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Abstract. We study non-cooperative, multi-component elliptic Schrödinger

systems arising in nonlinear optics and Bose-Einstein condensation phenomena.

We here reconsider the more delicate case of systems of m ≥ 3 components.
We prove a Liouville-type nonexistence theorem in space dimensions n ≥ 3

for homogeneous nonlinearities of degree p < n/(n − 2), under the optimal
assumption that the associated matrix is strictly copositive. This extends re-

cent work of Tavares, Terracini, Verzini and Weth [22] and of Quittner and the

author [17], where the results were limited to n ≤ 2 dimensions or to m = 2
components. The proof of the Liouville theorem is done by combining and im-

proving different arguments from [22] and [17], namely a feedback procedure

based on Rellich-Pohozaev type identities and functional analytic inequalities
on Sn−1, and suitable test-function arguments. We also consider a more gen-

eral class of systems with gradient structure, for which our arguments show

the triviality of solutions satisfying a suitable integral bound, a result which
may be of independent interest.

1. Introduction and main results.

1.1. Position of the problem. In this paper, we study elliptic Schrödinger sys-
tems of the form

−∆ui =

m∑
j=1

βiju
q
iu
q+1
j , x ∈ Rn, i = 1, . . . ,m. (1.1)

Here n,m are fixed positive integers, q > 0 and B = (βij) is a real m×m symmet-
ric matrix. We denote U = (u1, . . . , um) and only consider nonnegative classical
solutions, i.e. such that ui ∈ C2(Rn) and ui ≥ 0 in Rn for all i = 1, . . . ,m. Also,
we say that U is positive if ui > 0 in Rn for all i = 1, . . . ,m.

The nonlinearities on the RHS of (1.1) will be denoted by Fi = Fi(U). The
Euclidean norm in Rm or in Rn will be denoted by | · |. Throughout this paper,
pS = pS(n) := (n+ 2)/(n− 2)+ will denote the Sobolev exponent.

Such systems arise in mathematical models for various phenomena in physics,
such as nonlinear optics and Bose-Einstein condensation; see e.g. [10, 8] and the
references therein. System (1.1) has been investigated in numerous mathematical
papers (see e.g. [11, 13, 1, 20, 12, 5, 2, 6, 22, 17, 6]). Central issues are the
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applicability of variational methods and the derivation of Liouville-type theorems,
i.e. nonexistence results in the whole space.

In the recent work [22], interesting connections have been discovered between the
existence/nonexistence of solutions of (1.1) and properties of the matrix B. Recall
that the matrix B is said to be strictly copositive if the restriction of the associated
quadratic form to the positive cone of Rn is positive definite, i.e.∑

1≤i,j≤m

βijzizj > 0, for all z ∈ [0,∞)m, z 6= 0. (1.2)

Property (1.2) plays a significant role in quadratic programming (see [9]). It was
proved in [22] that the strict copositivity of B is a necessary condition for the
nonexistence of positive solutions of (1.1) whenever 2q + 1 < pS . In fact, it was
shown in [22] by variational methods that, if B is not strictly copositive, then there
exists a positive solution which is periodic with respect to the unit cube. They also
showed that it is a sufficient condition when n ≤ 2 and q ≤ 1. Then in [17], in
the special case m = 2, n ≤ 4, under the optimal growth condition 2q + 1 < pS ,
we showed that strict copositivity implies the nonexistence of nontrivial solutions.
However, for m ≥ 3, the results in [17] require stronger conditions on the matrix B
(whereas for n ≥ 5 they require stronger conditions on q).

In fact, as noted in [22] (see after Corollary 1.1 there), the cases m = 2 and
m ≥ 3 exhibit an essential difference. Namely, when m = 2, for any nonlinearity F
arising from a strictly copositive matrix, there exists a convex combination of the
Fi which is positive, and this is no longer true when m ≥ 3.

In the present paper, we reconsider the more difficult case m ≥ 3 and our main
goal is to prove a Liouville theorem for strictly copositive matrices B in higher di-
mensions n ≥ 3 for suitable q. This will be achieved by combining some refinements
of the approach in [17] with ideas from [22] (see Section 1.3 for more details).

1.2. Main results. Our main Liouville-type theorem is the following.

Theorem 1. Let m,n ≥ 3 and q > 0 satisfy 2q + 1 < n/(n − 2). Let B be a real
symmetric, strictly copositive matrix. Then system (1.1) has no positive, bounded
solution.

In view of the existence result from [22], we thus have the following characteri-
zation.

Corollary 1. Let m,n ≥ 3 and q > 0 satisfy 2q + 1 < n/(n − 2). Let B be a real
symmetric matrix. Then system (1.1) has no positive, bounded solution if and only
if B is strictly copositive.

Remark 1.1. (a) Similarly as in [22], it is unknown whether Theorem 1 remains
true for nonnegative solutions U 6≡ 0, instead of positive solutions. Indeed, since
q < 1 (due to 2q + 1 < n/(n − 2) ≤ 3), the nonlinearities are not Lipschitz near
zero and positivity of solutions is not a priori guaranteed. Note that the positivity
restriction did not appear in the case m = 2 because, thanks to the very simple
structure of (2, 2) copositive matrices, some basic a priori estimate can be easily
obtained without using negative powers of ui as test-functions (see Section 1.3).

(b) The boundedness hypothesis in Theorem 1 can actually be replaced with the
following, much weaker, exponential, upper growth assumption:

|U(x)| ≤ C exp(|x|q), x ∈ Rn, for some C, q > 0, (1.3)
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as a consequence of Theorem 2 below. Moreover, the proof of Theorem 1 shows
that the result remains true for nonnegative solutions which are positive outside a
set of finite measure (and which satisfy (1.3)).

(c) It is an interesting open problem whether nonexistence of positive solutions
holds in the physically important, cubic case q = 1, n = 3 with m ≥ 3. Note that
Theorem 1 fails just on the borderline. More generally, for m ≥ 3, if n ≥ 3 and
n/(n − 2) ≤ 2q + 1 < pS or if n ≤ 2 and 1 < q < ∞, it is not known if strict
copositivity implies (and is hence equivalent to) the Liouville property.

We next turn to the main technical result of the paper, upon which Theorem 1
depends. It asserts the triviality of nonnegative solutions satisfying a suitable inte-
gral bound. It is conveniently formulated for a more general class of systems with
gradient structure. Namely we consider elliptic systems of the form

−D∆U = F (U), x ∈ Rn, i = 1, . . . ,m, (1.4)

where D is an m × m diagonal matrix with positive (constant) entries di > 0,
U : Rn → Rm, F ∈ C(Rm;Rm) and where we denote ∆U = (∆u1, . . . ,∆um)T . The
components of F will be denoted by Fi. We assume that the system has gradient
structure, i.e.

F = ∇V, for some function V ∈ C1(Rm,R). (1.5)

Fixing p > 1, we next assume that, for some constants c0, C0 > 0, the functions F
and V satisfy the following conditions:

|F (U)| ≤ C0|U |p, for all U ∈ [0,∞)m, (1.6)

2nV (U)− (n− 2)U · ∇V (U) ≥ c0|U |p+1, for all U ∈ [0,∞)m. (1.7)

Note that since F (0) = 0 by (1.6), U ≡ 0 is a solution of (1.4).

Theorem 2. Let n ≥ 1, p > 1, s > 0. Assume (1.5)-(1.7) and

p < min
(
pS , 1 +

2s

n− 1

)
. (1.8)

Let U ≥ 0 be a classical solution of (1.4) which satisfies the exponential growth
condition (1.3). If ∫

BR

|U |s ≤ CRn−2s/(p−1), R ≥ 1, (1.9)

then U ≡ 0.

Remark 1.2. (on the conditions on s)

(a) Condition (1.9) can be rewritten as a decay condition on the Ls-averages,
namely

‖U‖s,BR :=

(
1

|BR|

∫
BR

|U |s
)1/s

≤ CR−2/(p−1). (1.10)

Note that the power on the RHS of (1.10) is consistent with the scaling properties of
the system in case of homogeneous nonlinearities like in (1.1). To check the validity
of (1.9) for suitable s, so as to derive Liouville-type results such as Theorem 1
from Theorem 2, one can use different test-function arguments, depending on the
hypothesis made on the matrix B (see Section 1.3 below). The larger s may be
found, the larger will be the allowable range for p (which in any case is limited from
above by the Sobolev exponent).
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(b) The admissibility assumption on s in (1.8) can be rewritten as a “supercriti-
cality” condition:

s > s∗(n− 1) :=
(n− 1)(p− 1)

2
.

Observe that if s satisfies the stronger restriction s > n(p − 1)/2 = s∗(n), then
the conclusion becomes trivial, letting R → ∞ in (1.9). But under the condition
s > s∗(n − 1), Theorem 2 is far for immediate. It is not known whether condition
(1.8) is optimal for the validity of Theorem 2. However this condition is somehow
natural from a heuristic point of view. Indeed, on the one hand, the number s∗(n)
is a well-known critical exponent for regularity criteria in semilinear elliptic and
parabolic problems (see e.g. [23, 16]) and, on the other hand, our method can be
seen as a combination of some regularity theory with the “dimensional reduction”
(from n to n−1) achived via Rellich-Pohozaev identities (see Section 1.3 for a more
detailed description of the method).

Remark 1.3. (on the growth restrictions for U)

(a) In previous work based on the approach described in section 1.3 below, a
polynomial upper growth bound was required on U . This is here weakened to the
exponential growth restriction (1.3). This improvement is made possible by a better
choice of the auxiliary spaces used in the proof.

(b) If n = 1 or if s satisfies the additional conditions

s > p and s ≥ 2(n− 1)p

n+ 1
, (1.11)

(the latter being effective only if n ≥ 4), then Theorem 2 remains true without any
growth restriction on U ; see Appendix for n = 1 and Remark 3.1 below.

(c) In some cases, growth restrictions can be removed a posteriori. This is the
case when Theorem 2 implies a Liouville-type theorem for bounded nonnegative
solutions. Then, using a doubling-rescaling argument from [14], one deduces from
such Liouville theorem a universal bound for all local solutions, and the latter
implies a Liouville result without any growth restriction. See [17] for situations
where this can be done. This does not seem to apply here in Theorems 1 and 2,
because of the (component-wise) positivity restriction entailed by the non locally
Lipschitz nonlinearities. Indeed, the rescaling method is based on a contradiction
argument that produces a non trivial nonnegative solution in Rn, but one cannot
guarantee that this solution should be positive component-wise.

1.3. Strategy of proof. We note that the system (1.1) is of gradient type, but is
not cooperative (which would require βij ≥ 0 for all i 6= j). Therefore, maximum
principle techniques, such as moving planes or moving spheres, which are the most
usual methods for obtaining Liouville-type theorems for systems (see e.g. [4, 7, 18,
3]) are not applicable here. Also we would like to recall that, in spite of certain
similarities, methods available for scalar equations need not straightforwardly apply
to gradient systems, which are generally more difficult to handle (see [20, p. 205]
and [5, p. 956] for more details).

The proof of Theorem 2 is long and technical. It relies on an extension of a
feedback procedure from [21] and [17]. More precisely, by means of a Rellich-
Pohozaev type identity, for any r > 0, the volume integral

H(r) :=

∫
|x|<r

|U |p+1 dx
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can be controled by surface integrals involving |U |p+1, |∇U |2 and |U |2 at |x| = r.
Fix R, δ > 0. If, for some r ∈

(
R, (1 + δ)R

)
, one can estimate these surface terms

by CR−aHb
(
(1 + 2δ)R

)
with C, a > 0, b ∈ [0, 1) independent of R, then one

easily infers that H(R) has very fast growth as R → ∞, hence contradicting the
assumption on U . It turns out that such estimation can be achieved by a careful
analysis using Sobolev imbeddings and interpolation inequalities on Sn−1, elliptic
estimates and a measure argument. In this scheme, the primary integral bound
(1.9) is used in the interpolation step, where the surface terms are interpolated
between various auxiliary norms. Heuristically, the efficiency of the method comes
from the fact that one space dimension is “gained” via the Pohozaev type identity
because, by applying functional analytic arguments on the n − 1 dimensional unit
sphere rather than directly on BR, one can bootstrap from (1.9) under less stringent
growth restrictions on the nonlinearity. Related arguments, without interpolation
and feedback, and restricted to n = 3, first appeared in [19]. Both [19] and [21]
were exclusively concerned with the Lane-Emden system −∆u = vp, −∆v = uq.

The Liouville-type theorems in [17] were obtained by applying this strategy in
conjunction with an L1 estimate of the RHS, namely the bound (1.9) for s = p =
2q+ 1. Such bound follows from a standard rescaled test-function argument, under
the condition that some convex combination of the nonlinearities Fi is positive. But,
as recalled above, this condition is not met for system (1.1) when the matrix B is
merely assumed to be strictly copositive and m ≥ 3. However, in this case, it turns
out that a more involved test-function argument from [22] implies the validity of
(1.9) for the smaller value s = q + 1 = (p + 1)/2 (see Lemma 3.1 and Remark 3.1
below). This motivated us to extend the approach of [17] under the assumption
that (1.9) – or (1.10) – holds for some s > 0, thus leading to Theorem 2.

This extension leads to many additional difficulties as compared with those in
[21] and [17] and requires some new ideas. In particular, in order to cover the full
range (1.8) for s, we need to consider several separate cases. For instance, one has
to use different ways of interpolation depending on certain relationships involving
the parameters s, p, n. Also, the case s < p presents some special difficulties due to
the fact that ∆U is not initially controled in any Lebesgue space. Note that the
full strength of Theorem 2 is not exploited by Theorem 1 (nor by the results in
[17]). Namely, up to now, we have either s = p or s = (p+ 1)/2 in our applications.
However Theorem 2 might turn out to be useful again if, for such problems, primary
bounds of the form (1.9) should be established for other values of s in the future.

Some useful preliminaries are given Section 2. The proofs of Theorem 2 and 1
are respectively given in Sections 3 and 4.

2. Notation and preliminaries. Denote

BR = {x ∈ Rn; |x| < R}, R > 0, and Sn−1 = {x ∈ Rn; |x| = 1}.
We shall use the spherical coordinates (r, θ) with r = |x|, θ = x/|x| ∈ Sn−1 (for
x 6= 0). For a given function w of x ∈ Rn, we write w(x) = w(r, θ) (using the same
symbol w, without risk of confusion). For brevity we will use the following notation
for volume and surface integrals∫

BR

w =

∫
BR

w(x) dx,

∫
Sn−1

w(R) =

∫
Sn−1

w(R, θ) dθ.

In the following Lemmas 2.1–2.4, the letter C will denote positive constants
which are independent of the functions U, v, w and the number R > 0. We first give
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Sobolev and interpolation inequalities on Sn−1 which will be used repeatedly in the
proof of Theorem 2.

Lemma 2.1. (i) Let n ≥ 2, j ≥ 1 be integers, let 1 < z <∞ and let λ satisfy
1

z
− 1

λ
≤ j

n− 1
, if z < (n− 1)/j,

1 < λ <∞, if z = (n− 1)/j,

λ =∞, if z > (n− 1)/j.

Then, for any w = w(θ) ∈W j,z(Sn−1), we have

‖w‖λ ≤ C(‖Dj
θw‖z + ‖w‖1).

(ii) Let 1 ≤ z <∞. For any w = w(θ) ∈W 2,z(S1), we have

‖w‖∞ ≤ C
(
‖w‖1 + ‖D2

θw‖1
)1/(z+1)‖w‖z/(z+1)

z .

(iii) For any w = w(θ) ∈W 1,1(S1), we have

‖w‖∞ ≤ C inf
S1
|w|+ C‖Dθw‖1.

Proof. For assertion (i), see e.g. [19]. To prove assertion (ii), first note that

osc(|w| z−1
2 w) ≤

∫ 2π

0

∣∣Dθ(|w|
z−1
2 w)

∣∣ ≤ C ∫ 2π

0

|w|
z−1
2 |Dθw|

≤ C‖w‖
z−1
2

z ‖Dθw‖ 2z
z+1

,

(2.1)

for any w ∈W 1,2z/(z+1)(S1). If now w ∈W 2,z(S1), inequality (2.1) combined with
interpolation yields

‖w‖∞ ≤ C‖w‖1 + C‖w‖(z−1)/(z+1)
z ‖Dθw‖2/(z+1)

2z/(z+1)

≤ C‖w‖1 + C‖w‖(z−1)/(z+1)
z

((
‖D2

θw‖1 + ‖w‖1
)1/2‖w‖1/2z

)2/(z+1)

≤ C‖w‖1 + C‖w‖z/(z+1)
z

(
‖D2

θw‖1 + ‖w‖1
)1/(z+1)

,

hence (ii). As for assertion (iii) it follows immediately from (2.1) with z = 1. �
The next lemma follows from standard elliptic estimates for R = 1 and an obvious

dilation argument.

Lemma 2.2. Let 1 < z <∞ and δ > 0. There exists C > 0 such that for all R > 0
and v = v(x) ∈W 2,z(BR), we have∫

BR

|D2
xv|z +R−z

∫
BR

|Dxv|z ≤ C
(∫

B(1+δ)R

|∆v|z +R−2z
∫
B(1+δ)R

|v|z
)
.

The following Rellich-Pohozaev type identity, cf. [15] and see also [17], plays a
key role in the proof of Theorem 2.

Lemma 2.3. Assume (1.5). Then, for any nonnegative solution U of (1.4) and
any R > 0, there holds∫

BR

(
2nV (U)− (n− 2)U · ∇V (U)

)
= 2Rn

∫
Sn−1

V (U(R))

+Rn
∑
i

di

∫
Sn−1

(
|∂rui|2 − |∂τui|2 + (n− 2)R−1ui∂rui

)
(R),
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where ∂r and ∂τ respectively denote the components of the gradient along x/|x| and
along its orthogonal complement. (For n = 1, the above formula reads as∫ R

−R

(
2V (U) + U · ∇V (U)

)
dx = R

∑
x=±R

[
2V (U(x)) +

∑
i

di
(
|u′i|2 −R−1uiu′i

)]
(x).)

We will also need the following lemma.

Lemma 2.4. Assume (1.6) and let δ > 0, β ∈ (0, 1). Then there exists C > 0 such
that, for any nonnegative solution U of (1.4) and any R > 0, there holds∫

BR

|∇ui|2u−βi ≤ C
∫
B(1+δ)R

|U |p+1−β

+CR−2
∫
B(1+δ)R

|U |2−β , R > 0, i = 1, · · · ,m,
(2.2)

where the LHS is understood to be 0 at points where ∇ui = 0 and ui = 0.

Proof. Fix a cut-off function 0 ≤ χ ∈ C∞0 (Rn), such that χ = 1 for |x| ≤ 1 and
χ = 0 for |x| ≥ 1 + δ. For R > 0 we set ϕ(x) = ϕR(x) = χ(x/R). Let ε > 0.
Multiplying the i-th equation in (1.4) with d−1i (u + ε)1−βϕ2 and integrating by
parts, we obtain (setting

∫
=
∫
Rn and u = ui):

d−1i

∫
Fi(U)(u+ ε)1−βϕ2

=

∫
∇u · ∇((u+ ε)1−βϕ2)

= (1− β)

∫
|∇u|2(u+ ε)−βϕ2 + 2

∫
(u+ ε)1−βϕ(∇u · ∇ϕ).

Estimating the last term via

−
∫

(u+ ε)1−βϕ(∇u · ∇ϕ) ≤ 1− β
4

∫
|∇u|2(u+ ε)−βϕ2 + C

∫
|∇ϕ|2(u+ ε)2−β ,

we get∫
|∇u|2(u+ ε)−βϕ2 ≤ C

∫
Fi(U)(u+ ε)1−βϕ2 + C

∫
|∇ϕ|2(u+ ε)2−β .

Letting ε→ 0 (applying monotone convergence on the LHS), and then using (1.6),
we obtain (2.2). �

3. Proof of Theorem 2. Since the case n = 1 can be treated by rather simple
ODE arguments, in order not to distract ourselves from our main line of proof,
we have relegated this case to an appendix and we assume n ≥ 2 throughout this
section.

For sake of clarity, since the proof is quite long and technical, we split it into
several steps and lemmas.

Step 1. Preparations.

We fix two numbers 0 < ε, δ < 1, which will be chosen suitably small in subse-
quent steps of the proof. We set

α = 2/(p− 1), k = (p+ 1)/p

and

` =

{
s/p, if s > p,

1 + ε, otherwise.
(3.1)
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We may assume
s ≤ n(p− 1)/2 < p+ 1, (3.2)

(where the second inequality follows from p < pS), since otherwise (1.9) immediately
imply U ≡ 0.

Suppose for contradiction that (1.4) admits a nontrivial classical solution U ≥ 0
which satisfies the exponential growth condition (1.3). Define

H(R) :=

∫
BR

|U |p+1, R > 0.

Picking R0 ≥ 1 such that U 6≡ 0 on BR0
, we have

H(R) ≥ H(R0) > 0, R ≥ R0. (3.3)

In this proof, the letter u will stand for any component of U and C will denote
generic positive constants which are independent of R (but may possibly depend
on the solution U and on all the other parameters, including ε, δ). Assuming V (0) =
0 without loss of generality, (1.6) implies that V (U) ≤ C|U |p+1 for all U ∈ [0,∞)m.
It then follows from (1.7) and the Rellich-Pohozaev identity in Lemma 2.3 that

H(R) ≤ CG1(R) + CG2(R), R > 0, (3.4)

where 
G1(R) = Rn

∫
Sn−1

|U(R)|p+1,

G2(R) = Rn
∫
Sn−1

(
|DxU(R)|2 +R−2|U(R)|2

)
.

(3.5)

In order to reach a contradiction, our goal is to find constants a,C > 0 and 0 ≤ b < 1
such that, for all R ≥ R0, the feedback estimate

G1(R̃), G2(R̃) ≤ CR−aHb
(
(1 + 2δ)R

)
holds for some R̃ ∈

(
R, (1 + δ)R

)
. In the rest of the proof, for any given R > 0, we

shall denote for brevity

R′ = (1 + δ)R, R′′ = (1 + 2δ)R. (3.6)

For given function w = w(r, θ), 0 < z ≤ ∞ and R > 0, we denote

‖w‖z = ‖w(R, ·)‖Lz(Sn−1), (3.7)

when no risk of confusion arises. We note that ‖ · ‖z is not a norm when 0 < z < 1,
but we keep the same notation for convenience. Finally, we put

Iz(R) = ‖D2
xU(R, ·)‖z +R−1‖DxU(R, ·)‖z +R−2‖U(R, ·)‖z.

For convenience of the readers, let us outline the rest of the proof, which is as
follows:

Step 2: Estimation of G1(R) in terms of auxiliary norms for n ≥ 3
Step 3: Estimation of G2(R) in terms of auxiliary norms for n ≥ 3
Step 4: Estimation of G1(R) and G2(R) in terms of auxiliary norms for n = 2
Step 5: Control of averages of auxiliary norms in terms of R and H(R′′)
Step 6: Measure argument
Step 7: Feedback estimate for G1

Step 8: Feedback estimate for G2

Step 9: Conclusion.

Step 2. Estimation of G1(R) in terms of auxiliary norms for n ≥ 3. Let λ be
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given by

λ =



n− 1

n− 3
(∞ for n = 3), if s ≤ p,(1

`
− 2

n− 1

)−1
∈ (1, p+ 1), if s > p and

1

`
− 2

n− 1
>

1

p+ 1
,

p+ 1, otherwise.

(3.8)

Next, if p+ 1 > λ then p
p+1 >

2
n−1 and we may define

µ :=
( p

p+ 1
− 2

n− 1

)−1
∈ (p+ 1,∞) (3.9)

(where µ > p+ 1 follows from p < pS).

Lemma 3.1. Let n ≥ 3. We have the estimate

G1(R) ≤

 CRn
(
R2I1−ν` Iνk

)p+1
, if p+ 1 ≥ λ,

CRn
(
R2(1−ν)I1−ν` ‖U‖νs

)p+1
, if p+ 1 < λ,

(3.10)

where ν ∈ [0, 1) is given by

ν =


( 1

λ
− 1

p+ 1

)( 1

λ
− 1

µ

)−1
, if p+ 1 ≥ λ,( 1

λ
− 1

p+ 1

)( 1

λ
− 1

s

)−1
, if p+ 1 < λ.

(3.11)

Proof. Lemma 2.1(i) and (3.8) imply that

‖u‖λ ≤ C(‖D2
θu‖` + ‖u‖1) ≤ C(R2‖D2

xu‖` + ‖u‖`) ≤ CR2I`. (3.12)

On the other hand, we deduce from Lemma 2.1(i) and (3.9) that

‖u‖µ ≤ C(‖D2
θu‖k + ‖u‖1)

≤ C(R2‖D2
xu‖k + ‖u‖k) ≤ CR2Ik, if p+ 1 > λ.

(3.13)

Now, by (3.5), we have

G1(R) = CRn‖U‖p+1
p+1. (3.14)

If p + 1 = λ, then (3.10) follows directly from (3.12). If p + 1 > λ, then (3.14),
Hölder’s inequality and p+ 1 < µ imply

G1(R) ≤ CRn
(
‖U‖1−νλ ‖U‖νµ

)p+1

and (3.10) follows from (3.12), (3.13). Finally, if p + 1 < λ, then (3.14), Hölder’s
inequality and p+ 1 > s imply

G1(R) ≤ CRn
(
‖U‖1−νλ ‖U‖νs

)p+1

and (3.10) follows from (3.12). �

Step 3. Estimation of G2(R) in terms of auxiliary norms for n ≥ 3. Noting that

` < (p+ 1)/p < n− 1 due to n ≥ 3, p > 1 and (3.2), we may define

ρ :=


n− 1

n− 2
, if s ≤ p,(1

`
− 1

n− 1

)−1
, if s > p,

(3.15)
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γ :=
( p

p+ 1
− 1

n− 1

)−1
∈
(
max(ρ, 2),∞

)
(3.16)

(where γ > 2 follows from p < pS).

Lemma 3.2. Let n ≥ 3. We have the estimate

G2(R) ≤ CRn+2I
2(1−τ)
` I2τk , (3.17)

where

τ :=
(1

ρ
− 1

γ

)−1(1

ρ
− 1

2

)
+
∈ [0, 1). (3.18)

Proof. Lemma 2.1(i), (3.15) and (3.16) imply that

‖Dxu‖ρ ≤ C(‖DθDxu‖` + ‖Dxu‖1) ≤ C(R‖D2
xu‖` + ‖Dxu‖`) ≤ CRI` (3.19)

and

‖Dxu‖γ ≤ C(‖DθDxu‖k + ‖Dxu‖1) ≤ C(R‖D2
xu‖k + ‖Dxu‖k) ≤ CRIk. (3.20)

If ρ < 2, then combining Hölder’s inequality, γ > 2, (3.19) and (3.20), we obtain

‖Dxu‖2 ≤ ‖Dxu‖1−τρ ‖Dxu‖τγ ≤ C(RI`)
1−τ (RIk)τ ≤ CRI1−τ` Iτk . (3.21)

If ρ ≥ 2, then τ = 0, so that (3.21) remains true. On the other hand, by
Lemma 2.1(i), we have

R−1‖u‖2 ≤ CR−1
(
‖Dθu‖2 + ‖u‖1

)
≤ C

(
‖Dxu‖2 +R−1‖u‖1

)
. (3.22)

Since obviously ‖u‖1 = ‖u‖1−τ1 ‖u‖τ1 ≤ C‖u‖1−τ` ‖u‖τk ≤ CR2I1−τ` Iτk , estimate (3.17)
follows from (3.5), (3.21) and (3.22). �

Step 4. Estimation of G1(R) and G2(R) in terms of auxiliary norms for n = 2. A

similar procedure as for n ≥ 3 could still be used, but this would eventually require
a condition on s stronger than (1.8), because the Sobolev injection W 1,1(S1) ⊂
L∞(S1) “loses” too much information. Instead, we shall estimate the L∞(S1) norm
through the Gagliardo-Nirenberg type inequalities from Lemma 2.1(i)(ii) and then
control G1(R) by interpolating between L∞ and Ls. As for the estimate of G2(R),
relying on a modification of an idea in [19], it is based on the inequality

‖DxU‖22 ≤ ‖U‖β∞
m∑
i=1

‖u−β/2i Dxui‖22, β > 0, (3.23)

which will make it possible to appeal to Lemma 2.4 (in the subsequent averaging

step). Note that in (3.23), the quantity u
−β/2
i Dxui is understood to be 0 at points

where ∇ui = 0 and ui = 0.

Lemma 3.3. Let n = 2. We have

‖U‖∞ ≤


C
(
R2 I`‖U‖ss

)1/(s+1)

, if s > 1,

CRI
1/2
` ‖U‖

sp
2(p+1−s)
s

(
‖U‖p+1

p+1

) 1−s
2(p+1−s) , if s ≤ 1.

(3.24)

Moreover, we have
G1(R) ≤ CR2‖U‖ss ‖U‖p+1−s

∞ (3.25)

and, for any β > 0,

G2(R) ≤ CR2‖U‖β∞
m∑
i=1

‖u−β/2i Dxui‖22 + C‖U‖2s. (3.26)



LIOUVILLE-TYPE THEOREMS 977

Proof. If s > 1, then Lemma 2.1(ii) with z = s implies

‖u‖∞ ≤ C
(
‖u‖1 + ‖D2

θu‖1
) 1
s+1 ‖u‖

s
s+1
s ≤ C

(
‖u‖` +R2‖D2

xu‖`
) 1
s+1 ‖u‖

s
s+1
s .

This yields estimate (3.24) for s > 1. When s ≤ 1, applying Lemma 2.1(ii) with
z = 1, we obtain

‖u‖∞ ≤ C
(
‖u‖1 + ‖D2

θu‖1
)1/2‖u‖1/21

≤ C(‖u‖` +R2‖D2
xu‖`)1/2‖u‖

1/2
1 ≤ CRI1/2` ‖U‖

1/2
1 .

Since ‖U‖1 ≤ ‖U‖(p+1)(1−s)/(p+1−s)
p+1 ‖U‖sp/(p+1−s)

s by Hölder’s inequality, estimate

(3.24) for s ≤ 1 follows.
Next, (3.25) is obvious from (3.5). To check (3.26), we first use Lemma 2.1(iii)

to estimate

‖u‖2 ≤ C‖u‖∞ ≤ C inf
S1
|u|+C‖Dθu‖1 ≤ C‖u‖s+C‖Dθu‖2 ≤ C‖u‖s+CR‖Dxu‖2.

From (3.5) and n = 2, we deduce that

G2(R) ≤ CR2‖DxU‖22 + C‖U‖2s,
hence (3.26), in view of (3.23). �

Step 5. Control of averages of auxiliary norms in terms of R and H(R′′). Recalling

the notation (3.6), for any z ∈ (1,∞), we set Jz(R) =
∫ R′
R
Izz (r)rn−1 dr.

Lemma 3.4. We have

Jk +

∫ R′

R

‖U(r)‖p+1
p+1r

n−1 dr ≤ CH(R′′), R ≥ R0, (3.27)

J` ≤

{
CRn−sα, R ≥ R0, if s > p,

CRµHη(R′′), R ≥ R0, if s ≤ p,
(3.28)

where

µ = µε =
(n− αs)(1− pε)

p+ 1− s
and η = ηε =

p(1 + ε)− s
p+ 1− s

. (3.29)

Moreover, when n = 2, for any β ∈ (0, 1) satisfying β ≤ p+ 1− s, we have∫ R′

R

m∑
i=1

‖u−β/2i Dxui(r)‖22 r dr ≤ CRdHe(R′′), R ≥ R0, (3.30)

(where C also depends on β), with

d =
β(2− sα)

p+ 1− s
, e =

p+ 1− β − s
p+ 1− s

. (3.31)

Proof. We first note that, for any z ∈ (1,∞), Lemma 2.2, (1.4) and (1.6) imply

Jz ≤ C
∫
BR′′

(
|D2

xu|z +R−z|Dxu|z +R−2zuz
)

≤ C
(∫

BR′′

|∆u|z +R−2z
∫
BR′′

|u|z
)

≤ C
(∫

BR′′

|U |pz +R−2z
∫
BR′′

|U |z
)

≤ C
∫
BR′′

|U |pz + CR−2z+
n(p−1)

p

(∫
BR′′

|U |pz
) 1
p
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hence,

Jz ≤ C
∫
BR′′

|U |pz + CRn−
2pz
p−1 . (3.32)

First take z = k in (3.32). Noting that n−2pk/(p−1) = n−2(p+1)/(p−1) < 0
due to p < pS , and using (3.3), we deduce (3.27).

Next, in case s > p, we apply (3.32) with z = ` = s/p. Using assumption (1.9),
we obtain (3.28) for s > p.

In case s ≤ p, applying (3.32) with z = ` = 1 + ε, and using Hölder’s inequality
and assumption (1.9), we obtain

J` ≤ C
∫
BR′′

|U |p(1+ε) + CRn−
2p(1+ε)
p−1

≤ C
(∫

BR′′

|U |s
)1−η(∫

BR′′

|U |p+1
)η

+ CRn−
2p(1+ε)
p−1

≤ CRµHη(R′′) + CRn−
2p(1+ε)
p−1 ,

where µ, η are given by (3.31). By a simple computation, using p < pS , we see that
µ > n − 2p(1 + ε)/(p − 1) for ε > 0 small. In view of (3.3), we deduce (3.28) for
s ≤ p.

Let us turn to (3.30). Using Lemma 2.4, Hölder’s inequality, n = 2 and (3.3), we
obtain, for R ≥ R0,
m∑
i=1

∫
BR

|∇ui|2u−βi ≤ C
∫
BR′′

|U |p+1−β + CR−2+n
p−1

p+1−β

(∫
BR′′

|U |p+1−β
) 2−β
p+1−β

≤ C
∫
BR′′

|U |p+1−β

≤ C
(∫

BR′′

|U |p+1
) p+1−β−s

p+1−s
(∫

BR′′

|U |s
) β
p+1−s

.

Estimate (3.30) then follows from assumption (1.9). �

Step 6. Measure argument.

For a given constant K > 0, let us define the sets

Γ1(R) :=
{
r ∈ (R,R′); ‖U(r)‖s > KR−α

}
, (3.33)

Γ2(R) :=
{
r ∈ (R,R′); Ikk (r) + ‖U(r)‖p+1

p+1 > KR−nH(R′′)
}
, (3.34)

Γ3(R) :=

{ {
r ∈ (R,R′); I`` (r) > KR−sα

}
, if s > p,{

r ∈ (R,R′); I`` (r) > KRµ−nHη(R′′)
}
, if s ≤ p,

(3.35)

Γ4(R) :=


{
r ∈ (R,R′);

m∑
i=1

‖u−β/2i Dxui(r)‖22 > KRd−2He(R′′)
}
, if n = 2,

∅, if n ≥ 3.

(3.36)

Lemma 3.5. For each R ≥ R0, we can find

R̃ ∈ (R,R′) \
4⋃
i=1

Γi(R) 6= ∅. (3.37)
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Proof. For R ≥ R0, by assumption (1.8), we have

CRn−αs ≥
∫ R′

R

‖U(r)‖ss rn−1 dr ≥ |Γ1(R)|Rn−1KsR−αs = |Γ1(R)|KsRn−αs−1

and, by estimate (3.27) in Lemma 3.4,

CH(R′′) ≥
∫ R′

R

(
Ikk (r) + ‖U(r)‖p+1

p+1

)
rn−1 dr

≥ |Γ2(R)|Rn−1KR−nH(R′′) = |Γ2(R)|KR−1H(R′′).

Consequently, |Γ1(R)| ≤ δR/5 for K ≥ (5C/δ)1/s and |Γ2(R)| ≤ δR/5 for K ≥
5C/δ. In a similar way, it follows from estimates (3.28) and (3.30) in Lemma 3.4
that |Γ3(R)|, |Γ4(R)| ≤ δR/5, for K > 0 large enough (independent of R ≥ R0).
The lemma follows. �

Step 7. Feedback estimate for G1.

Building on the results of the previous steps, we shall prove the following feedback
estimate.

Lemma 3.6. There exist numbers a > 0, b ∈ [0, 1) and, in case s ≤ p, a number
ε ∈ (0, 1) in (3.1), such that

G1(R̃) ≤ CR−aHb(R′′), R ≥ R0, (3.38)

where R̃ is given by Lemma 3.5. Moreover, a, b, ε depend only on n, p and s.

Proof. The proof involves only elementary but long calculations, since we need to
distinguish several cases, according to the values of n, s, p. Recall that η = ηε and
µ = µε are defined in (3.29).

Case 1: n ≥ 3, s > p (hence p + 1 ≥ λ). We deduce from Lemmas 3.1 and 3.5,
(3.34), (3.35) and ` = s/p that

G1(R̃) ≤ CRn
[
R2R−pα(1−ν)

(
R−nH(R′′)

)ν/k]p+1
,

where, in view of (3.8), (3.9) and (3.11), ν is given by

ν =
p+ 1

p+ 1− s

[
1− s

p

( 2

n− 1
+

1

p+ 1

)]
+
. (3.39)

This yields (3.38) with

a = (p+ 1)
[
(1− ν)pα+

nν

k
− 2− n

p+ 1

]
, b = νp. (3.40)

Now, we have either b = 0, or else

1− b = 1 +
p+ 1

p+ 1− s

[
s
( 2

n− 1
+

1

p+ 1

)
− p
]

=
p+ 1

p+ 1− s

[ 2s

n− 1
+ 1− p

]
> 0

by assumption (1.8). Moreover, we have

a

p+ 1
=
(
pα− 2− n

p+ 1

)
−
(
α− n

p+ 1

)
νp =

[ 2

p− 1
− n

p+ 1

]
(1− b) > 0,

where we used p < pS .

Case 2: n ≥ 3, s ≤ p and p + 1 ≥ λ (hence n ≥ 4 by (3.8)). We deduce from
Lemmas 3.1 and 3.5, (3.34), (3.35) and ` = 1 + ε that

G1(R̃) ≤ CRn
[
R2
(
Rµ−nHη(R′′)

) 1−ν
1+ε
(
R−nH(R′′)

)ν/k]p+1
,
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where, in view of (3.8), (3.9) and (3.11), ν = (n−3)(p+1)
n−1 − 1. Therefore, we have

(3.38) with

a = aε := (p+1)
[ (1− ν)(n− µ)

1 + ε
+
nν

k
−2− n

p+ 1

]
, b = bε := νp+

(1− ν)(p+ 1)η

1 + ε
.

Taking ε > 0 small, it suffices to show that a0 > 0 and b0 < 1. We compute

1− b0 = 1− νp− (1− ν)(p+ 1)(p− s)
p+ 1− s

=
(p+ 1− s)(1− νp) + (1− ν)(p+ 1)(s− p)

p+ 1− s

=
(p− ν)s+ 1− p2

p+ 1− s
=

2(p+1)s
n−1 + 1− p2

p+ 1− s

=
p+ 1

p+ 1− s

[ 2s

n− 1
+ 1− p

]
> 0,

due to (1.8). On the other hand, after some computation, we observe that

n− µ0 = (n− α(p+ 1))η0 + αp, (3.41)

hence
a0
p+ 1

= (1− ν)
(
(n− α(p+ 1))η0 + αp

)
+

nνp

p+ 1
− 2− n

p+ 1

=
(
α− n

p+ 1

)(
1− νp− (1− ν)(p+ 1)η0

)
=
[ 2

p− 1
− n

p+ 1

]
(1− b0) > 0.

Case 3: n ≥ 3, s ≤ p and p+ 1 < λ. We deduce from Lemmas 3.1 and 3.5, (3.33)
and (3.35) that

G1(R̃) ≤ CRn
[
R−αν

(
Rµ+2(1+ε)−nHη(R′′)

) 1−ν
1+ε

]p+1

,

where ν is given by (3.11). We deduce (3.38) with

a = aε := (p+ 1)
[
αν +

(1− ν)(n− 2(1 + ε)− µ)

1 + ε
− n

p+ 1

]
,

b = bε :=
(1− ν)(p+ 1)η

1 + ε
.

Again it suffices to show that a0 > 0 and b0 < 1. Recalling that λ = (n−1)/(n−3)
due to s ≤ p, we have

1− ν =


(p+ 1− s)λ

(p+ 1)(λ− s)
, if n ≥ 4,

p+ 1− s
p+ 1

, if n = 3.

Therefore, owing to (3.8) and (1.8), we have

1− b0 = 1− (p− s)λ
λ− s

=
λ− 1

λ− s

(
s− λ(p− 1)

λ− 1

)
=
λ− 1

λ− s

(
s− (n− 1)(p− 1)

2

)
> 0

if n ≥ 4 and 1− b0 = s− p+ 1 > 0 if n = 3.



LIOUVILLE-TYPE THEOREMS 981

On the other hand, after some computation, we observe that (p+ 1− s)(n− 2−
µ0 − α) = (n− α(p+ 1))(p− s). Therefore, for n ≥ 4, we get

a0
p+ 1

= (1− ν)(n− 2− µ0 − α) + α− n

p+ 1

=
( n

p+ 1
− α

) (p− s)λ
λ− s

+ α− n

p+ 1

=
( 2

p− 1
− n

p+ 1

)(
1− (p− s)λ

λ− s

)
=
[ 2

p− 1
− n

p+ 1

]
(1− b0) > 0.

The computation for n = 3 is similar.

Case 4: n = 2. First assume s > 1. Since s < p by (3.2), it follows from (3.24) in
Lemma 3.3, Lemma 3.5, (3.33) and (3.35) that

‖U(R̃)‖∞ ≤ C
(
R2−αs (Rµ−2Hη(R′′)

)1/(1+ε))1/(s+1)

, (3.42)

hence

G1(R̃) ≤ CR2−αs
(
R2−αs (Rµ−2Hη(R′′)

)1/(1+ε))(p+1−s)/(s+1)

by (3.25). We deduce (3.38) with

a = aε = αs− 2 +
p+ 1− s
s+ 1

(
αs− 2 +

2− µ
1 + ε

)
, b = bε =

p+ 1− s
(s+ 1)(1 + ε)

η.

To show that a0 > 0 and b0 < 1, we compute

a0 =
(αs− 2)(s+ 1) + αs(p+ 1− s) + αs− 2

s+ 1

=

(
α(p+ 3)− 2

)
s− 4

s+ 1
=

4(αs− 1)

s+ 1
> 0

and b0 = (p− s)/(s+ 1) < 1, due to (1.8).
Next assume s ≤ 1. Then (3.24) in Lemma 3.3, Lemma 3.5 and (3.33)–(3.35)

imply

‖U(R̃)‖∞ ≤ CR
(
Rµ−2Hη(R′′)

) 1
2(1+ε)R

−αsp
2(p+1−s)

(
R−2H(R′′)

) 1−s
2(p+1−s) , (3.43)

hence

G1(R̃) ≤ CR2−αs
(
R
(
Rµ−2Hη(R′′)

) 1
2(1+ε)R

−αsp
2(p+1−s)

(
R−2H(R′′)

) 1−s
2(p+1−s)

)p+1−s

by (3.25). We deduce (3.38) with

a = aε = αs− 2 +
( 2− µ

2(1 + ε)
− 1
)

(p+ 1− s) +
αsp

2
+ 1− s,

b = bε =
η(p+ 1− s)

2
+

1− s
2

.

Again, we have

a0 = αs− 2− 2− αs
2

+
αsp

2
+ 1− s =

(α(p+ 3)

2
− 1
)
s− 2 = 2(αs− 1) > 0

and b0 = −s+ (p+ 1)/2 < 1, due to (1.8). �
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Step 8. Feedback estimate for G2.

Similarly as for G1 in Step 7, we shall prove the following feedback estimate
for G2.

Lemma 3.7. There exist numbers ã > 0, b̃ ∈ [0, 1) and, in case s ≤ p, a number
ε ∈ (0, 1) in (3.1), such that

G2(R̃) ≤ CR−ãH b̃(R′′), R ≥ R0, (3.44)

where R̃ is given by Lemma 3.5. Moreover, ã, b̃, ε depend only on n, p and s.

Proof. We again have to split the proof into several cases (which are different from
those in Step 7).

Case 1: n ≥ 3 and s > p. We deduce from Lemmas 3.2 and 3.5, (3.34), (3.35) and
` = s/p that

G2(R̃) ≤ CRn+2(R−pα)2(1−τ)(R−nH(R′′))2τ/k,

where τ is given by (3.15), (3.16), (3.18). This yields (3.44) with

ã = 2(1− τ)pα+ 2
nτ

k
− (n+ 2), b̃ = 2τ/k.

We compute

b̃ =
2p

p+ 1

(p
s
− p

p+ 1

)−1(p
s
− n+ 1

2(n− 1)

)
+

= (p+1−s)−1
(

2p− (n+ 1)s

n− 1

)
+
. (3.45)

Therefore, we have either b̃ = 0, or else

1− b̃ = (p+ 1− s)−1
( 2s

n− 1
+ 1− p

)
> 0

by (1.8). Moreover, we have

ã =
2τ

k
(n− pαk) + 2pα− 2− n =

[2(p+ 1)

p− 1
− n

]
(1− b̃) > 0,

where we used p < pS .

Case 2: n ≥ 3 and s ≤ p. We deduce from Lemmas 3.2 and 3.5, (3.34), (3.35) and
` = 1 + ε that

G2(R̃) ≤ CRn+2(Rµ−nHη(R′′))
2(1−τ)
1+ε (R−nH(R′′))2τ/k,

where τ is as in Case 1 and η = ηε, µ = µε are defined in (3.29). This yields (3.44)
with

ã = ãε =
2(1− τ)(n− µ)

1 + ε
+ 2

nτ

k
− (n+ 2), b̃ = b̃ε =

2τ

k
+

2(1− τ)η

1 + ε
.

Taking ε > 0 small, it suffices to show that ã0 > 0 and b̃0 < 1. By (3.15), (3.16),
(3.18), we have τ = (p+ 1)(n− 3)/2(n− 1). Consequently,

1− b̃0 = 1− 2τ

k
− 2(1− τ)(p− s)

p+ 1− s
=

(p+ 1− s)(1− (2τ/k)) + 2(1− τ)(s− p)
p+ 1− s

=
(1− 2τ

p+1 )s+ 1− p
p+ 1− s

=
2s
n−1 + 1− p
p+ 1− s

> 0,

by assumption (1.8). On the other hand, using (3.41), we find that

a0 = 2(1− τ)
[
(n− α(p+ 1))η0 + αp

]
+ 2

nτ

k
− (n+ 2)

=
[2(p+ 1)

p− 1
− n

](
1− 2(1− τ)η0 − 2

τ

k

)
=
[2(p+ 1)

p− 1
− n

]
(1− b̃0) > 0.
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Case 3: n = 2. By (3.26) in Lemma ?.3, Lemma 3.5, (3.33) and (3.36), we have

G2(R̃) ≤ CR2‖U(R̃)‖β∞
m∑
i=1

‖u−β/2i Dxui(R̃)‖22 + C‖U(R̃)‖2s

≤ CRdHe(R′′) ‖U(R̃)‖β∞ + CR−2α =: G2,1 + CR−2α,

(3.46)

where d, e are defined in (3.31).
First consider the case s > 1. Then (3.42) implies

G2,1 ≤ CRdHe(R′′)
(
R2−αs (Rµ−2Hη(R′′)

)1/(1+ε))β/(s+1)

.

By (3.46) and (3.3), we deduce (3.44) with

ã = ãε = min(āε, 2α), āε = −d+
β

s+ 1

(
αs− 2 +

2− µ
1 + ε

)
and

b̃ = b̃ε = e+
ηβ

(s+ 1)(1 + ε)
.

It suffices to show that ā0 > 0 and b̃0 < 1. Using (1.8), we obtain

β−1(1− b̃0) =
1

p+ 1− s
− p− s

(p+ 1− s)(s+ 1)
=

2s− p+ 1

(p+ 1− s)(s+ 1)
> 0

and

β−1ā0 =
αs− 2

p+ 1− s
+
αs− µ
s+ 1

=
(αs− 2)(s+ 1) + αs(p+ 1− s) + αs− 2

(p+ 1− s)(s+ 1)

=
2(αs− 2)− 2s+ αs(p+ 1)

(s+ 1)(p+ 1− s)
=

4( 2s
p−1 − 1)

(s+ 1)(p+ 1− s)
> 0.

Next assume s ≤ 1. Then (3.43) implies

G2,1 ≤ CRdHe(R′′)
[
R
(
Rµ−2Hη(R′′)

) 1
2(1+ε)R

−αsp
2(p+1−s)

(
R−2H(R′′)

) 1−s
2(p+1−s)

]β
.

By (3.46) and (3.3), we deduce (3.44) with

ã = ãε = min(āε, 2α), āε = −d+ β
(
−1 +

2− µ
2(1 + ε)

+
2(1− s) + αsp

2(p+ 1− s)

)
and

b̃ = b̃ε = e+ β
( η

2(1 + ε)
+

1− s
2(p+ 1− s)

)
.

Using (1.8), we obtain

β−1(1− b̃0) =
1

p+ 1− s
− (p− s) + (1− s)

2(p+ 1− s)
=

2s− p+ 1

2(p+ 1− s)
> 0

and

β−1ā0 =
αs− 2

p+ 1− s
− 1 +

2− µ
2

+
2(1− s) + αsp

2(p+ 1− s)

=
2(αs− 2) + αs− 2 + 2(1− s) + αsp

2(p+ 1− s)
=

2( 2s
p−1 − 1)

p+ 1− s
> 0.

This completes the proof of the Lemma. �
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Step 9. Conclusion.

Assumption (1.3) guarantees

H(R) ≤ C̃Rn exp[C(p+ 1)Rq], R > 1, (3.47)

for some C̃ > 0. On the other hand, (3.3), (3.4), Lemmas 3.6–3.7 and the nonde-
creasing property of H imply that

H(R) ≤ C0R
−âH b̂

(
(1 + 2δ)R

)
, R ≥ R0, (3.48)

for some constant C0 > 0, with â = min(a, ã) > 0 and b̂ = max(b, b̃) ∈ [0, 1).
To reach a contradiction, we want to show that (3.48) entails an arbitrary fast

exponential lower bound on H(R). We first claim that H(R) → ∞ as R → ∞.

Indeed, inequality (3.3) guarantees that H1−b̂((1 + 2δ)R
)
≥ 2C0R

−â for R ≥ R̄0

large enough. Consequently, (3.48) yields H
(
(1 + 2δ)R

)
≥ 2H(R) for R ≥ R̄0,

which implies the claim.
We may thus chose R̃0 ≥ R0 such that logH(R̃0) ≥ 1 and C0R

−â ≤ 1. Setting

γ = b̂−1 > 1, (3.48) then guarantees

logH
(
(1 + 2δ)R

)
≥ γ logH(R), R ≥ R̃0,

hence
logH

(
(1 + 2δ)iR̃0

)
≥ γi, i = 1, 2, . . .

that is,
H(Ri) ≥ exp[CRλi ], i = 1, 2, . . .

with Ri = (1 + 2δ)iR̃0, λ = log γ/ log(1 + 2δ), C = R̃−λ0 . But λ can be made

arbitrarily large by choosing δ > 0 small enough (recalling that b and b̃, hence γ,
depend only on n, p, s). Therefore, we reach a contradiction with (3.47). Theorem 2
is proved. �

Remark 3.1. Let us justify the claim made in Remark 1.3(b) that, under assump-
tion (1.11), Theorem 2 remains true without making any growth restriction on U .

Indeed, if (1.11) is true, then we have b = b̃ = 0, due to (3.39), (3.40) and (3.45).

Consequently b̂ = 0 in (3.48), and we obtain U ≡ 0 upon letting R→∞.

4. Proof of Theorem 1. We need the following Lemma, which is based on a small
modification of a test-function argument from [22].

Lemma 4.1. Let n ≥ 1, 0 < q ≤ 1 and B be strictly copositive. Let U be a
nonnegative solution of (1.1) and assume that ui > 0 in Rn \Σ for all i = 1, · · · ,m,
where Σ ⊂ Rn is a measurable set such that |Σ| = 0. Then U satisfies∫

BR

|U |q+1 ≤ CRn−(q+1)/q, R ≥ 1, (4.1)

with C = C(n, q,B) > 0.

Remark 4.1. (a) In [22], for n ≤ 2, the authors obtained a similar estimate in
the case U > 0 (with an additional decaying logarithmic factor in case n = 2),
which allowed them to conclude U ≡ 0 directly by sending R → ∞. By a choice
of test-function slightly different from that in [22], one gets (4.1) for all n ≥ 1 and
this could still be used directly to yield a Liouville theorem, but would lead to the
more stringent restriction 2q+1 < (n+1)/(n−1). Instead, so as to cover the larger
range 2q + 1 < n/(n − 2), we will use Lemma 3.1 as a primary a priori bound, in
order to satisfy assumption (1.9) from Theorem 2 (with s = q + 1).
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(b) In [17], a stronger assumption on the matrix B allowed one to get estimate
(4.1) with (q + 1)/q replaced with the larger value (2q + 1)/q (i.e. s = p = 2q + 1
in (1.9)). The special case of the (proof of) Theorem 2 established in [17] for that
particular value of s hence led to a Liouville theorem under the optimal assumption
p < pS for n ≤ 4 (or p < (n− 1)/(n− 3) for n ≥ 5).

Proof of Lemma 4.1. Let 0 ≤ ϕ ∈ C∞0 (Rn) and let a ≥ 2. Multiplying the i-th
equation in (1.1) with (ui + ε)−qϕa and integrating by parts, it follows that

m∑
j=1

βij

∫
Rn
uq+1
j

( ui
ui + ε

)q
ϕa dx

=

∫
Rn

(−di∆ui)(ui + ε)−qϕa dx = di

∫
Rn
∇ui · ∇

(
(ui + ε)−qϕa

)
dx

= di

∫
Rn
∇ui ·

(
aϕa−1(ui + ε)−q∇ϕ− qϕa(ui + ε)−q−1∇ui

)
dx

= −di
∫
Rn

∣∣∣∣√qϕ a
2 (ui + ε)−

q+1
2 ∇ui −

a

2
√
q
ϕ
a
2−1(ui + ε)

1−q
2 ∇ϕ

∣∣∣∣2 dx
+
a2di
4q

∫
Rn

(ui + ε)1−qϕa−2|∇ϕ|2 dx

≤ a2di
4q

∫
Rn

(ui + ε)1−qϕa−2|∇ϕ|2 dx.

Letting ε→ 0 and using dominated convergence, we obtain

m∑
j=1

βij

∫
Rn
uq+1
j χ{ui>0}ϕ

a dx ≤ a2di
4q

∫
Rn
u1−qi ϕa−2|∇ϕ|2 dx,

hence
m∑
j=1

βij

∫
Rn
uq+1
j ϕa dx ≤ a2di

4q

∫
Rn
u1−qi ϕa−2|∇ϕ|2 dx, (4.2)

due to our assumption that
∣∣{ui = 0}

∣∣ = 0. By homogeneity, the strict copositivity
assumption (1.2) implies the existence of κ > 0 such that∑

1≤i,j≤m

βijzizj ≥ κ‖z‖2, for all z ∈ [0,∞)m. (4.3)

Set ci = ci(ϕ) :=
∫
Rn u

q+1
i ϕa dx and d = supi di. Multiplying inequality (4.2) with

ci, summing over i and using (4.3), we obtain, for some κ̃ > 0,

κ̃
( m∑
i=1

ci

)2
≤

m∑
i,j=1

βijcicj ≤
a2d

4q

m∑
i=1

ci

∫
Rn
u1−qi ϕa−2|∇ϕ|2 dx,

hence
m∑
i=1

ci ≤
a2d

4qκ̃

m∑
i=1

∫
Rn
u1−qi ϕa−2|∇ϕ|2 dx. (4.4)

Now, for each R > 0, we choose ϕ = ϕR given by ϕR(x) = χ(x/R), where 0 ≤ χ ∈
C∞(Rn) is such that χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. We set a =
(q+1)/q. If q < 1, applying Hölder’s inequality and using a = (a−2)(q+1)/(1−q),
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we get

m∑
i=1

ci(ϕR) ≤ a2d

4qκ̃

(∫
Rn
|∇ϕR|

q+1
q dx

) 2q
q+1
( m∑
i=1

∫
Rn
uq+1
i ϕ

(a−2)(q+1)
1−q

R

) 1−q
q+1

≤ a2d

4qκ̃

(∫
Rn
|∇ϕR|

q+1
q dx

) 2q
q+1
( m∑
i=1

ci(ϕR)
) 1−q
q+1

.

It follows that∫
BR

|U |q+1 dx ≤
m∑
i=1

ci(ϕR) ≤ C
∫
Rn
|∇ϕR|

q+1
q dx ≤ CRn−(q+1)/q. (4.5)

Finally, if q = 1, then (4.5) follows directly from (4.4). �

Proof of Theorem 1. First observe that system (1.1) can be rewritten in the form
(1.4), where D = Id and (1.5) is satisfied for

V (U) :=
1

2q + 2

∑
1≤i,j≤m

βij |ui|q+1|uj |q+1.

Let us check the assumptions of Theorem 2. Setting p = 2q + 1, inequality (1.6) is
obvious. Next, by the strict copositivity property (4.3), and since p < pS , it follows
that

2nV (U)−(n−2)U ·∇V (U) =
(
2n−(n−2)(p+1)

)
V (U) ≥ c

∑
1≤i≤m

u
2(q+1)
i ≥ c̃|U |p+1

for some c, c̃ > 0, hence (1.7).
Now, by Lemma 4.1, if (1.1) admits a bounded positive solution U , then U

satisfies estimate (1.9) with s = q+1 = (p+1)/2, and condition (1.8) is satisfied due
to 2q+ 1 < n/(n− 2). It thus follows from Theorem 2 that U ≡ 0, a contradiction.

Appendix. Proof of Theorem 2 in the case n = 1.
Let us point out that no assumption on the growth of U at infinity will be used

in this proof.

First note that (1.3) guarantees the existence of a sequence Rj →∞ such that

|U(Rj)|+ |U(−Rj)| ≤ CR−αj → 0, j →∞. (A.1)

Assume V (0) = 0 without loss of generality and denote ′ = d/dx. By taking the
inner product of (1.4) with 2U ′, taking (1.5) into account and integrating, we see
that

m∑
i=1

di|U ′i(x)|2 + 2V (U(x)) = C = Const., x ∈ R. (A.2)

We claim that C = 0. Assume the contrary. Then, due to (A.1) and V (0) = 0, we
have C > 0 and (A.2) implies the existence of L > K > 0 and η ∈ (0, 1) such that

K ≤ |U ′(x)| ≤ L whenever |U(x)| ≤ η. (A.3)

One easily deduces from (A.3) that, if |U(x)| ≤ η/2, then |U(y)| ≤ η whenever
|y − x| ≤ η/2L. Since −DU ′′ = F (U), F (0) = 0 and F is continuous, by taking η
possibly smaller, it follows that

|U ′′(y)| ≤ KL

m
whenever |U(x)| ≤ η

2
and |y − x| ≤ η

2L
. (A.4)
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Now pick x0 such that |U(x0)| < (4mL)−1Kη < η/2 (such x0 does exist in view of
(A.1)). By (A.3), there exists i ∈ {1, . . . ,m} such that |U ′i(x0)| ≥ K/m. Assume
for instance U ′i(x0) ≤ −K/m (the other case being similar). Then, by (A.4), we
have

U ′i(y) ≤ −K
m

+
KL

m

η

2L
≤ − K

2m
for |y − x0| ≤

η

2L
.

Therefore,

Ui

(
x0 +

η

2L

)
≤ Ui(x0)− Kη

4mL
≤ |U(x0)| − Kη

4mL
< 0 :

a contradiction. This proves our claim that C = 0.
Now, as a consequence of (A.2), (1.6) and V (0) = 0, we have

|V (U)|+ |U ′|2 ≤ C1|U |p+1, x ∈ R, (A.5)

for some constant C1 > 0. Combining Lemma 2.4, (1.7), (A.5) and (A.1) yields the
estimate∫ Rj

−Rj
|U |p+1 ≤ CRj

∑
σ=±1

[
|V (U)|+ |U ′|2 +R−2j |U |

2
]
(σRj) ≤ CR1−2(p+1)/(p−1)

j .

Since the RHS goes to 0 as j →∞, we conclude that U ≡ 0. �
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