Citation: Philippe Souplet. Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices[J]. Networks and Heterogeneous Media, 2012, 7(4): 967-988. doi: 10.3934/nhm.2012.7.967
[1] | Philippe Souplet . Liouville-type theorems for elliptic Schrödinger systems associated with copositive matrices. Networks and Heterogeneous Media, 2012, 7(4): 967-988. doi: 10.3934/nhm.2012.7.967 |
[2] | Hyungjin Huh . Remarks on the Schrödinger-Lohe model. Networks and Heterogeneous Media, 2019, 14(4): 759-769. doi: 10.3934/nhm.2019030 |
[3] | Junjie Wang, Yaping Zhang, Liangliang Zhai . Structure-preserving scheme for one dimension and two dimension fractional KGS equations. Networks and Heterogeneous Media, 2023, 18(1): 463-493. doi: 10.3934/nhm.2023019 |
[4] | Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691 |
[5] | Paul H. Rabinowitz . On a class of reversible elliptic systems. Networks and Heterogeneous Media, 2012, 7(4): 927-939. doi: 10.3934/nhm.2012.7.927 |
[6] | Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639 |
[7] | Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269 |
[8] | Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1 |
[9] | Patrizia Donato, Florian Gaveau . Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3(1): 97-124. doi: 10.3934/nhm.2008.3.97 |
[10] | G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini . Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2(1): 1-36. doi: 10.3934/nhm.2007.2.1 |
[1] |
A. Ambrosetti and E. Colorado, Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Sér. I, 342 (2006), 453-458. doi: 10.1016/j.crma.2006.01.024
![]() |
[2] |
Th. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equations, 37 (2010), 345-361. doi: 10.1007/s00526-009-0265-y
![]() |
[3] | J. Busca and R. Manásevich, A Liouville-type theorem for Lane-Emden system, Indiana Univ. Math. J., 51 (2002), 37-51. |
[4] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622. doi: 10.1215/S0012-7094-91-06325-8
![]() |
[5] |
N. Dancer, J.-C. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969. doi: 10.1016/j.anihpc.2010.01.009
![]() |
[6] | N. Dancer and T. Weth, Liouville-type results for noncooperative elliptic systems in a half space, J. London Math. Soc., 86 (2012), 111-128. |
[7] | D. G. de Figueiredo and P. Felmer, A Liouville-type theorem for elliptic systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 21 (1994), 387-397. |
[8] |
D. J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: From theory to experiments, J. Phys. A: Math. Theor., 43 (2010), 213001. doi: 10.1088/1751-8113/43/21/213001
![]() |
[9] | D. H. Jacobson, Extensions of linear-quadratic control, optimization and matrix theory. Mathematics in Science and Engineering, 133. Academic Press, London-New York, (1977). |
[10] | Yu. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and applications, Physics Reports, 298 (1998), 81-197. |
[11] |
T-C. Lin and J.-C. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbbR^n$, $n le 3$, Commun. Math. Phys., 255 (2005), 629-653. doi: 10.1007/s00220-005-1313-x
![]() |
[12] |
Z. Liu and Z-Q. Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282 (2008), 721-731. doi: 10.1007/s00220-008-0546-x
![]() |
[13] |
L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229 (2006), 743-767. doi: 10.1016/j.jde.2006.07.002
![]() |
[14] |
P. Poláčik, P. Quittner and Ph. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems, I: Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8
![]() |
[15] |
P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J., 35 (1986), 681-703. doi: 10.1512/iumj.1986.35.35036
![]() |
[16] | P. Quittner and Ph. Souplet, "Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States," Birkhäuser Advanced Texts, 2007. |
[17] |
P. Quittner and Ph. Souplet, Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications, Comm. Math. Phys., 311 (2012), 1-19. doi: 10.1007/s00220-012-1440-0
![]() |
[18] |
W. Reichel and H. Zou, Non-existence results for semilinear cooperative elliptic systems via moving spheres, J. Differ. Equations, 161 (2000), 219-243. doi: 10.1006/jdeq.1999.3700
![]() |
[19] | J. Serrin and H. Zou, Non-existence of positive solutions of Lane-Emden systems, Differ. Integral Equations, 9 (1996), 635-653. |
[20] |
B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbb R^n$, Comm. Math. Phys., 271 (2007), 199-221. doi: 10.1007/s00220-006-0179-x
![]() |
[21] |
Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math., 221 (2009), 1409-1427. doi: 10.1016/j.aim.2009.02.014
![]() |
[22] |
H. Tavares, S. Terracini, G.-M. Verzini and T. Weth, Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems, Comm. Partial Differ. Eq., 36 (2011), 1988-2010. doi: 10.1080/03605302.2011.574244
![]() |
[23] |
F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, Indiana Univ. Math. J., 29 (1980), 79-102. doi: 10.1512/iumj.1980.29.29007
![]() |
1. | Philippe Souplet, 2020, Chapter 21, 978-3-030-38229-2, 303, 10.1007/978-3-030-38230-8_21 | |
2. | Yildirim OZDEMİR, A Note On The Stability of Solution for Elliptic-Schrödinger Type Nonlocal Boundary Value Problem, 2020, 2717-6355, 10.47086/pims.778024 | |
3. | Alexandre Montaru, Boyan Sirakov, Philippe Souplet, Proportionality of Components, Liouville Theorems and a Priori Estimates for Noncooperative Elliptic Systems, 2014, 213, 0003-9527, 129, 10.1007/s00205-013-0719-4 | |
4. | Charles R. Johnson, Ronald L. Smith, Michael J. Tsatsomeros, 2020, 9781108778619, 10.1017/9781108778619 | |
5. | Jiankai Xu, Zhong Tan, Weiwei Wang, Zepeng Xiong, A Necessary Condition for Certain Integral Equations with Negative Exponents, 2019, 39, 0252-9602, 284, 10.1007/s10473-019-0121-x | |
6. | Lorenzo D'Ambrosio, Enzo Mitidieri, On some multicomponent quasilinear elliptic systems, 2020, 490, 0022247X, 124207, 10.1016/j.jmaa.2020.124207 | |
7. | Hui Yang, Wenming Zou, Stable and finite Morse index solutions of a nonlinear elliptic system, 2019, 471, 0022247X, 147, 10.1016/j.jmaa.2018.10.069 | |
8. | John Villavert, A Refined Approach for Non-Negative Entire Solutions of Δ u + up = 0 with Subcritical Sobolev Growth, 2017, 17, 1536-1365, 691, 10.1515/ans-2016-6024 | |
9. | Pavol Quittner, Philippe Souplet, Liouville theorems and universal estimates for superlinear elliptic problems without scale invariance, 2024, 1139-1138, 10.1007/s13163-024-00514-4 |