Stationary states in gas networks

  • Received: 01 September 2014 Revised: 01 December 2014
  • 93C20, 93C15.

  • Pipeline networks for gas transportation often contain circles. For such networks it is more difficult to determine the stationary states than for networks without circles. We present a method that allows to compute the stationary states for subsonic pipe flow governed by the isothermal Euler equations for certain pipeline networks that contain circles. We also show that suitably chosen boundary data determine the stationary states uniquely. The construction is based upon novel explicit representations of the stationary states on single pipes for the cases with zero slope and with nonzero slope. In the case with zero slope, the state can be represented using the Lambert--W function.

    Citation: Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering. Stationary states in gas networks[J]. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295

    Related Papers:

    [1] Martin Gugat, Falk M. Hante, Markus Hirsch-Dick, Günter Leugering . Stationary states in gas networks. Networks and Heterogeneous Media, 2015, 10(2): 295-320. doi: 10.3934/nhm.2015.10.295
    [2] Markus Dick, Martin Gugat, Günter Leugering . Classical solutions and feedback stabilization for the gas flow in a sequence of pipes. Networks and Heterogeneous Media, 2010, 5(4): 691-709. doi: 10.3934/nhm.2010.5.691
    [3] Mapundi K. Banda, Michael Herty, Axel Klar . Coupling conditions for gas networks governed by the isothermal Euler equations. Networks and Heterogeneous Media, 2006, 1(2): 295-314. doi: 10.3934/nhm.2006.1.295
    [4] Mapundi K. Banda, Michael Herty, Axel Klar . Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1(1): 41-56. doi: 10.3934/nhm.2006.1.41
    [5] Michael Herty . Modeling, simulation and optimization of gas networks with compressors. Networks and Heterogeneous Media, 2007, 2(1): 81-97. doi: 10.3934/nhm.2007.2.81
    [6] Michael Herty, Veronika Sachers . Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2(4): 733-750. doi: 10.3934/nhm.2007.2.733
    [7] Martin Gugat, Rüdiger Schultz, Michael Schuster . Convexity and starshapedness of feasible sets in stationary flow networks. Networks and Heterogeneous Media, 2020, 15(2): 171-195. doi: 10.3934/nhm.2020008
    [8] Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025
    [9] Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame . Analysis of a simplified model of the urine concentration mechanism. Networks and Heterogeneous Media, 2012, 7(4): 989-1018. doi: 10.3934/nhm.2012.7.989
    [10] Klaus-Jochen Engel, Marjeta Kramar Fijavž, Rainer Nagel, Eszter Sikolya . Vertex control of flows in networks. Networks and Heterogeneous Media, 2008, 3(4): 709-722. doi: 10.3934/nhm.2008.3.709
  • Pipeline networks for gas transportation often contain circles. For such networks it is more difficult to determine the stationary states than for networks without circles. We present a method that allows to compute the stationary states for subsonic pipe flow governed by the isothermal Euler equations for certain pipeline networks that contain circles. We also show that suitably chosen boundary data determine the stationary states uniquely. The construction is based upon novel explicit representations of the stationary states on single pipes for the cases with zero slope and with nonzero slope. In the case with zero slope, the state can be represented using the Lambert--W function.


    [1] M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Networks and Heterogenous Media, 1 (2006), 295-314. doi: 10.3934/nhm.2006.1.295
    [2] A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flows on networks: recent results and perspectives, EMS Reviews in Mathematical Sciences, 1 (2014), 47-111. doi: 10.4171/EMSS/2
    [3] R. Carvalho, L. Buzna, F. Bono, M. Masera, D. K. Arrowsmith and D. Helbing, Resilience of natural gas networks during conflicts, crises and disruptions, PLOS ONE, 9 (2014), e0090265. doi: 10.1371/journal.pone.0090265
    [4] F. Chapeau-Blondeau, Numerical evaluation of the lambert W function and application to generation of generalized Gaussian noise with exponent 1/2, IEEE Transactions on Signal Processing, 50 (2002), 2160-2165. doi: 10.1109/TSP.2002.801912
    [5] R. M. Colombo and F. Marcellini, Smooth and discontinuous junctions in the p-system, Journal of Mathematical Analysis and Applications, 361 (2010), 440-456. doi: 10.1016/j.jmaa.2009.07.022
    [6] R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050. doi: 10.1137/080716372
    [7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, Adv. Comp. Math., 5 (1996), 329-359. doi: 10.1007/BF02124750
    [8] J.-M. Coron, B. d'Andrea-Novel and G. Bastin, A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws, IEEE Trans. Automat. Control, 52 (2007), 2-11. doi: 10.1109/TAC.2006.887903
    [9] M. Dick, M. Gugat and G. Leugering, Classical solutions and feedback stabilization for the gas flow in a sequence of pipes, Networks and Heterogeneous Media, 5 (2010), 691-709. doi: 10.3934/nhm.2010.5.691
    [10] M. Garavello and B. Piccoli, Conservation laws on complex networks, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 26 (2009), 1925-1951. doi: 10.1016/j.anihpc.2009.04.001
    [11] M. Gugat, M. Dick and G. Leugering, Gas flow in fan-shaped networks: Classical solutions and feedback stabilization, SIAM Journal on Control and Optimization, 49 (2011), 2101-2117. doi: 10.1137/100799824
    [12] M. Gugat and M. Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks, ESAIM: Control, Optimisation and Calculus of Variations, 17 (2011), 28-51. doi: 10.1051/cocv/2009035
    [13] M. Gugat, M. Herty and V. Schleper, Flow control in gas networks: Exact controllability to a given demand, Mathematical Methods in the Applied Sciences, 34 (2011), 745-757. doi: 10.1002/mma.1394
    [14] M. Herty, Modeling, simulation and optimization of gas networks with compressors, Networks and Heterogeneous Media, 2 (2007), 81-97. doi: 10.3934/nhm.2007.2.81
    [15] J. H. Lambert, Observationes variae in mathesin puram, Acta Helvetica, physico-mathematico-anatomico-botanico-medica, 3 (1758), 128-168.
    [16] T. Li, B. Rao and Z. Wang, Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 243-257. doi: 10.3934/dcds.2010.28.243
    [17] A. Martin, M. Möller and S. Moritz, Mixed integer models for the stationary case of gas network optimization, Mathematical Programming, 105 (2005), 563-582. doi: 10.1007/s10107-005-0665-5
    [18] G. A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, Networks and Heterogeneous Media, 9 (2014), 65-95. doi: 10.3934/nhm.2014.9.65
    [19] V. Schleper, M. Gugat, M. Herty, A. Klar and G. Leugering, Well-posedness of networked hyperbolic systems of balance laws, in Constrained Optimization and Optimal Control for Partial Differential Equations, International Series of Numerical Mathematics, 160, Birkhäuser/Springer Basel AG, Basel, 2012, 123-146. doi: 10.1007/978-3-0348-0133-1_7
    [20] arXiv:1003.1628
    [21] G. P. Zou, N. Cheraghi and F. Taheri, Fluid-induced vibration of composite natural gas pipelines, International Journal of Solids and Structures, 42 (2005), 1253-1268. doi: 10.1016/j.ijsolstr.2004.07.001
  • This article has been cited by:

    1. Falk M. Hante, Günter Leugering, Alexander Martin, Lars Schewe, Martin Schmidt, 2017, Chapter 5, 978-981-10-3757-3, 77, 10.1007/978-981-10-3758-0_5
    2. Tatsien Li, Lei Yu, Local Exact One-Sided Boundary Null Controllability of Entropy Solutions to a Class of Hyperbolic Systems of Balance Laws, 2019, 57, 0363-0129, 610, 10.1137/18M1187052
    3. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    4. Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang, Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks, 2015, 10, 1556-181X, 749, 10.3934/nhm.2015.10.749
    5. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    6. Martin Gugat, Rüdiger Schultz, David Wintergerst, Networks of pipelines for gas with nonconstant compressibility factor: stationary states, 2018, 37, 0101-8205, 1066, 10.1007/s40314-016-0383-z
    7. Michael Hintermüller, Nikolai Strogies, Identification of the friction function in a semilinear system for gas transport through a network, 2020, 35, 1055-6788, 576, 10.1080/10556788.2019.1692206
    8. Martin Gugat, Michael Herty, 2020, Chapter 6, 978-981-15-0927-8, 147, 10.1007/978-981-15-0928-5_6
    9. Martin Gugat, Richard Krug, Alexander Martin, Transient gas pipeline flow: analytical examples, numerical simulation and a comparison to the quasi-static approach, 2021, 1389-4420, 10.1007/s11081-021-09690-4
    10. Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, Towards simulation based mixed-integer optimization with differential equations, 2018, 72, 00283045, 60, 10.1002/net.21812
    11. Martin Gugat, Günter Leugering, Ke Wang, Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$-lyapunov function, 2017, 7, 2156-8499, 419, 10.3934/mcrf.2017015
    12. Michael Schuster, Elisa Strauch, Martin Gugat, Jens Lang, Probabilistic constrained optimization on flow networks, 2022, 23, 1389-4420, 1, 10.1007/s11081-021-09619-x
    13. Andrea Corli, Magdalena Figiel, Anna Futa, Massimiliano D. Rosini, Coupling conditions for isothermal gas flow and applications to valves, 2018, 40, 14681218, 403, 10.1016/j.nonrwa.2017.09.005
    14. Martin Gugat, Günter Leugering, Alexander Martin, Martin Schmidt, Mathias Sirvent, David Wintergerst, MIP-based instantaneous control of mixed-integer PDE-constrained gas transport problems, 2018, 70, 0926-6003, 267, 10.1007/s10589-017-9970-1
    15. Martin Gugat, Michael Herty, Hui Yu, 2018, Chapter 50, 978-3-319-91544-9, 651, 10.1007/978-3-319-91545-6_50
    16. Martin Schmidt, Mathias Sirvent, Winnifried Wollner, A decomposition method for MINLPs with Lipschitz continuous nonlinearities, 2019, 178, 0025-5610, 449, 10.1007/s10107-018-1309-x
    17. Amaury Hayat, Peipei Shang, Exponential stability of density-velocity systems with boundary conditions and source term for the H2 norm, 2021, 153, 00217824, 187, 10.1016/j.matpur.2021.07.001
    18. Günter Leugering, 2020, Chapter 4, 978-981-15-0927-8, 77, 10.1007/978-981-15-0928-5_4
    19. Martin Gugat, Jens Habermann, Michael Hintermüller, Olivier Huber, Constrained exact boundary controllability of a semilinear model for pipeline gas flow, 2023, 0956-7925, 1, 10.1017/S0956792522000389
    20. Martin Gugat, Rüdiger Schultz, Boundary Feedback Stabilization of the Isothermal Euler Equations with Uncertain Boundary Data, 2018, 56, 0363-0129, 1491, 10.1137/16M1090156
    21. Georges Bastin, Jean-Michel Coron, 2016, Chapter 1, 978-3-319-32060-1, 1, 10.1007/978-3-319-32062-5_1
    22. Martin Gugat, Falk M. Hante, Li Jin, Closed loop control of gas flow in a pipe: stability for a transient model, 2020, 68, 2196-677X, 1001, 10.1515/auto-2020-0071
    23. Martin Gugat, David Wintergerst, Transient Flow in Gas Networks: Traveling waves, 2018, 28, 2083-8492, 341, 10.2478/amcs-2018-0025
    24. Daniel Rose, Martin Schmidt, Marc C. Steinbach, Bernhard M. Willert, Computational optimization of gas compressor stations: MINLP models versus continuous reformulations, 2016, 83, 1432-2994, 409, 10.1007/s00186-016-0533-5
    25. Lars Schewe, Martin Schmidt, 2019, Chapter 13, 978-3-662-58538-2, 173, 10.1007/978-3-662-58539-9_13
    26. Martin Gugat, Michael Schuster, Stationary Gas Networks with Compressor Control and Random Loads: Optimization with Probabilistic Constraints, 2018, 2018, 1024-123X, 1, 10.1155/2018/7984079
    27. Michael Herty, Hui Yu, Feedback boundary control of linear hyperbolic equations with stiff source term, 2018, 91, 0020-7179, 230, 10.1080/00207179.2016.1276635
    28. Martin Gugat, Stefan Ulbrich, The isothermal Euler equations for ideal gas with source term: Product solutions, flow reversal and no blow up, 2017, 454, 0022247X, 439, 10.1016/j.jmaa.2017.04.064
    29. Volker Mehrmann, Martin Schmidt, Jeroen J. Stolwijk, Model and Discretization Error Adaptivity Within Stationary Gas Transport Optimization, 2018, 46, 2305-221X, 779, 10.1007/s10013-018-0303-1
    30. Martin Schmidt, Falk M. Hante, 2023, Chapter 872-1, 978-3-030-54621-2, 1, 10.1007/978-3-030-54621-2_872-1
    31. Martin Gugat, Jan Giesselmann, An Observer for Pipeline Flow with Hydrogen Blending in Gas Networks: Exponential Synchronization, 2024, 62, 0363-0129, 2273, 10.1137/23M1563840
    32. Martin Gugat, Michael Schuster, Jan Sokołowski, The location problem for compressor stations in pipeline networks, 2024, 12, 2325-3444, 507, 10.2140/memocs.2024.12.507
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4840) PDF downloads(118) Cited by(32)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog