Citation: Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks[J]. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
[1] | Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295 |
[2] | Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691 |
[3] | Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295 |
[4] | Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41 |
[5] | Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81 |
[6] | Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733 |
[7] | Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008 |
[8] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[9] | Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame . Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7(4): 989-1018. doi: 10.3934/nhm.2012.7.989 |
[10] | Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya . Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3(4): 709-722. doi: 10.3934/nhm.2008.3.709 |
[1] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Networks and Heterogenous Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295
![]() |
[2] |
A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Reviews in Mathematical Sciences, 1 (2014), 47-111. doi: 10.4171/EMSS/2
![]() |
[3] |
R. Carvalho, L. Buzna, F. Bono, M. Masera, D. K. Arrowsmith and D. Helbing, Resilience of natural gas networks during conflicts, crises and disruptions, PLOS ONE, 9 (2014), e0090265. doi: 10.1371/journal.pone.0090265
![]() |
[4] |
F. Chapeau-Blondeau, Numerical evaluation of the lambert W function and application to generation of generalized Gaussian noise with exponent 1/2, IEEE Transactions on Signal Processing, 50 (2002), 2160-2165. doi: 10.1109/TSP.2002.801912
![]() |
[5] |
R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system, Journal of Mathematical Analysis and Applications, 361 (2010), 440-456. doi: 10.1016/j.jmaa.2009.07.022
![]() |
[6] |
R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372
![]() |
[7] |
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, Adv. Comp. Math., 5 (1996), 329-359. doi: 10.1007/BF02124750
![]() |
[8] |
J.-M. Coron, B. d'Andrea-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903
![]() |
[9] |
M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Networks and Heterogeneous Media, 5 (2010), 691-709. doi: 10.3934/nhm.2010.5.691
![]() |
[10] |
M. Garavello and B. Piccoli, Conservation laws on complex networks, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001
![]() |
[11] |
M. Gugat, M. Dick and G. Leugering, Gas flow in fan-shaped networks: Classical solutions and feedback stabilization, SIAM Journal on Control and Optimization, 49 (2011), 2101-2117. doi: 10.1137/100799824
![]() |
[12] |
M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 28-51. doi: 10.1051/cocv/2009035
![]() |
[13] |
M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Mathematical Methods in the Applied Sciences, 34 (2011), 745-757. doi: 10.1002/mma.1394
![]() |
[14] |
M. Herty, Modeling, simulation and optimization of gas networks with compressors, Networks and Heterogeneous Media, 2 (2007), 81-97. doi: 10.3934/nhm.2007.2.81
![]() |
[15] | J. H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physico-mathematico-anatomico-botanico-medica, 3 (1758), 128-168. |
[16] |
T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243
![]() |
[17] |
A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Mathematical Programming, 105 (2005), 563-582. doi: 10.1007/s10107-005-0665-5
![]() |
[18] |
G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Networks and Heterogeneous Media, 9 (2014), 65-95. doi: 10.3934/nhm.2014.9.65
![]() |
[19] |
V. Schleper, M. Gugat, M. Herty, A. Klar and G. Leugering, Well-posedness of networked hyperbolic systems of balance laws, in Constrained Optimization and Optimal Control for Partial Differential Equations, International Series of Numerical Mathematics, 160, Birkhäuser/Springer Basel AG, Basel, 2012, 123-146. doi: 10.1007/978-3-0348-0133-1_7
![]() |
[20] | arXiv:1003.1628 |
[21] |
G. P. Zou, N. Cheraghi and F. Taheri, Fluid-induced vibration of composite natural gas pipelines, International Journal of Solids and Structures, 42 (2005), 1253-1268. doi: 10.1016/j.ijsolstr.2004.07.001
![]() |
1. | Falk M. Hante, Günter Leugering, Alexander Martin, Lars Schewe, Martin Schmidt, 2017, Chapter 5, 978-981-10-3757-3, 77, 10.1007/978-981-10-3758-0_5 | |
2. | Tatsien Li, Lei Yu, Local Exact One-Sided Boundary Null Controllability of Entropy Solutions to a Class of Hyperbolic Systems of Balance Laws, 2019, 57, 0363-0129, 610, 10.1137/18M1187052 | |
3. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
4. | Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, 2015, 10, 1556-181X, 749, 10.3934/nhm.2015.10.749 | |
5. | Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002 | |
6. | Martin Gugat, Rüdiger Schultz, David Wintergerst, Networks of pipelines for gas with nonconstant compressibility factor: stationary states, 2018, 37, 0101-8205, 1066, 10.1007/s40314-016-0383-z | |
7. | Michael Hintermüller, Nikolai Strogies, Identification of the friction function in a semilinear system for gas transport through a network, 2020, 35, 1055-6788, 576, 10.1080/10556788.2019.1692206 | |
8. | Martin Gugat, Michael Herty, 2020, Chapter 6, 978-981-15-0927-8, 147, 10.1007/978-981-15-0928-5_6 | |
9. | Martin Gugat, Richard Krug, Alexander Martin, Transient gas pipeline flow: analytical examples, numerical simulation and a comparison to the quasi-static approach, 2021, 1389-4420, 10.1007/s11081-021-09690-4 | |
10. | Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, Towards simulation based mixed-integer optimization with differential equations, 2018, 72, 00283045, 60, 10.1002/net.21812 | |
11. | Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015 | |
12. | Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang, Probabilistic constrained optimization on flow networks, 2022, 23, 1389-4420, 1, 10.1007/s11081-021-09619-x | |
13. | Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini, Coupling conditions for isothermal gas flow and applications to valves, 2018, 40, 14681218, 403, 10.1016/j.nonrwa.2017.09.005 | |
14. | Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems, 2018, 70, 0926-6003, 267, 10.1007/s10589-017-9970-1 | |
15. | Martin Gugat, Michael Herty, Hui Yu, 2018, Chapter 50, 978-3-319-91544-9, 651, 10.1007/978-3-319-91545-6_50 | |
16. | Martin Schmidt, Mathias Sirvent, Winnifried Wollner, A decomposition method for MINLPs with Lipschitz continuous nonlinearities, 2019, 178, 0025-5610, 449, 10.1007/s10107-018-1309-x | |
17. | Amaury Hayat, Peipei Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, 2021, 153, 00217824, 187, 10.1016/j.matpur.2021.07.001 | |
18. | Günter Leugering, 2020, Chapter 4, 978-981-15-0927-8, 77, 10.1007/978-981-15-0928-5_4 | |
19. | Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber, Constrained exact boundary controllability of a semilinear model for pipeline gas flow, 2023, 0956-7925, 1, 10.1017/S0956792522000389 | |
20. | Martin Gugat, Rüdiger Schultz, Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data, 2018, 56, 0363-0129, 1491, 10.1137/16M1090156 | |
21. | Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1 | |
22. | Martin Gugat, Falk M. Hante, Li Jin, Closed loop control of gas flow in a pipe: stability for a transient model, 2020, 68, 2196-677X, 1001, 10.1515/auto-2020-0071 | |
23. | Martin Gugat, David Wintergerst, Transient Flow in Gas Networks: Traveling waves, 2018, 28, 2083-8492, 341, 10.2478/amcs-2018-0025 | |
24. | Daniel Rose, Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert, Computational optimization of gas compressor stations: MINLP models versus continuous reformulations, 2016, 83, 1432-2994, 409, 10.1007/s00186-016-0533-5 | |
25. | Lars Schewe, Martin Schmidt, 2019, Chapter 13, 978-3-662-58538-2, 173, 10.1007/978-3-662-58539-9_13 | |
26. | Martin Gugat, Michael Schuster, Stationary Gas Networks with Compressor Control and Random Loads: Optimization with Probabilistic Constraints, 2018, 2018, 1024-123X, 1, 10.1155/2018/7984079 | |
27. | Michael Herty, Hui Yu, Feedback boundary control of linear hyperbolic equations with stiff source term, 2018, 91, 0020-7179, 230, 10.1080/00207179.2016.1276635 | |
28. | Martin Gugat, Stefan Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, 2017, 454, 0022247X, 439, 10.1016/j.jmaa.2017.04.064 | |
29. | Volker Mehrmann, Martin Schmidt, Jeroen J. Stolwijk, Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization, 2018, 46, 2305-221X, 779, 10.1007/s10013-018-0303-1 | |
30. | Martin Schmidt, Falk M. Hante, 2023, Chapter 872-1, 978-3-030-54621-2, 1, 10.1007/978-3-030-54621-2_872-1 | |
31. | Martin Gugat, Jan Giesselmann, An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization, 2024, 62, 0363-0129, 2273, 10.1137/23M1563840 | |
32. | Martin Gugat, Michael Schuster, Jan Sokołowski, The location problem for compressor stations in pipeline networks, 2024, 12, 2325-3444, 507, 10.2140/memocs.2024.12.507 |