−1)B(CL).

Thus, if we denote by AL the operator given by the expression A restricted to

D(A) = {u ∈ (W 1
1 ([0, 1]))m; u(1) = K−1C−1BLCu(0)},

we see that
0 ≤ R(λ,A) ≤ R(λ,AL) (12)
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for any λ for which R(λ,AL) exists. But, by item (b), AL generates a positive
semigroup and thus satisfies the Hille-Yosida estimates. Since clearly (12) yields
Rk(λ,A) ≤ Rk(λ,AL) for any k ∈ N, for some ω > 0 and M ≥ 1 we have

‖Rk(λ,A)‖ ≤ ‖Rk(λ,AL)‖ ≤M(λ− ω)−k, λ > ω

and hence we obtain the generation of a semigroup by A.
Thus the proof of the theorem is complete.

Corollary 1. If ξj = 1 and γj ≤ 1 for j = 1, . . . ,m, then the semigroup (TA(t))t≥0

is contractive in X. In particular, if γj = ξj = 1 for j = 1, . . . ,m, then (TA(t))t≥0

is stochastic (that is, contractive and conservative on nonnegative data).

Remark 3. We would like to point out that, in contrast with the better known
diffusion on networks, transport is a first order problem in the spatial variable and
thus the orientation of the network plays an important role. In particular, as with
scalar transport problems, typically the boundary condition is posed upstream since
specifying the value of the flow downstream typically leads to an ill posed problem.

This observation is related to the negative result of Theorem 2.1 that the flow
problem of a network with a sink is ill-posed in the sense of semigroup theory.
We emphasize that this is due to the fact that we adopted the graph theoretical
definition of the sink, see e.g. [13, p. 337]; that is, sink is any vertex with no
outgoing edges. Thus, we attempted to impose a boundary condition downstream,
at the end of the edge.

From the physical point of view, we consider a flow on a closed network with
no accumulation of material at the vertices. Thus, our result correctly reflects the
impossibility of the situation in which material is flowing into a vertex but is neither
accumulated nor removed from it. An extension of this result is offered in Section
6.

3. Reduction to the constant speed case. In the remaining part of the paper
we adopt the assumption from [15, p. 150] that the speeds cj , j = 1, . . . ,m, are
linearly dependent over the field of rational numbers Q. In other words,

∃c∈R∀j=1,...,m
c

cj
= lj ∈ N. (13)

By the rescaling of time as τ = ct and introducing the new spatial variable y = ljx
for each j, we convert the problem (3) to

∂τuj(y, τ) = ∂yuj(y, τ), y ∈ (0, lj), τ ≥ 0,
uj(y, 0) = fj(y),

φ−ijξjcjuj(lj , τ) = wij
m∑
k=1

φ+
ik(γkckuk(0, τ)).

(14)

In the above problem the speed on each edge is the same, equal to 1, but the lengthes
of intervals are different. We shall enlarge the graph G to a larger graph G in such
a way that the problem again is posed on unit intervals. Roughly speaking, since
the lengthes of the intervals (0, lj) are integer, we subdivide each interval (0, lj)
into lj intervals of unit length, which then become new edges of G, and create new
vertices at the dividing points. Then, a function on (0, lj) is identified with a set of
lj functions which are defined on these new edges and which are continuous across
vertices joining adjacent edges; these conditions become the Kirchhoff conditions at
the newly created vertices. The whole process is explicit; full details of construction
can be found in [20].
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Let the graph G has χ(m) edges and κ(m) vertices. It can be proved that the
above construction provides an isomorphism S : (L1([0, 1]))m → (L1([0, 1]))χ(m) :

U = Su,

U = (U1, . . . , Uχ(m)),u = (u1, . . . , um), such that u is a solution of (3) if and only
if U satisfies 

∂τUj(y, τ) = ∂yUj(y, τ), y ∈ (0, 1), τ ≥ 0,
Uj(y, 0) = Fj(y),

φ̃−ijξjcjUj(1, τ) = w̃ij
χ(m)∑
k=1

φ̃+
ik(γkckUk(0, τ)),

(15)

where Φ̃−, Φ+ and w̃ij are, respectively, the incoming and outgoing matrices and
the weights, appropriately constructed for the extended graph G. Using Theorem
2.1, we obtain that there exists a positive C0-semigroup in X = (L1([0, 1]))χ(m),
say, (TA(t))t≥0 generated by an operated A which is defined analogously to A, see
(7). It is also clear that (TA(t))t≥0 is stochastic, just as (TA(t))t≥0 is, if γj = ξj = 1
for j ∈ {1, . . . ,m}.

Thus we have the similarity relation

TA(t)u = S−1TA(ct)Su (16)

and, in particular S−1D(A) ⊂ D(A) as well as SD(A) ⊂ D(A).
The motivation behind the representation (16) is [20, Proposition 4.5.1] (which

is an extension of [8, Proposition 20]) which states that for any U ∈ X

([TA(t)]U)(x) = [PrU](t+ x− r), r ∈ N0, 0 ≤ t+ x− r ≤ 1, (17)

where, for U ∈ X and the matrix P = C−1K−1BGC, we define

[PU](x) = PU(x), for a.a. x ∈ [0, 1];

that is, P is the operator in X induced by the pointwise multiplication by P. In
particular, if we consider the standard Kirchhoff’s conditions; that is, without any
amplification or absorption at the nodes, then, due to K = G = I, we have Pn =
C−1BnC and thus the representation (17) reduces the analysis of TA to that of the
iterates of B.

4. Properties of the graph G. Though the results of the section are of purely
graph theoretical nature, they determine the structure (21) of the matrix B and
hence allow for separation of the nilpotent and asymptotically periodic parts of the
flow.

Let G = (V (G), E(G)) = ({v1, . . . , vn}, {e1, . . . , em}) be a digraph. Following
the results of the previous section, we assume that the digraph G is connected (but
not necessarily strongly connected) and each vertex is the tail of some edge. In
other words, some vertices can be sources, with only outgoing edges, but none can
be a sink, with only incoming edges. Let us denote by V0(G) the set of all sources
in G. As we have seen, an important role is played by the matrix B which is the
weighted adjacency matrix of the line digraph of G, Q = L(G). Let us introduce
the map

ΦG : E(G)→ V (Q) (18)
by defining ΦG(e) = ē, where ē is the vertex in Q corresponding to the edge e in G.
Clearly, ΦG is a one-to-one map between V (G) and E(Q). Similarly, we introduce
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a multifunction

ΨG : V (G) \ V0(G)→ 2E(Q)

which assigns to a vertex v the set of edges generated by v in Q. Clearly, none
v ∈ V0(G) generates an edge in Q. Since there are no sinks and no isolated vertices
(by connectedness), any v ∈ V (G) \ V0(G) gives rise to at least one edge in Q. On
the other hand, the inverse of ΨG is a map; that is, if ΨG(v) ∩ ΨG(v′) 6= ∅, then
v = v′. Indeed, if ε is generated by a vertex v ∈ G, then there is an incoming
edge u and an outgoing edge v such that the vertices ū and v̄ are incident to ε.
Since an edge has only one tail and one head, if ε was generated by another vertex
v′ ∈ V (G), then v′ would be the head of u and the tail v, which is impossible.

These considerations yield, in particular, that the set V0(Q) of sources in Q is
given by V0(Q) = ΦG({ej}j∈J0), where ej , j ∈ J0, is an edge in G with the tail
in V0(G). Now, let us consider the induced subdigraph Q2 of Q consisting of all
cycles of Q and all pathes joining the cycles. Further, let Q1 = Q − V (Q2) be the
subdigraph obtained by deleting Q2 from Q, that is, Q1 is the subdigraph induced
by V (Q) \ V (Q2). By definition, Q1 is acyclic and V0(Q) ⊂ V (Q1). Let us further
define QC = {ēj}j∈JC to be the cut-set separating Q1 and Q2. In other words,
ēj ∈ QC if an only if its tail is in V (Q1) and its head is in V (Q2). We note
that E(Q) = E(Q1) ∪ E(Q2) ∪ QC . We can provide an alternative description of
Q1 using the concept of the topological sorting [6, pp. 402-403] or, in a slightly
different formulation, [5, pp. 175–176]. Following [6], we begin with an arbitrary
vertex in V0(Q) and label it v1. Next, we delete it from Q, find a vertex in V0−{v1}
and label it v2. We repeat the procedure till either every vertex is labeled or until
we find a subdigraph Q′ with V0(Q′) = ∅. The idea of the topological sorting is to
order vertices of any diagraph in such a way that any (directed) path goes through
vertices with increasing indices. It is known, [6, Theorem 14-4], that the vertices of
a diagraph can be arranged in a topological order if an only if it is acyclic.

If Q′ is a subdigraph of Q which was not ordered by the topological sorting
argument, then it must contain a cycle. In fact, we have

Lemma 4.1. The subdiagraph Q′ does not depend on the execution of the algorithm
and Q′ = Q2.

Proof. Denote by Q̄ the acyclic graph obtained by an execution of the topological
sorting algorithm. First, it is clear that V0(Q) ⊂ Q̄. Next, we observe that if
v ∈ Q̄, then any path ending at v must be in Q̄. Indeed, to belong to Q̄, v had
to be included in Q̄ at, say, step i. This means that each edge with the head at
v was deleted at an earlier step k < i. This could happen only if the adjacent
vertex was included into Q̄ at step k. Thus, all adjacent vertices are in Q′ and the
statement follows by induction. From this property it follows that if v ∈ V (Q2),
then v /∈ V (Q̄). Indeed, such a v either belongs to a cycle or to a path between two
cycles but, by the previous argument, in each case we would have a cycle contained
in Q̄. Similarly, if v ∈ Q1, then v ∈ Q̄. Indeed, if not, then there is an incoming edge
with the tail at some v′. The vertex v′ cannot be in Q̄ as in such a case the edge
from v′ to v would have been deleted earlier. By induction, we construct a reverse
path originating at v which is outside Q̄. Since the graph is finite, the path cannot
continue forever and terminates at a vertex x such that for any adjacent vertex,
either all incoming edges have been included in the path in one of the previous
steps, or there are no incoming edges. However, in the first case, there would be a
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cycle in Q1 and in the other there would be v ∈ V0(Q) \ Q̄. In each case we arrived
at a contradiction. Hence Q′ = Q2 and Q̄ = Q1.

Let us relate the above structure to the original graph G. Clearly, we can con-
struct the subdigraphs G1 and G2 of G in the same way as the subdiagraphs Q1

and Q2 for the line graph Q. We prove

Lemma 4.2.

ΦG(E(G2)) = V (Q2), ΦG(E(G1) ∪GC) = V (Q1) (19)

and
ΨG(V (G2)) = E(Q2) ∪QC , ΨG(V (G1)) = E(Q1). (20)

Proof. First, we see that any cycle in G corresponds to a unique cycle in Q in the
following sense. Let ui1 , ei1 , . . . , eik−1

, uik with uik = ui1 be a cycle in G2. Then we
consider vertices ΦG(eij ) and, since eij−1

and eij connect through uij , we see that
there is an edge in ΨG(uij ) with the head at ΦG(eij ) and an edge in ΨG(uij+1

) with
the tail at ΦG(eij ) (with obvious modification at ui1(= uik) so that ΨG(ui1) contains
an edge connecting ΦG(eik−1

) and ΦG(ei1). Conversely, let υi1 , εi1 , . . . , εil−1
, υil

with υi1 = υil be a cycle in Q2. Then Φ−1
G (υi1),Ψ−1

G (εi1), . . . ,Ψ−1
G (εil−1

),Φ−1
G (υil)

with ΦG(υi1) = ΦG(υil) is a sequence of edges and vertices in G. However, for εij
to be between υij and υij+1

means that εij ∈ ΨG(vij ) which is the head of eij =

Φ−1
G (υij ) and eij+1 = Φ−1

G (υij+1). Thus Φ−1
G (υi1),Ψ−1

G (εi1), . . . ,Ψ−1
G (εil−1

),Φ−1
G (υil)

is a cycle.
Let e ∈ E(G2). Then υ = ΦG(e) is a vertex. If e is on a cycle, then υ will be

on a cycle and thus in V (Q2). Let now e belong to a path joining two cycles in
G2. This path consists of alternating vertices and edges, say, ui1 , ei1 , . . . , eik−1

, uik
with e = eir for some 1 < r < k and ui1 and uik belonging to cycles. Let now u′

be the vertex in a cycle, which is adjacent to ui1 ; that is, the edge u′ui1 is on the
cycle. Then ΦG2

(u′ui1) is a vertex in the corresponding cycle of Q2 and ΨG(ui1)
consists of (at least) two edges, one continuing in the cycle and one branching out
to the vertex ΦG(ei1). Then, because this is a path, ΨG(ui2) contains an edge from
ΦG(ei1) to ΦG(ei2) and so on to ΦG(eir ). Analogous argument can be made at uik
with the only change that ΨG(uik) consists of at least two edges, one on the cycle
in Q2 and the other incoming from ΦG(eik−1

). Hence, ΦG(eir ) is on a path joining
two cycles and thus belongs to Q2.

Next, let us take a vertex υ on a path joining two cycles in Q2. As above, we
can trace the path back to a vertex υi1 on a cycle and forward to a vertex υil ,
also on a cycle; that is υi1 , εi1 . . . , εil−1

, υil with υ = υis for some 1 < s < l. The
vertex υi1 has at least two outgoing edges, say, ε′ in the cycle and εi1 towards
υis . But then ε′, εi1 ∈ ΨG2

(v) for some vertex v in a cycle in G2 as otherwise the
edge e = Φ−1

G2
(υi1) would have two heads. Now, similarly to the argument above,

υi2 = ΦG(e) with e having its tail at v and the head at Ψ−1
G (εi2). Continuing, we

extend the path in G2 to Φ−1
G (υis). On the other side, a similar argument holds for

υil , only here υil has at least two incoming edges (one on the cycle and εil−1
from

the path) and at least one outgoing edge (on the cycle). Hence υil = ΦG2
(e′) with

e′ on a cycle in G2, while the two incoming edges belong to ΨG2
(v′) with the vertex

v′, also on the cycle, is the tail of e′ and the head of Φ−1
G (υil−1

) cycle. Thus v′ is
terminal for the path passing through υis . Thus we obtained the first equality in
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(19). Since E(G) = E(G2)∪E(G1)∪GC , V (Q) = V (Q1)∪ V (Q2), where the sums
are disjoint and ΦG is a bijection, we obtain the second equality in (19).

Equation (20) can be proved in an analogous way.

5. Long term behaviour of the semigroup. Our objective is to study the long
term behaviour of the semigroup (TA(t))t≥0 generated by A in X = (L1([0, 1]))m,
defined by (6) and (7), under the assumptions that γi = ξi = 1, i = 1, . . . ,m and
(13). The semigroup describes a mass conserving transport on the graph G with
n vertices and m edges. By Corollary 1, (TA(t))t≥0 is conservative on nonnegative
data (stochastic).

The analysis is carried out by transforming the problem to that for the semigroup
(TA(t))t≥0 in X = (L1([0, 1]))m, where m = χ(m), defined by (16) (or through (15)),
on the extended graph G with m edges and n = κ(m) vertices. As noted earlier,
(TA(t))t≥0 is also conservative. To analyse the long term asymptotics of (TA(t))t≥0,
we use (17). Since Pn = C−1BnC, we can focus on the iterates of B, where B is the
weighted adjacency matrix of the line graph Q of G, and apply the theory developed
in the previous section, with the terminology and notation referring to G and Q and
their subgraphs. Thus, we denote

T̂A(t) = CT A(t)C−1,

the semigroup similar to (TA(t))t≥0, defined by the iterates of B.
It is known, see e.g. [17], that an adjacency matrix of a digraph is irreducible if

and only if the digraph is strongly connected. Our interest lies, in general, in con-
nected but not strongly connected diagraphs. Then, by simultaneous permutation
of rows and columns (equivalent to renumbering of vertices), the adjacency matrix
B can be put in the so-called normal form, [12, p. 90]. Moreover, by the topological
sorting of Q (or by [6, Theorem 9-16]), we see that in the part of B corresponding
to Q1, the acyclic part of Q, the only nonzero entries can occur below the diagonal.
Thus, reordering the vertices so that the sources in Q1 appear first, followed by
other vertices from Q1, and noting that the sources correspond to zero rows, we
obtain the representation

B =



0 0 0 0 . . . 0 0 . . . 0
B2,1 B2 0 0 . . . 0 0 . . . 0
0 0 B3 0 . . . 0 0 . . . 0
...

...
...

. . .
...

...
...

...
Bg−1,1 · · · · · · Bg−1,g−2 Bg−1 0 0 . . . 0
Bg,1 · · · · · · Bg,g−2 Bg,g−1 Bg 0 . . . 0
Bg+1,1 · · · · · · Bg+1,g−2 Bg+1,g−1 0 Bg+1 . . . 0
...

...
...

...
...

...
...

. . .
...

Bs,1 · · · · · · Bs,g−2 Bs,g−1 0 0 · · · Bs


. (21)

To explain the structure of the bottom right part of B, we recall that B is column
stochastic and hence it has a positive left eigenvector, which can be taken to be 1m,
where, for any k ∈ N, we denote

1k = (1, 1, · · · , 1︸ ︷︷ ︸
k times

).

Using [12, Theorem 6, Chapter III] and the analysis of [4, Section 4] we find that for
some g > 2 the spectral radii ρ(Bl) must satisfy ρ(Bl) = 1 for g ≤ l ≤ s, ρ(Bl) < 1
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for 2 < l < g and Bl,k = 0 for g + 1 ≤ l ≤ s and g ≤ k ≤ l − 1 (and certainly,
Bl,k = 0 above the (block) diagonal). The matrix B2 is nilpotent, the matrices
Bl for 3 ≤ l ≤ g − 1, called transient, are either irreducible matrices of dimension
nl × nl, or zero matrices of dimension 1 × 1 (scalars) while for g ≤ l ≤ s, Bl are
called an ergodic. Since we assumed that there are no loops in G, there are no loops
in G and therefore no loops in Q and thus all diagonal entries in B are zero.

Hence, indices (1, . . . n1) correspond to the sources and (n1 + 1, . . . , n1 + n2)
correspond to the other vertices in Q1. In particular, the only non-zero entries of
B2 may appear below the diagonal. By Lemma 4.2, the states 1, . . . , n1 + n2 in B
exactly correspond to the edges in G1 and the cut-set between G1 and G2. The square
nonzero irreducible matrices B3, . . . ,Bg−1 correspond to the strong components of
Q2 for which either there is no path from Q1 but there is an outflow (such as B3) or
there is both inflow from Q1 and an outflow (such as Bg−1). Finally, the irreducible
matrices Br with r ≥ g correspond to strong components for which there are no
outgoing paths (the so called terminal (invariant) strong components of G, [5, p.
17] and [15, Definition 4.9]). The above structure induces also the form of the right
Perron eigenvectors of B. Again, following e.g. [4, Section 4], we see that the right
Perron eigenspace is spanned by vectors

Ng = (0, . . . , 0,ng, 0, . . . , 0), . . . ,Ns = (0, . . . , 0, 0, . . . , 0,ns), (22)

where nl > 0 is the Perron eigenvector, Blnl = nl, l = g, . . . , s. Furthermore,
since B is column stochastic, the matrices Br with r ≥ g are column stochastic
with 1 ∈ σ(Br), r ≥ g, being the dominant (but not necessarily strictly dominant)
Perron eigenvalue for each of them.

Further, we have ρ(Bl) < 1 for 3 ≤ l < g and the left Perron eigenvectors of B
corresponding to 1 are spanned by vg, · · · ,vs where

vg = (yg1,y
g
2, . . . ,y

g
g−1,v

g, 0, . . . , 0), . . . ,vs = (ys1,y
s
2, . . . ,y

s
g−1, 0, . . . , 0,v

s). (23)

Here vl = 1nl , g ≤ l ≤ s, and, inductively,

ylh =

 g−1∑
j=h+1

yljBj,h + vlBl,h

 (I − Bh)−1 (24)

for any 1 ≤ h ≤ g − 1 and l = g, · · · , s. The vectors in (24) are all positive, by e.g.
[21, Theorem 2.1]. We assume that Nl are normalized so as

vl ·Nl = 1, l = g, . . . , s. (25)

Let the number of distinct eigenvalues of B be ν and k(λ) be the algebraic mul-
tiplicity of λ ∈ σ(B). Due to the block triangular structure of B, σ(B) consists
of eigenvalues of Bl, 3 ≤ l ≤ s and 0. As stated above, the dominant, unitary
eigenvalues only can come from σ(Bl), g ≤ l ≤ s and, by [17, Chapter 8, p. 696],
they are semisimple. Since each Bl is irreducible, 1 is a semisimple eigenvalue of B
of multiplicity s − g + 1. Further, if we denote by dl the index of imprimitivity of
Bl; that is, the number of distinct unitary eigenvalues of Bl, then the eigenvalues
are of the form λkl = e2πik/dl , k = 0, 1, . . . , dl − 1, and each of them is simple, [17,
Chapter 8, p. 676]. Further, denote Z = {λ ∈ σ(Bl), 3 ≤ l ≤ s, |λ| < 1}.

Theorem 5.1. There is a decomposition

X = Xg ⊕ . . .⊕Xs ⊕ Ye ⊕ Yi (26)

such that
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: (i) the spaces Xl, l = g, . . . , s, Ye,Yi, are invariant under (T̂A(t))t≥0;
: (ii) (T̂A(t)|Xl)t≥0 is periodic with period dl, l = g, . . . , s;
: (iii) (T̂A(t)|Ye)t≥0 is exponentially stable of type 0 > ω > max{ln |λ|; λ ∈ Z};
: (iv) (T̂A(t)|Yi)t≥0 is nilpotent and

T̂A(t)|Yi = 0 for t ≥ n2. (27)

Proof. Let us denote by Fλ the spectral projection onto the (generalized) eigenspace
of B, corresponding to the eigenvalue λ. Using the spectral properties of B, for any
u ∈ Rm we can write

Bru =

s∑
l=g

dl−1∑
k=0

λkrl Fλkl u +
∑
λ∈Z

λrpλ(r)Fλu + Br0u, r ∈ N, (28)

where pλ(r) is a matrix valued polynomial in r of order not exceeding k(λ) and

B0 =

 0 0 0
B2,1 B2 0
0 0 0

 (29)

corresponds to the vertices in Q1. Clearly, B0 is a nilpotent matrix with index not
exceeding n2, that is

Br0 = 0, r ≥ n2. (30)
Let us recall that n2 is the number of vertices in Q1 which are not sources; that
is, by (19), n2 is the number of edges in G1 plus the number of edges in the cut
between G1 and G2 minus the number of edges emanating from the sources in G
(which equals

∑
v∈V0(G) d

+(v)). We observe that (21) induces a decomposition of
Rm into Rn1+n2 and Rm′ with m′ = m− (n1 +n2). Since 0 is the only eigenvalue of
a nilpotent matrix, the projectors Fλkl , l = g, . . . , s, k = 0, . . . , dl − 1, and Fλ, λ ∈ Z
act into Rm′ .

Following earlier calculations, (22) and (23), the spectral projection Fλ0
l
corre-

sponding to 1 = λ0
l ∈ σ(Bl), l = g, . . . , s, is given by

Fλ0
l
u = (vl · u)Nl, u ∈ Rm. (31)

The spectral projections Fλkl have an analogous form, Fλkl u = (e∗
λkl
· u)eλkl , where

eλkl is the right eigenvector of Bl corresponding to λkl and e∗
λkl

is the left eigenvector
of B for the same eigenvalue, normalized so as e∗

λkl
· eλkl = 1. Recalling (17) and

(28), for u ∈ X , we have

[T̂A(t)u](x) = [Bru](t+ x− r) =

s∑
l=g

dl−1∑
k=0

λkrl [Fλkl u](t+ x− r)

+
∑
λ∈Z

λr[pλ(r)Fλu](t+ x− r) + [Br0u](t+ x− r), (32)

for r ∈ N0, 0 ≤ t + x − r ≤ 1, where, as before, for the matrix F acting in Rm, F
denotes the operator in L1([0, 1])m defined by the pointwise action of F. We define

Xl =
dl−1⊕
k=0

Fλkl X , l = g, . . . , s, Ye =
⊕
λ∈Z
FλX , while by Yi we denote the subspace

of X consisting of vector functions with all but the first n1 + n2 coordinates being
zero. By (21) and the definition of Z, the only common element of Yi and other
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spaces is 0. Then we observe that, by (30), for any u ∈ Yi we have T̂A(t)u = 0 for
t ≥ n2. In other words, for any u ∈ X ,

[T̂A(t)u]|E(G1)∪EC = 0

for t ≥ n2; that is, irrespective of the initial distribution of the mass on the graph,
after t = n2 all edges of the acyclic part together with the edges joining the acyclic
part with the cyclic part become depleted. The statement (iv) is proved.

To prove (iii), we denote τr = t − r with 0 ≤ τr < 1 and, using boundedness of
Fλ, we get

‖λr[pλ(r)Fλu](t+ · − r)‖X

≤ C(|λ|r|pλ(r)|
1∫

τr

|u(s)|ds+ |λ|r+1|pλ(r + 1)|
τr∫

0

|u(s)|ds) ≤ C ′′‖u‖Xet ln λ̄

for some constants C,C ′, C ′′ > 0 and |λ| < λ̄ < 1, λ ∈ Z.
Finally, to prove (ii), let u ∈ Xl = L1([0, 1],Xl), where Xl = Span{eλk

l
}k=0,...,dl−1,

l = g, . . . , s, and consider

[T̂A(t)|Xlu](x) := [T̂A,l(t)u](x) =

dl−1∑
k=0

λkrl [Fλkl u](t+x−r), 0 ≤ t+x−r ≤ 1, (33)

for l = g, . . . , s. Then (T̂A,l(t)(t))t≥0 extends to a periodic group in Xl with period
equal to the imprimitivity index dl of Bl. Indeed, to evaluate T̂A,l(t+ dl), we must
take r′ satisfying 0 ≤ t+ dl + x− r′ ≤ 1; that is, r′ = r + dl and hence

[T̂A,l(t+ dl)u](x) =

dl−1∑
k=0

λkr
′

l [Fλkl u](t+ dl + x− r′), 0 ≤ t+ dl + x− r′ ≤ 1,

=

dl−1∑
k=0

e
2πkri
dl e2πki[Fλkl u](t+ x− r), 0 ≤ t+ x− r ≤ 1,

= [T̂A,l(t)u](x), 0 ≤ t+ x− r ≤ 1.

Thus, the period τl of (T̂A,l(t))t≥0 does not exceed dl. The fact that dl indeed is the
period of (T̂A,l(t))t≥0 can be proved as in [15, Theorem 4.5] or [8, Theorem 24] but
their argument use an advanced theory from [19] and the representation (33) gives
the same result in a more elementary way. Indeed, taking the Laplace transform of
(T̂A,l(t))t≥0 we have, with uk := Fλkl u for u ∈ Xl,

∞∫
0

e−tλ[T̂A,l(t)u](x)dt

=

dl−1∑
k=0

 1∫
x

e−λ(s−x)uk(s)ds+

∞∑
r=1

e

(
2πki
dl
−λ

)
r

1∫
0

e−λ(s−x)uk(s)ds

 .

From this expression we see that the resolvent of the generator of (T̂A,l(t))t≥0 has
poles at λ ∈ C which satisfy eλ = e

2πik
dl , k = 0, . . . , dl − 1. On the other hand,

by [11, Lemma IV.2.25], if τ is the period of a semigroup, then the resolvent of its
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generator has poles at (2πi/τ) · Z (where Z is the set of integers). Comparing, we
find that τ is a multiple of dl which yields τ = dl.

Remark 4. In particular, if dl = 1; that is, if Bl is primitive, Xl is one di-
mensional, spanned by the Perron eigenvector of Bl (extended by zeroes), Nl =
(0,ng,0) = (0 . . . , 0, nln1+...+nl−1+1, . . . , n

l
n1+...+nl

, 0, . . . , 0) we get u = fNl, where
f ∈ L1([0, 1]), and

[T̂A,l(t)u](x) = f(t+ x− r)Nl, 0 ≤ t+ x− r ≤ 1, (34)

which is a semigroup of period 1.

Remark 5. The estimate (27) can be made more precise. In fact, the nonzero
entries of Br0 correspond to pathes in Q1 of length r; that is, consisting of r edges.
Hence, Br0 6= 0 as long as there is a path of length r in Q1. Hence,

T̂A(t)|Yi = 0 for t ≥ k + 1,

where k is the length of the longest path in the acyclic part of Q (which could be
determined by the topological sorting algorithm). By (19), k also is the length of
the longest path in the acyclic part G1 of G. Clearly, k+ 1 may be equal to n2 if all
vertices of Q1 are on the longest path in Q1.

Remark 6. Using the argument of [15, Theorem 4.5], based on [18, Theorem
IV.3.3], (but augmented by Lemma 4.2 to ascertain that the cycles in G correspond
to cycles in Q in a one-to-one way with the same lengthes) we see that the period of
(T̂A,l(t))t≥0 equals to the greatest common divisor of the lengthes of cycles composed
of edges in G which are among states n1 + . . .+ nl−1 + 1, . . . , n1 + . . .+ nl; that is,
the states covered by the matrix Bl, g ≤ l ≤ s.

To conclude, we return to the original problem for the semigroup (TA(t))t≥0 on
the graph G. Before we formulate the relevant result, we have to introduce a new
notation. Consider the diagonal block Bl, g ≤ l ≤ s, in the adjacency matrix B
of the line graph Q of the diagraph G. Let Ql be the diagraph whose adjacency
matrix is Bl. Since Bl is irreducible, Ql is strongly connected. Moreover, Ql is an
invariant strongly connected component of Q. Clearly, there exists a subdigraph
Gl of G whose line graph is Ql. Indeed, by definition, the set of edges of Gl
corresponds to the set of vertices of Ql and each edge in Ql joins two vertices of
Ql and thus correspond to a vertex in Gl. Moreover, Gl is a strongly connected
invariant component ofG. Indeed, if there was an outgoing edge fromGl, originating
in a vertex in Gl, then this would imply that this vertex would generate an edge in
Q outgoing from Ql.

Theorem 5.2. Assume that the assumption (13) holds. There is a decomposition

X = Xg ⊕ . . .⊕Xs ⊕ Ye ⊕ Yi (35)

such that
: (i) the subspaces Xl, l = g, . . . , s, Ye, Yi are invariant under (TA(t))t≥0;
: (ii) (TA(t)|Xl)t≥0 is periodic with period τl,

τl =
1

c
gcd
{
c

(
1

ci1
+ . . .+

1

cik

)
, ei1 , . . . , eik form a cycle in Gl

}
, (36)

for l = g, . . . , s;
: (iii) (TA(t)|Ye)t≥0 is exponentially stable of type 0 > ω > max{c ln |λ|; λ ∈ Z};
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: (iv) (TA(t)|Yi)t≥0 is nilpotent and

TA(t)|Yi = 0 for t ≥ κ, (37)

where Yi can be identified with E(G1) ∪GC (recall that GC is the the set of
edges between G1 and G2) and

κ = max

{
1

ci1
+ . . .+

1

cik
; ei1 , . . . , eik form a path in G1 ∪GC

}
. (38)

Proof. The proof follows from (16) as the transformation of the graph introduced
in Section 3 does not change the number of the cycles and does not affect the split
between the acyclic and cyclic parts of G but only increases the lengthes of cycles
and pathes and rescales time by c. Hence, by (16), the conclusion of Theorem 5.1
holds with the same number of periodic semigroups. However, their periods and
the time it takes to deplete G1 ∪ GC changes. To make it precise, we recall that
the cycles in Ql correspond in a one to one way, including lengthes, to the cycles in
Gl, as we mentioned in Remark 6. With this we can argue as in the proof of [15,
Theorem 4.5]. We see, that if ei1 , . . . , eik form a cycle in Gl, then the length of the
corresponding cycle in G will be

li1 + . . .+ lik = c

(
1

ci1
+ . . .+

1

cik

)
.

Thus the period of the (TA,l(t)(t))t≥0 is the greatest common divisor of all such
numbers for ei1 , . . . , eik forming a cycle in Gl. Hence, by (16), the period of
(TA,l(t))t≥0 = (TA|Xl(t))t≥0 is given by (36).

Formula (38) follows in a similar way.

6. An open network. The result of Theorem 2.1 that the flow problem of a
network with a sink is ill-posed in the sense of semigroup theory may seem coun-
terintuitive. However, this is due to the fact that we adopted the graph theoretical
definition of the sink, see e.g. [13, p. 337]; that is, a sink is any vertex with no out-
going edges. Since we considered a flow on a closed network with no accumulation
of material in vertices, our result correctly reflects impossibility of the situation in
which material is flowing into a vertex but is neither accumulated nor removed from
it.

The results of the paper can be extended to a more realistic situation in which
the network is open. Let {vi}i∈Js , where Js := {n1, . . . , nk} ⊂ {1, . . . , n}, be the
set of sinks of G in the above (graph theoretical) sense. Then we can consider them
to be sinks in the sense of the classical theory of flows on networks, [5, p. 97] or [6,
p. 385]; that is, the material is flowing outside G from vi at the rate

hi(u(t)) =

m∑
j=1

φ+
ijcjuj(0, t) > 0, t > 0. (39)

Such a problem can be fit into the theory developed earlier by using the same idea
as when converting dishonest (sub-) Markov process into a honest one, see e.g. [1,
Proposition 1.1]. To this end, we enlarge G by appending, to each sink vi, i ∈ Js, a

directed subgraph Gi = ({vi1, vi2}, {ei2, ei3}), where vi1
ei2→ vi3 and vi2

ei3→ vi1 via a bridge

ei1; that is, vi
ei1→ vi1. Let us denote such an extended graph by G̃. Clearly, G̃ satisfies

all assumptions required in Section 4 and, in particular, each Gi, i ∈ Js is a terminal
(invariant) strong component of G̃, see [5, p. 17] or [15, Definition 4.9]. This shows
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that the adjacency matrix B̃ of the line graph of G̃ has the same structure as B
in (21), where all block components B̃r, corresponding to the strong components
Gi, i ∈ Js can be renumbered so that they occupy the last k positions at the bottom
right of B̃. Clearly, there can be also other invariant strong components of G̃, which
were also strong invariant components in G.

After these preliminaries we can consider the transport problem (3) on the ex-
tended diagraph G̃. Due to the structure of B̃ and the equivalent formulation of the
boundary conditions (9), we see that neither the particular structure of the addi-
tional graphs Gi, nor the speeds along the edges ei1, ei2, ei3, i ∈ Js, and the conditions
imposed at their endpoints, have any influence on the solutions along the edges of
the original graph G. Hence, if we only are interested in the solution in G, Theorem
2.1 is applicable for an arbitrary choice of the boundary conditions on the added
edges.

This observation also allows for the application of Theorems 27 and 5.2. Indeed,
if the original graph G satisfies assumption (13) then, by choosing the speeds on the
edges ei1, ei2, ei3, i ∈ Js, to be equal to c, we see that the graph G̃ also satisfies this
assumption and, moreover, these edges do not change when we pass to the extended
graph G̃, see Section 4. Thus, in particular, the flow will be asymptotically periodic
in each Gi, i ∈ Js (which all are outside G) and the edges incoming to the sinks
vi, i ∈ Js will be eventually depleted unless they are in the acyclic part of G̃ in
which case they will be depleted in finite time.

We illustrate these considerations with the following example.

Example 1. Let us consider the transport problem (3) on the graph G and its
extension G̃, depicted on Fig. 1. For simplicity we assume that all coefficients in
the problem are 1 and, since there are no vertices with more than one outgoing
edge, there is no need to introduce weights.

The line graph of G̃ is shown on Fig. 2. The adjacency matrix of the line graph
of G̃ is given by

B̃ =


0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0

 ,

where the 2 × 2 matrix in the bottom right corner corresponds to the appended
cyclic part in G̃.

System (3) in the new enumeration can be written as

∂tui = ∂xui, ui(x, 0) = fi(x), i = 1, . . . , 6,

with

u1(1, t) = 0, u2(1, t) = 0, u3(1, t) = u1(0, t),

u4(1, t) = u2(0, t) + u3(0, t), u5(1, t) = u4(0, t) + u6(0, t), u6(1, t) = u5(0, t),

where the first row above represents the boundary conditions on the original graph
G. We can see that the solution on G, consisting of (u1, u2, u3), is independent of
the appended graph and that it will become zero in finite time (at t = 2 if f1(x) > 0
for x ∈ [0, 1]).
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v1

v2v3

v1

v2

v3 v1
3 v2

3

Figure 1. Graph G with sink at v3 (left) and its extended graph G̃ (right).

E1

E3

E2

E4

E5

E6

Figure 2. The line graph of G̃ with vertices numbered according
to the sorting algorithm of Section 4.
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