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Abstract. Pipeline networks for gas transportation often contain circles. For
such networks it is more difficult to determine the stationary states than for

networks without circles. We present a method that allows to compute the sta-

tionary states for subsonic pipe flow governed by the isothermal Euler equations
for certain pipeline networks that contain circles. We also show that suitably

chosen boundary data determine the stationary states uniquely. The construc-

tion is based upon novel explicit representations of the stationary states on
single pipes for the cases with zero slope and with nonzero slope. In the case

with zero slope, the state can be represented using the Lambert–W function.

1. Introduction. Essential parts of the transport infrastructure can be modeled
as networked systems of hyperbolic balance laws (see [2]). For the management and
control of these systems it is important to know the stationary states that exist on
the networks.

In this paper, we study pipeline networks for gas transportation. The modeling,
analysis and optimal control of gas pipeline networks has been the subject of several
studies, for example [6]. As in [6, 12], the flow through each single pipe is modeled
by the isothermal Euler equations. An important effect in the pipeline flow is the
pressure loss in the gas along the pipe. This effect is modeled by a friction term
in the pde that distinguishes this application from the case of conservation laws,
that appear for example in the context of traffic flow models (see [10]). For the
case without friction, a more general model, the p-system, has been studied in [5]
where solutions with bounded total variations are constructed. Also in [18], where
numerical models for isothermal junction flow have been studied the friction term
does not appear in the balance law. Apart from the friction, the influence of the
gravity on the gas flow in the case of non horizontal pipelines is also modeled in
the source term. The flow through the pipe junctions in the network is governed by
the conservation of mass that yields the Kirchhoff condition and the condition that
at the junction in each moment the gas density is the same at all adjacent pipes.
The well–posedness of general networked systems of balance laws systems is studied
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in [19]. Recently, the resilience of natural gas networks during conflicts, crises and
disruptions has been studied in [3]. Mixed integer models for the stationary case of
gas network optimization have been considered in [17].

For the management of pipeline networks for gas transportation we study sta-
tionary solutions in the case of subsonic flow where the absolute value of the velocity
of the gas is strictly less than the sound speed in the gas. This is the case that is
relevant for gas transportation networks, because if the velocity of the gas in the
pipelines is too large, vibrations of the pipes can develop and cause noise pollution.
Moreover excessive piping vibration can damage the system. Therefore, there are
upper bounds for the velocity of the gas in the operation of gas pipelines. A detailed
study of fluid-induced vibration of natural gas pipelines is given in [21]. In the op-
eration of the networks it is desirable to avoid shocks in the gas flow. Therefore we
look at classical stationary states.

Due to the friction term, the stationary states are not constant along the pipe
except for two cases: The first case is the case of horizontal pipes where the gas is
at rest. The second case is the case where the gas flows downhill in the pipe and the
gravitational term is in equilibrium with the friction term. It is comparatively simple
to construct the stationary states for networks without circles (see [12, 11, 13, 9])
but often the graphs of the pipeline networks contain circles. In this paper we
develop a method to construct stationary states for certain networks of this type.
Moreover, the construction can also be used to show that the stationary states are
uniquely determined by the boundary data.

In our analysis we first look at the stationary states of the governing hyperbolic
partial differential equations on a single pipe. We present an explicit representation
of the stationary states on each pipe. This result is similar to the representation
given in [12] for the case of pipes with zero slope, but even more explicit, since
the stationary states is given in terms of a well–known special function, namely
the Lambert–W function. Moreover, we also present a representation for pipes with
non–zero slope. We show important monotonicity properties of the stationary states
with respect to the boundary values, that allow to compute the subsonic classical
stationary states on certain gas networks with circles. In addition, we show the
uniqueness of the stationary states for suitable boundary data.

This paper is organized as follows. In Section 2 we state the isothermal Euler
equations. In Section 3 we consider the stationary states on the edges. We state the
differential equations for the density and the squared Mach number. Starting from
the discussion of a general class of differential equations in Section 3.1 we derive
explicit representations of the stationary states. In Section 3.2 we consider the case
of horizontal pipes. Moreover, important monotonicity properties of the stationary
states with respect to the boundary data are stated. Using these properties, in
Section 4 stationary states on networks are constructed. At the beginning of Section
4 the node conditions that govern the flow through the junctions are stated. In
Section 4.1 we consider networks with a finite number of parallel pipes and in
Section 4.2 we consider networks that contain a circle with a finite number of parallel
chords. In Section 5 an explicit expression for subsonic classical stationary states
for a sloped pipe is derived. At the end of the paper conclusions are stated and an
outlook is given.

2. The pde-model: A system of balance laws. Let a graph G = (V, E) of
a pipeline network be given. Consider a pipe that corresponds to the edge e ∈
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E. Let De > 0 denote the diameter, λefric(x) > 0 the space-dependent Lipschitz

continuous friction coefficient and αe(x) ∈ (−∞, ∞) the space-dependent Lipschitz

continuous slope. Define ze(x) = sin(αe(x) ) and θe(x) =
λefric(x)

De . Let g denote
the gravitational constant and let a > 0 denote the sound speed in the gas that we
assume to be independent of the pipe. We study the isothermal Euler equations{

ρet + qex = 0,

qet + ( (qe)2

ρe + a2ρe)x = − 1
2θ
e q

e |qe|
ρe − ρe g ze

that govern the flow through a single pipe. Here ρe denotes the gas density and qe

denotes the flow rate. In our analysis, the velocity ve = qe

ρe and the Mach number
ve

a will play a central role.

3. The stationary states on the edges. Each edge e ∈ E of the network graph
corresponds to an interval of the length Le > 0 with the boundary points x = 0 and
x = Le. In this section we determine the stationary states on these intervals. The
first equation in the isothermal Euler equations implies that for every stationary
state, the flow rate qe is constant. The density ρe satisfies an ordinary differential
equation on [0, Le] namely(

(qe)2

ρe
+ a2ρe

)
x

= −1

2
θ
qe |qe|
ρe

− ρe g ze. (1)

As stated in the introduction, we consider classical stationary states. Consider the

velocity ve = qe

ρe . Define ηe as the square of the Mach number

ηe =

(
ve

a

)2

=

(
qe

a ρe

)2

. (2)

For the subsonic states that are relevant in the applications we have ηe < 1. Since
qe is constant for stationary states, multiplication of (1) by 1

a2 ρe yields

ρex
ρe

(
1−

(
qe

a ρe

)2
)

= −1

2
θ sign(qe)

(qe)2

a2 (ρe)2
− g ze

a2
. (3)

Hence for the values of ηe for the stationary states we get the ordinary differential
equation

ηex = 2
ηe

1− ηe

(
1

2
θe sign(qe) ηe +

g ze

a2

)
. (4)

We define

ce0 =
2 g ze

a2 θe sign(qe)

and obtain the ordinary differential equation

ηex = (θe sign(qe))
ηe

1− ηe
( ηe + ce0) . (5)

Equation (5) has the constant solution ηe = 0 and if ce0 is constant also the constant
solution

ηe = −ce0. (6)

In our application, since ηe ≥ 0 this case is only relevant if ce0 < 0 (that is sign(ze) =
−sign(qe) that is the gas flows downhill).
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3.1. Solutions of a class of differential equations. The following three lemmas
contain results on a general class of ordinary differential equations that have the
same structure as the equation (5) for ηe. After the statements and proofs of the
Lemmas we will apply them to the case of the isothermal Euler equations.

Lemma 3.1. Let an interval I ⊂ (−∞,∞) be given. Let the function F : I →
(−∞,∞) be continuously differentiable. Assume for all τ ∈ I we have F ′(τ) < 0 and
that 1

F ′ is Lipschitz continuous on I. Let the function d0 : (−∞,∞) → (−∞, ∞)
be continuous.

Let x0 ∈ I and η0 ∈ I be given. Consider the differential equation

η′(x) = − 1

F ′(η(x))
d0(x). (7)

Then the unique solution η of (7) that satisfies the condition η(x0) = η0 is given by

η(x) = F−1(F (η0)−
∫ x

x0

d0(s) ds) (8)

for all x ∈ I(x0, F, d0) = {τ : F (η0)−
∫ τ
x0
d0(s) ds ∈ F (I)}.

Proof. Since F ′(τ) < 0, F is strictly decreasing on I, hence the inverse function
F−1 is well–defined on F (I). By (8), η is differentiable and the derivative is

η′(x) =
−d0(x)

F ′(F−1(F (η0)−
∫ x
x0
d0(s) ds))

=
−d0(x)

F ′(η(x))
.

Hence η satisfies (7). Moreover, by (8) we have η(x0) = F−1(F (η0)) = η0. The
uniqueness of the solution follows by the Picard-Lindelöf theorem.

Lemma (3.1) allows us to determine the sensitivities of η with respect to η0. This
is stated in the following Lemma.

Lemma 3.2. For the function η(x) given in (8) we have for all x ∈ I(x0, F, d0)

∂η0η(x) =
F ′(η0)

F ′(η(x))
> 0. (9)

Thus η is strictly increasing as a function of η0.

Proof. The definition (8) implies that for the partial derivative we have

∂η0η(x) =
F ′(η0)

F ′(F−1(F (η0)−
∫ x
x0
d0(s) ds))

=
F ′(η0)

F ′(η(x))
.

Since F ′ only attains strictly negative values, this implies ∂η0η(x) > 0.
If I is a finite interval it can happen that there is a blow-up in η′(x) at the

boundary of I(x0, F, d0) if the derivative of F vanishes at b. First we consider the
case that d0 attains positive values.

Lemma 3.3. Assume that I = (a, b], F is continuously differentiable on I, F ′(x) <
0 for all x ∈ (a, b) and lim

x→b
F ′(x) = 0. Let x0 ∈ (a, b) and η0 ∈ (a, b) be given.

Let the function d0 : (−∞,∞)→ (−∞, ∞) be continuous. If

inf
x∈(−∞,∞)

d0(x) > 0 (10)

define the real number xc as the unique solution of the equation∫ xc

x0

d0(s) ds = F (η0)− F (b). (11)
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Then x0 < xc and for η as defined in (8) we have η(xc) = b and

lim
x→xc

η′(x) =∞, (12)

that is at xc the classical solution of (7) breaks down as x approaches xc.

Proof. Since η0 < b and F is strictly decreasing we have F (η0) − F (b) > 0. As-
sumption (10) implies that the integral in (11) is strictly increasing to infinity as a
function of xc, hence (11) has a unique solution xc > x0. Due to (11) we have

η(xc) = F−1(F (η0)−
∫ xc

x0

d0(s) ds) = F−1(F (b)) = b.

Using (10) and −F ′(x) = |F ′(x)| we get

lim
x→xc

η′(x) = lim
x→xc

−d0(x)

F ′(η(x))

≥ inf
x∈(−∞,∞)

d0(x) lim
x→xc

1

|F ′(η(x))|
=∞

and (12) follows.
If d0 attains negative values, a different blow up situation occurs: The derivative

of η approaches minus infinity, as it is described in Lemma 3.4.

Lemma 3.4. Assume that I = (a, b], F is continuously differentiable on I, F ′(x) <
0 for all x ∈ (a, b) and lim

x→b
F ′(x) = 0. Let x0 ∈ (a, b) and η0 ∈ (a, b) be given.

Let the function d0 : (−∞,∞)→ (−∞, ∞) be continuous. If

sup
x∈(−∞,∞)

d0(x) < 0 (13)

define the real number xc as the unique solution of the equation (11). Then x0 > xc
and for η as defined in (8) we have η(xc) = b and

lim
x→xc

η′(x) = −∞, (14)

that is at xc the classical solution of (7) breaks down as x approaches xc.

The proof is similar to Lemma 3.3.

3.2. Horizontal pipes. In this section we study subsonic (that is with |qe| < aρe)
stationary solutions of the isothermal Euler equation for the flow through horizontal
pipes, that is with zero slope αe(x) = 0, hence we have ze = 0. In order to derive
an explicit expression, we use the Lambert–W function. For the convenience of
the reader, we recall the definition of the Lambert–W function. The Lambert–W
function that is also known as product logarithm (see [4, 7, 15, 20]) is the inverse
of the map

w 7→ w exp(w) = z.

In our analysis we need the branch W−1(x). This special function is defined as the
inverse function of x exp(x) for x ∈ (−∞,−1). Thus W−1(x) ≤ −1 is defined for
x ∈ (− 1

e , 0). The definition implies W−1(−1/e) = −1 and yields the derivative

d

dx
W−1(x) =

W−1(x)

x (1 +W−1(x))
< 0. (15)

Figure 1 shows a plot of W−1(x).
The following lemma gives the stationary solutions for horizontal pipes.
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Figure 1. The graph of W−1(x) for x ∈ [−1/e, 0).

Lemma 3.5. Assume that ze = 0. Let x0 ∈ [0, Le] be given. Assume that ηe(x0) <
1. Then the unique solution of (5) is given by

ηe(x) = − 1

W−1

(
− exp

(
−(ce1 − sign(qe)

∫ x
x0
θe(s) ds)

)) (16)

with

ce1 =
1

ηe(x0)
+ ln (ηe(x0)) . (17)

For the corresponding density ρe that solves the differential equation

(ρe)x =
− 1

2θ
e qe |qe| ρe

a2(ρe)2 − (qe)2
(18)

we have

ρe(x) =
|qe|

a
√
ηe(x)

=
|qe|
a

√
−W−1

(
− exp

(
−
(
ce1 − sign(qe)

∫ x

x0

θe(s) ds

)))
.

(19)

Proof. Since the slope is zero, (5) has the form

ηex = θe sign(qe)
(ηe)2

1− ηe
. (20)

Define d0(x) = θe sign(qe) and for τ ∈ (0, 1] define

F0(τ) =
1

τ
+ ln(τ).
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Then F0 is differentiable and for the derivative F ′0(τ) = τ−1
τ2 we have F ′0(τ) < 0,

thus F0 is strictly decreasing. The second derivative is F ′′0 (τ) = 2−τ
τ3 and we have

F ′′0 (τ) > 0, thus F0 is convex. There exists an inverse function F−10 that is strictly
decreasing on the set (1, ∞). The definition of F0 and d0 implies that the differential
equation (20) has the form of (7). Hence Lemma (3.1) yields the solution in the
form (8) where F−10 appears. The definition of the Lambert–W function implies
that for f ∈ (1, ∞) we have

F−10 (f) =
1

−W−1(− exp(−f))
. (21)

This can be seen as follows. For τ ∈ (0, 1] we have

1

−W−1(− exp(−F0(τ)))
=

1

−W−1(− exp(−ln(τ)) exp(− 1
τ ))

=
1

−W−1
(
(− 1

τ ) exp(− 1
τ )
) = τ.

Now (8) yields (16) with ce1 defined by (17). By (2) and (16) we have (19).

Example 1. For λefric = 0.005, De = 1, qe = 800, ρe(0) = 40, a = 500 and

Le = 100000 we get the stationary density ρe(x) that is shown in Figure 2.

0 2 4 6 8 10

x 10
4

15

20

25

30

35

40

Figure 2. The graph of the stationary density ρe(x) for x ∈
[0, Le] with ze = 0, λefric = 0.005, De = 1, qe = 800, ρe(0) = 40,

a = 500, Le = 105.
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Remark 1. In the supersonic case the stationary states can be represented in a
similar way using the other branch W0 of the Lambert–W function.

We introduce the notation

η(ρ, q) =
q2

a2 ρ2
(22)

and define the function

ρe(ρ, q) =

 |q|
a

√
−W−1

(
− 1
η(ρ, q)

exp
(
− 1
η(ρ, q)

+ sign(q)
∫ Le
0

θe(s) ds
))

if q 6= 0,

ρ if q = 0.
(23)

Then for x = Le we can write (19) in the form

ρe(Le) = ρe(ρe(0), qe). (24)

Note that if qe > 0 we have the critical length xc > 0 as defined in (11) with
b = 1, since F ′0(1) = 0. If θe is constant we have (as already shown in [12])

xec(η
e(0)) =

F0(ηe(0))− 1

θe
. (25)

In general xec(η
e(x0)) is determined by the equation

sign(q)

∫ xc(η
e(x0))

x0

θ(s) ds = F0(ηe(x0))− 1 (26)

with the choice x0 = 0 if qe > 0 and x0 = Le if qe < 0. At xec(η
e(x0)) the state

becomes sonic, that is the Mach number approaches b = 1 and there is a blow up in
the derivative ρx. Hence at this point the stationary state breaks down as a classical
solution. Note that since at the critical length the velocity of the gas approaches the
sound speed, it is much to high for the operation of a gas transportation network.

If

sign(qe) Le < xec(η
e(0)) (27)

we have the equation

ηe(Le) = F−10

(
F0(ηe(0))− sign(qe)

∫ Le

0

θe(s) ds

)
(28)

and if

− sign(qe) Le < xec(η
e(Le)) (29)

we have

ηe(0) = F−10

(
F0(ηe(Le)) + sign(qe)

∫ Le

0

θe(s) ds

)
. (30)

Equivalently, if (28) or (30) hold we have

F0(ηe(Le)) = F0(ηe(0))− sign(qe)

∫ Le

0

θe(s) ds. (31)

Example 2. For a = 500, q = 800 and ρ0 = 40, we have η(0) = 1/625. By (25)
this yields the critical length x0 = 1

θ617.5622... With λfric = 0.005, D = 1, this

yields x0 = D
λfric

617.5622... = 1.2351... ∗ 105.
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3.2.1. Computation of the sensitivities of the stationary states. In this section we
analyze how changes in the boundary data affect the solution. More precisely, we
want to know how changes of the boundary data at x = 0 affect the values of the
solution at the other end x = Le. The following lemma gives the partial derivative of
ρe(Le) with respect to ρe(0) for a fixed value of qe. Moreover, we present the partial
derivative of ρe(Le) with respect to qe for a fixed value of ρe(0) in the subsonic case
with qe 6= 0.

Lemma 3.6. Assume that a subsonic classical stationary solution exists on [0, Le].
For subsonic states with qe 6= 0 we have the partial derivatives

∂ρe(0)ρ
e(Le) = ∂ρρ

e(ρe(0), qe) =
ρe(0)

ρe(Le)

1− ηe(0)

1− ηe(Le)
> 0, (32)

∂qeρ
e(Le) = ∂qρ

e(ρe(0), qe) = −ρ
e(Le)

qe
ηe(Le)− ηe(0)

ηe(0)(1− ηe(Le))
< 0. (33)

In particular, ρe(Le) is strictly increasing as a function of ρe(0) for a fixed value
of qe. Moreover, ρe(Le) is strictly decreasing as a function of qe.

If qe = 0, we have ρe(Le) = ρe(0). Thus for qe = 0, we have

∂ρe(0)ρ
e(Le)|qe=0 = ∂ρρ

e(ρe(0), 0) = 1

and also in this case ρe(Le) is strictly increasing as a function of ρe(0). We have

∂qeρ
e(Le)|qe=0 = ∂qρ

e(ρe(0), 0) = 0. (34)

Proof. Let x and x0 ∈ [0, Le] be given. By (2) we get

∂ρe(x0)ρ
e(x) = ∂ρe(x0)

(
|qe|

a
√
ηe(x)

)
(35)

=
|qe|
a

(
−1

2

1

(ηe(x))3/2

)
∂ηe(x0)η

e(x) ∂ρe(x0)η
e(x0). (36)

We have ∂ρe(x0)η
e(x0) = −2 (qe)2

a2 ρe(x0)3
and (9) yields

∂ηe(x0)η
e(x) =

F ′0(ηe(x0))

F ′0(ηe(x))
(37)

=
(ηe(x))2

(ηe(x0))2
ηe(x0)− 1

ηe(x)− 1
(38)

=
(ρe(x0))4

(ρe(x))4
ηe(x0)− 1

ηe(x)− 1
. (39)

With the choice x0 = 0 and x = Le inserting this in (36) yields (32). By (2) we get

∂qeρ
e(x) = ∂qe

(
|qe|

a
√
ηe(x)

)
(40)

=
sign(qe)

a
√
ηe(x)

− |qe|
2 a (ηe(x))3/2

∂ηe(x0)η
e(x) ∂qη

e(x0). (41)
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We have ∂qη
e(x0) = 2 qe

a2 ρe(x0)2
and inserting (39) in (41) yields

∂qeρ
e(x) =

ρe(x)

qe
− a2(ρe(x))3

2 |qe|2
(ρe(x0))4

(ρe(x))4
ηe(x0)− 1

ηe(x)− 1

2 qe

a2 ρe(x0)2

=
ρe(x)

qe
− 1

qe
(ρe(x0))2

ρe(x)

ηe(x0)− 1

ηe(x)− 1
.

With the choice x0 = 0 and x = Le this yields (33).
For qe = 0 we have ρe(Le) = ρe(0). By the definition of the partial derivative

this yields

∂qeρ
e(Le)|qe=0 = lim

qe→0

ρe(Le)− ρe(0)

qe

= lim
qe→0

∫ Le
0

(ρe)x(x) dx

qe
.

From (18) we get

∂qeρ
e(Le)|qe=0 = lim

qe→0
|qe|

∫ Le

0

− 1
2θ
e ρe

a2(ρe)2 − (qe)2
dx = 0

and (34) follows.

4. Stationary states on networks. In this section we study subsonic stationary
states for networks of horizontal pipes. The node conditions that determine the
flow dynamics are given in [1] for the case that all pipes have the same diameter
De.

Let a finite connected directed graph G = (V,E) be given. Each edge e ∈ E
of the graph corresponds to an interval [0, Le]. At the vertices v ∈ V , the flow
is governed by the node conditions that require the conservation of mass and the
continuity of the density. Let E0(v) denote the set of edges that are incident to
v ∈ V and xe(v) ∈ {0, Le} denote the end of the interval [0, Le] corresponding to
the edge e that is adjacent to v. Define

σ(e, v) =

{
−1 if xe(v) = 0 and e ∈ E0(v),

1 if xe(v) = Le and e ∈ E0(v).

Then for all e, f ∈ E0(v) continuity of the density means that we have the
equation

ρe(xe(v)) = ρf (xf (v)). (42)

Moreover, we have the Kirchhoff condition∑
e∈E0(v)

σ(e, v) (De)2 qe(xe(v)) = 0. (43)

For networks that do not contain circles, subsonic stationary states can be con-
structed as follows. Since the Kirchhoff condition is a linear equation for the flow
rates, the flow rates of a stationary state can be computed independently of the
densities by solving a system of linear equations if the flow rates at all but one at
the boundary nodes are given. With our explicit representation (19) for ρe(Le) as
a function of ρe(0), the flow rate qe in the pipe and the pipe data, it is easy to
compute the corresponding densities of stationary states if the density at one of the
boundary nodes of the tree is given. The reason is that if the density at one pipe
that is adjacent to a junction is known, by (42) this value determines the density at
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a0 b0 c0 d0

Figure 3. A graph with two parallel pipes

all adjacent pipes. To obtain a classical stationary state on the network, the length
of each pipe where the value of η ∈ (0, 1) at the end point where inflow occurs is
given must be less than the corresponding critical length that is defined in (26).

4.1. Networks with parallel pipes. First we study the stationary states in a
network with two parallel pipes. For our system with λefric > 0 we give sufficient
conditions for the existence of a unique subsonic stationary solution that satisfies
the node conditions. By induction we also get the solution for a network with N
parallel pipes where N is a natural number.

Let a graph with the structure of Figure 3 be given. We have the set of vertices

V = {a0, b0, c0, d0}.

Assume that at the first vertex at the left-hand side a0 the density ρ0 > 0 is given.
Moreover, assume that at the last vertex at the right-hand side d0 the flow rate
q0 > 0 is also given and that D(a0,b0) = D(c0,d0). Assume that the value of the

squared Mach number η0 =
q20

a2 (ρ0)2
∈ (0, 1) is sufficiently small such that for the

flow from a0 to d0 no blow–up occurs.
Due to the conservation of mass that is (43), at the parallel pipes we have flow

rates of the form qred = λ q0 (D(a0,b0))2/(Dred)2 for the upper parallel edge in Figure
3 and qblue = (1 − λ) q0 (D(a0,b0))2/(Dblue)2 for the lower parallel edge with a real
number λ. Here D(a0,b0) denotes the diameter of the pipe from a0 to b0, Dred the
diameter of the pipe corresponding to the upper edge and Dblue the diameter of the
pipe corresponding to the lower edge.

At the edge (a0, b0), as in (c0, d0), the stationary flow rate is also equal to q0.
In order to determine the value of λ (that fixes the flow rate in the parallel pipes)

we have to take into account the densities at the vertices. The flow rate q0 at the
edge (a0, b0) and the density ρ0 together with the data of the pipe determine the
density ρ1 at the vertex b0.

At the vertex c0, a given value of λ determines the densities ρred(λ) at the end
of the upper parallel pipe and ρblue(1−λ) at the end of the lower parallel pipe. For
a stationary state on the network, the value of λ must be chosen in such a way that
these two densities are be equal. Define the auxiliary function

d(λ) = ρred(λ)− ρblue(1− λ).

Then we have d(0) = ρred(0)− ρblue(1). For zero flow rate, the density is constant
along the pipe, hence ρred(0) = ρ1. Moreover, due to (18) for positive flow rates
the density value is strictly decreasing along the pipe. Hence we have d(0) = ρ1 −
ρblue(1) > 0 and d(1) = ρred(1)−ρblue(0) = ρred(1)−ρ1 < 0. Moreover, the function
d is continuous and due to the monotonicity property (33) of ρ presented in Lemma
3.6, it is strictly decreasing. Hence for |λ| > 1, we have d(λ) 6= 0 and Bolzano’s
intermediate value theorem implies that there exists a unique value λ∗ ∈ (0, 1) such
that d(λ∗) = 0. This value of λ∗ determines uniquely the distribution of the flow
rates in the parallel pipes and the density at the vertex c0. Since on the edge (c0, d0)
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the flow rate q0 is known, also the density in d0 is known. Hence the stationary
state on the graph V is uniquely determined by the boundary data ρ0 and q0.

Moreover, due to the existence of the partial derivatives with respect to q given
in Lemma 3.6, by the implicit function theorem the value of ρ∗ at the vertex c0 is
strictly decreasing with respect to q0 and is continuously differentiable as a function
of q0.

Remark 2. Define rred = (D(a0,b0))4

(Dred)4
and rblue = (D(a0,b0))4

(Dblue)4
. For q0 > 0, due to

(19) the number λ∗ is in fact determined by the equation

λ2
∗ rredW−1

(
− 1

λ2
∗rred

1

η1
exp

(
− 1

λ2
∗ rred

1

η1

)
exp(

∫ L1

0

θ1(s) ds)

)
= (1−λ∗)2 rblueW−1

(
− 1

(1− λ∗)2 rblue
1

η1
exp

(
− 1

(1− λ∗)2 rblue
1

η1

)
exp(

∫ L2

0

θ2(s) ds)

)
where η1 =

q20
a2 (ρ1)2

and
∫ L1

0
θ1(s) ds is the value for the upper parallel edge and∫ L2

0
θ2(s) ds is the value for the lower parallel edge.

For the computation of λ∗ it is useful to look at the auxiliary function

α(λ, η1, θ1, L1, θ2, L2)

= λ2 rredW−1

(
− exp

(
− 1

η1 λ2 rred
+

∫ L1

0

θ1(s) ds

)
1

η1 λ2 rred

)
− (1− λ)2 rblueW−1

(
− exp

(
− 1

η1 (1− λ)2 rblue
+

∫ L2

0

θ2(s) ds

)
1

η1 (1− λ)2 rblue

)
since λ∗ is the unique root of α(·, η1, θ1, L1, θ2, L2).

Example 3. Let η1 = 1/625, θ1 = θ2 = 0.03. By (25), the corresponding critical
length is x0 = 20585.4.... Let L1 = 20000, L2 = 0.5L1.

Figure 4 shows the graph of α on (0, 1) for these parameters with rred = rblue = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−400

−200

0

200

400

600

800

Figure 4. The plot of α(·, η1, θ1, L1, θ2, L2) for x ∈ [0.001, 0.999]
and (η1, θ1, L1, θ2, L2) = (1/625, 0.03, 20000, 0.03, 10000). The
horizontal line is the x-axis.
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Example 4. If
∫ L1

0
θ1(s) ds =

∫ L2

0
θ2(s) ds, we have (λ∗)

2 rred = (1− λ∗)2 rblue. If

rred = rblue this yields λ∗ = 1
2 .

Now we consider the more general case of a graph with N ≥ 2 parallel pipes,
where N is a natural number. Figure 5 shows the graph for the case N = 4.
We show the following result about the corresponding subsonic classical stationary
states.

Theorem 4.1. For a natural number N ≥ 2 let a network with N horizontal parallel
pipes of the type shown in Figure 5 with the corresponding pipe data (lengths and
values of θe) be given be given. Let the density ρ0 > 0 at a0 and the flow rate q0 > 0
at d0 be given. Assume that ρ0 > 0 is sufficiently large in the sense that for the
squared Mach number we have

η0 =
q20

a2(ρ0)2
< 1

and the length L0 of (a0, b0) satisfies L0 < x
(a0,b0)
c (η0), with x

(a0,b0)
c (η0) as defined

in (26).
Assume that for each of the N parallel pipes, the corresponding length Li (i ∈

{1, ..., N}) is less than the corresponding critical length as defined in (26) with the

squared Mach number η1 =
q20

a2(ρ1)2
, where ρ1 is the value at the vertex b0. Moreover,

assume that also the length of (c0, d0) is sufficiently short to allow for a classical
subsonic stationary state.

Then on the network there exists a unique classical subsonic stationary state
with constant flow rates along each pipe that satisfies (18) on each pipe and the
node conditions (42), (43) at the junctions b0 and c0.

The common density at the vertex c0 is continuously differentiable as a function
of q0 and is strictly decreasing with respect to q0.

Proof. For N = 2, we have proved the assertion in the discussion at the beginning
of the section. Now we consider a graph with N ≥ 3 parallel pipes. Then the flow

rates at the i-th parallel pipe has the form qi = λi q0
(D(a0,b0))2

D2
i

, where
∑N
i=1 λi = 1.

Note that we have
N−1∑
i=1

λi = 1− λN .

For our proof by induction we assume that for a graph with N−1 parallel pipes, for
any inflow q̃ at b0 and density ρ0 at b0 there is a uniquely determined distribution
(λ1, ..., λN−1) to the pipes. This distribution determines the corresponding station-
ary state and depends continuously on q̃. The common density at the vertex c0 is
continuously differentiable as a function of q̃ and is strictly decreasing with respect
to q̃.

This implies that for any choice of λN , we can determine (λ1, ..., λN−1) such that
they generate a stationary state for the flow rate q̃ = (1− λN ) q0. This determines
uniquely a density ρ̃ (1−λN ) at c0 that corresponds to the value for the N − 1 first
pipes. Similar as in the first step, we can consider the auxiliary function

h(λN ) = ρN (λN )− ρ̃(1− λN ).

Then as d(λ) in the step for N = 2, the function h is strictly decreasing and
continuous and we have h(0) = ρ1− ρ̃(1) > 0 and h(1) = ρN (1)−ρ1 < 0. Now again
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a0 b0 c0 d0

Figure 5. A graph with four parallel pipes

Bolzano’s intermediate value Theorem implies that there exists a unique value λ∗ ∈
(0, 1) such that h(λ∗) = 0. Then the unique stationary state is determined by the

flow rates qN = λN q0
(D(a0,b0))2

D2
N

= λ∗ q0
(D(a0,b0))2

D2
N

and (λ1, ..., λN−1) are uniquely

determined as the stationary state for N − 1 pipes with the flow rate (1− λ∗)q0 at
b0. The common density at the vertex c0 is equal to ρN (λN ) = ρ̃(1− λN ).

Thus by induction, we have shown that for any natural number N , for N parallel
pipes we get a unique subsonic stationary state by suitable boundary data q0 and
ρ0 and that the common density at the vertex c0 is continuously differentiable as a
function of q0 and is strictly decreasing with respect to q0.

4.2. Networks with a circle with parallel chords. In this section we want to
consider more complicated networks where in particular the direction of flow is not
clear a priori. For this purpose, we consider the graph depicted in Figure 6 that
contains a circle with the chord e4. The sign of the flow rate qe4 is not obvious, it
can be positive, negative or zero depending on the system data.

Assume that at the first vertex at the left-hand side a0 the density ρ0 > 0 is
known. Moreover, assume that at the last vertex at the right-hand side d0 the flow
rate q0 > 0 is known. We have the set of vertices

V = {a0, b0, c0, d0, e0, f0}.

We want to show that if ρ0 is sufficiently large there exists a classical subsonic
stationary state that satisfies the node conditions at the junctions.

Note that for the graph that is obtained if one of the five edges

(b0, e0), (e0, c0), (e0, f0), (b0, f0), (f0, c0)

is taken away from the graph in this example, the question of existence of a unique
stationary state has already been solved in the last section.

As indicated in Figure 6, for the seven edges of the graph, we introduce the
notation e1 = (a0, b0), e2 = (b0, e0), e3 = (b0, f0), e4 = (e0, f0), e5 = (e0, c0), e6 =
(f0, c0), e7 = (c0, d0). Hence we have the set of edges E = {e1, e2, e3, e4, e5, e6, e7}.

For i ∈ {1, 2, 3, 4, 5, 6, 7}, let qi denote the constant flow rate on the edge ei. Let
Q denote the set of all flow rates (qi)i that satisfy the imposed boundary conditions
and for which the Kirchhoff node conditions (43) are satisfied for all v ∈ V . In
this section we assume that all the pipes have the same diameter, hence the factors
(De)2 can be omitted from (43). Hence the set Q is the solution set of the linear
equation

M



q1
q2
q3
q4
q5
q6
q7


=


−q0

0
0
0
0
0

 =: b(q0)
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a0 b0 c0 d0

e0

f0

e1

e2

e3

e5

e6

e7e4

Figure 6. A diamond graph

with the matrix M =


−1 0 0 0 0 0 0

1 −1 −1 0 0 0 0
0 1 0 −1 −1 0 0
0 0 1 1 0 −1 0
0 0 0 0 1 1 −1

 .

Since M has rank 5, the kernel of M has dimension 2. We have the representation

Q =



q0
q0
0
0
q0
0
q0


+ span





0
1
−1

1
0
0
0


,



0
0
0
1
−1

1
0




.

Let us first look at the case where q0 = 0. Then for qk = 0 (k ∈ {1, 2, 3, 4, 5, 6, 7})
the density is constant along the pipes and thus with ρv = ρ0 for all v ∈ V we
obtain a subsonic stationary state that satisfies the node conditions on the network.
Moreover, it is the unique stationary solution for q0 = 0. This can be seen as follows.
Suppose that we have a nonzero flow. Then the structure of Q implies that the flow
is given by nontrivial a linear combination of the two basis vectors of the kernel of
M that appear in the definition of Q. In the network, such a linear combination
corresponds to a nonzero circular flow. However, this leads to a contradiction to
(42), since in the direction of flow the density values are strictly decreasing along
the pipes.

The following lemma states that the function ρ defined in (23) is continuous with
respect to q at q = 0 and states that in the subsonic case the partial derivatives of
ρ̄ with respect to q and ρ are continuous at q = 0.

Lemma 4.2. We have

lim
q→0

ρe(ρ, q) = ρ = ρe(ρ, 0). (44)

The partial derivatives of the map (ρ, q) 7→ ρe(ρ, q) exist in a neighborhood of
(ρ0, 0) and we have
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lim
q→0

∂ρρ
e(ρ0, q) = 1 = ∂ρρ

e(ρ0, 0), (45)

lim
q→0

∂qρ
e(ρ0, q) = 0 = ∂qρ

e(ρ0, 0). (46)

Proof. We use the notation

κ = exp

(
sign(q)

∫ Le

0

θe(s) ds

)
.

We have

lim
q→0

ρe(ρ, q) = lim
q→0

|q|
a

√
−W−1

(
− 1

η(ρ, q)
exp(− 1

η(ρ, q)
) κ

)
(47)

= ρ lim
q→0

1
1√
η(ρ, q)

√
−W−1

(
− 1

η(ρ, q)
exp(− 1

η(ρ, q)
) κ

)
(48)

Moreover, we have lim
q→0

1
η(ρ, q) =∞. With (15) l’Hospital’s rules yield

lim
ξ→∞

−W−1 (−ξ exp(−ξ) κ)

ξ

= lim
ξ→∞

−W−1 (−ξ exp(−ξ) κ)

−ξ exp(−ξ) κ [1 +W−1 (−ξ exp(−ξ) κ)]
(ξ − 1) exp(−ξ) κ

= lim
ξ→∞

ξ − 1

ξ
= 1.

Now with (48) with the choice ξ = 1
η we obtain (44). In order to prove (45) we

consider the equations

lim
q→0

ρe(ρ0, q) = ρ0 and lim
q→0

η(ρe(ρ0, q), q) = η(ρ0, q). (49)

With the notation ρe(Le) = ρe(ρ0, q), η0 = η(ρ0, q), ηL = η(ρe(ρ0, q), q) from (32)
we get

lim
q→0

∂ρρ
e(ρ0, q) = lim

q→0

ρ0
ρe(ρ0, q)

1− η0
1− ηL]

= 1

which yields (45). Furthermore, in order to prove (46), from (33) we get for q 6= 0

∂qρ
e(ρ0, q) = −sign(q)

1

a
√
ηL

[
ηL
η0
− 1

1− ηL

]
= − sign(q)

a

 √ηLη0 − 1√
ηL

1− ηL

 .
We have

√
ηL

η0
− 1
√
ηL

= a
1

ρe(ρ0, q)

(
ρ20 − ρe(ρ0, q)2

|q|

)
.

Now we consider the corresponding limit. We get

lim
q→0

ρ20 − ρe(ρ0, q)2

|q|
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= lim
q→0

1

|q|

[
ρ20 +

|q|2

a2
W−1

(
− 1

η(ρ0, q)
exp(− 1

η(ρ0, q)
) κ

)]
= lim

q→0

1

a ρ0
√
η(ρ0, q)

[
ρ20 + η(ρ0, q) ρ

2
0W−1

(
− 1

η(ρ0, q)
exp(− 1

η(ρ0, q)
) κ

)]
= lim

ξ→∞

1

a ρ0

√
ξρ20

[
1 +

1

ξ
W−1 (−ξ exp(−ξ) κ)

]
= lim

ξ→∞

ρ0
a

[
ξ + W−1 (−ξ exp(−ξ) κ)√

ξ

]
= lim

ξ→∞

ρ0
a

[
1 + 1−ξ

ξ
1

2
√
ξ

]
= 0.

From (50) this yields the first equality in (46). The other equation in (46) has
already been stated in Lemma 3.6. Thus we have proved Lemma 4.2.

In the next lemma we give the flow rate qe for a subsonic stationary flow through
the pipe corresponding to the edge e if at both end points of the pipe suitable
values for the densities are prescribed, that is values that are sufficiently close to
each other.

Lemma 4.3. Let e = (v, w) ∈ E, ρv > 0, ρw > 0, Le > 0 and θe > 0 be given.
Assume that if ρv 6= ρw the distance |ρv − ρw| is sufficiently small in the sense that
we have

min{(ρv)2, (ρw)2}
(ρw)2 − (ρv)2

[
2 ln

(
ρw

ρv

)
− sign(ρv − ρw)

∫ Le

0

θe(s) ds

]
> 1. (50)

The solution qe of the equation

ρw = ρe(ρv, qe) (51)

is given by the equation qe = 0 if ρv = ρw. If ρv 6= ρw, a we get a subsonic
stationary flow with

sign(qe) = sign(ρv − ρw), (52)

|qe| = a

√√√√ (ρw)2 − (ρv)2

2 ln
(
ρw

ρv

)
− sign(qe)

∫ Le
0

θe(s) ds
. (53)

Proof. If ρv = ρw, qe = 0 solves equation (51).
So let us assume in the sequel that ρv 6= ρw. With the definition (23) of the

function ρe, for η as defined in (22), (51) implies the equation

η(ρv, qe)

η(ρw, qe)
= exp

(
1

η(ρw, qe)
− 1

η(ρv, qe)

)
exp( sign(qe)

∫ Le

0

θe(s) ds). (54)

This yields

(ρw)2

(ρv)2
= exp

(
a2

(ρw)2 − (ρv)2

(qe)2

)
exp( sign(qe)

∫ Le

0

θe(s) ds). (55)

This is in turn equivalent to equation (53).
If ρv > ρw, since ρe is decreasing with respect to qe we have qe > 0. On the other

hand, if ρv < ρw this yields qe < 0, and (52) follows.
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Inequality (50) implies that we have 1
η = a2 min{(ρv)2, (ρw)2}

(qe)2 > 1 that is the flow

is subsonic. Thus we have shown Lemma 4.3.
Lemma 4.3 motivates the definition of the function

qe(ρv, ρw) =

 sign(ρv − ρw) a

√
(ρv)2−(ρw)2

2 ln( ρ
v

ρw )+sign(ρv−ρw)
∫ Le
0

θe(s) ds
if ρv 6= ρw,

0 if ρv = ρw

(56)
that is qe(ρv, ρw) is defined as the solution of (51). Note that qe is strictly increasing
with respect to ρv and strictly decreasing with respect to ρw.

The following lemma presents a representation of the function qe that is more
suitable for the construction of the stationary states on the network.

Corollary 1. For ρw > 0, with

ζ =
ρv

ρw
> 0

we can write qe in the form qe(ρv, ρw) = Qe(ζ, ρw) with

Qe(ζ, ρw) =

 ρw sign(ζ − 1) a

√
ζ2−1

2 ln(ζ)+sign(ζ−1)
∫ Le
0

θe(s) ds
if ζ 6= 1,

0 if ζ = 1.
(57)

Then Qe is continuous and strictly increasing with respect to ζ and with respect to
ρw. For ζ 6= 1, Qe is continuously differentiable.

In order get unique subsonic stationary states on the graph depicted in Figure 6
for q0 > 0 and ρ0 > 0 with

q0
ρ0

< a

we introduce some auxiliary functions. For our arguments the monotonicity prop-
erties of these auxiliary function are essential.

From the given boundary data, the density at the vertex b0 is determined to be

ρb = ρe1(ρ0, q0) (58)

and the flow rate is q1 = q0. For a real number q2 ∈ [0, q1] define the functions

ρe(q2) = ρe2(ρb, q2)

ρf (q2) = ρe3(ρb, q1 − q2),

q4(q2) = qe4(ρe(q2), ρf (q2)).

By Lemma 3.6 and Lemma 4.2, ρe is strictly decreasing and ρf is strictly increasing.
With Corollary 1 this implies that q4 is strictly decreasing. Now we define the
auxiliary function

β(q2) = ρe5(ρe(q2), q2 − q4(q2))− ρe6(ρf (q2), q1 − q2 + q4(q2)). (59)

Remark 3. The function value of β is a measure for the violation of the node
condition (42) at c0 with the flow that is generated with q2 = q∗ as defined in (60)
below. The equation β(q∗) = 0 holds if and only if (42) holds at c0. In this case,
q2 = q∗ generates a classical subsonic stationary state on the whole network.

We have ρe(0) = ρb, ρf (0) = ρe3(ρb, q1) < ρb, q4(0) = qe4(ρb, ρf (0)) > 0. Hence
we have

β(0) = ρ(ρb,−q4(0), L5, θ5)− ρ(ρf (q2), q1 + q4(0), L6, θ6) > ρb − ρb = 0.
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On the other hand we have ρe(q1) < ρb, ρf (q1) = ρb, q4(q1) < 0. Hence we have

β(q1) = ρe5(ρe(q1), q1 − q4(q2))− ρe6(ρb, q4(q2)) < ρb − ρb = 0.

The monotonicity properties stated above imply that β is strictly decreasing. More-
over, β is continuous on the interval [0, q1]. Thus Bolzano’s intermediate value the-
orem implies that there exists a unique value q∗ ∈ (0, q1) such that β(q∗) = 0. If
we extend the domain of β, the extended function (that is well-defined as long as
a subsonic state exists) is still decreasing, hence for subsonic flows with q > q1 we
get β(q) ≤ β(q1) < 0 and for q < 0 we get β(q) ≥ β(0) > 0. Hence no feasible flow
exists outside of (0, q1).

Using q∗, we get a stationary state as follows: We define the feasible flow

q1
q2
q3
q4
q5
q6
q7


=



q0
q∗

q0 − q∗
q4(q∗)

q∗ − q4(q∗)
q0 − q∗ + q4(q∗)

q0


∈ Q (60)

that satisfies (43) at the junctions b0, c0, e0 and f0. We define the densities
ρa

ρb

ρc

ρd

ρe

ρf

 =


ρ0
ρb

ρe5(ρe(q∗), q∗ − q4(q∗))
ρe7(ρc, q0)
ρe(q∗)
ρf (q∗)


with ρb as defined in (58). Then the densities satisfy (42) at the junctions b0, c0,
e0 and f0, since β(q∗) = 0 implies

ρc = ρe6(ρf (q∗), q0 − q∗ + q4(q∗)).

Thus we have shown that also for the diamond graph in Figure 6 a unique
subsonic stationary state exist for suitable given boundary values ρ0 and q0. This
result is summarized in the following Theorem:

Theorem 4.4. Let a network with 7 horizontal pipes of the structure shown in
Figure 6 with the corresponding pipe data (lengths and values of θe) be given be
given. Let the density ρ0 > 0 at a0 and the flow rate q0 > 0 at d0 be given. Assume
that ρ0 is sufficiently large in the sense that for the squared Mach number η0 we
have

η0 =
q20

a2(ρ0)2
< 1

and the length Le1 satisfies Le1 < xc(η0), with xc as defined in (26). Let ρb as in
(58) denote the density at b0. Assume that for the remaining pipes, for all the paths
that connect b0 and d0, classical subsonic stationary states exist for the density ρb

at b0 and the flow rate q0.
Then on the network there exists a unique classical subsonic stationary state

with constant flow rates along each pipe that satisfies (18) on each pipe and the
node conditions (42) and (43) at the junctions b0, c0, e0 and f0.
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a0 b0

g0

h0

i0

j0

c0 d0

e0

f0

e1

e2

e3

e5

e6

e7e4

e8

e9

e10

e11

e12

Figure 7. A graph with a circle with 2 parallel chords

Remark 4. For the computation of the stationary state, we can consider the prob-
lem to find a root of the function β defined in (59). By the definition of β, this
requires the computation of the functions ρ and q as defined in (23), (56).

Example 5. If
∫ Le2
0

θe2(s) ds =
∫ Le3
0

θe3(s) ds and
∫ Le5
0

θe5(s) ds =
∫ Le6
0

θe6(s) ds

we have ρe2 = ρe3 and ρe5 = ρe6 and thus q∗ = 1
2q0 and q4 = 0.

Similar as in Section 4.1, by induction we can generalize this result to the case
of a graph that contains a circle with N parallel chords. For the case of N = 2
parallel chords, we can depict the graph as in Figure 7.

The graph consists of the V -shaped part GV = (VV , EV ) with the vertices VV =
{a0, b0, e0, f0} and the edges {e1, e2, e3}, a finite number of graphs that contain
the chords and the junction part that is for the case N = 2 from Figure 7 given
by GJ = (VJ , EJ) with VJ = {i0, j0, c0, d0}, EJ = {e10, e11, e12} that are glued
together.

Again we assume that the density ρ0 > 0 and the flow rate q0 > 0 at the
input node are given. In order to avoid technicalities, in the derivation of the
classical subsonic stationary states, we assume that ρ0 is sufficiently large such that
throughout the construction, only subsonic flows occur in the network (that is, the

values of
∫ Le
0

θe(s) ds for the pipes are sufficiently small).
For the construction of the stationary state, we start again as in the case of the

graph from Figure 6 (that is with N = 1 chord). At the bifurcation at b0 the gas
flow is determined by the parameter q2 that describes how the flow is distributed.
As in the derivation of Lemma 4.4, we consider the graph G1 = (V1, E1) with
V1 = {a0, b0, e0, f0, g0, h0}, E1 = {e1, e2, e3, e4, e5, e6}. In this graph each value
of q2 ∈ [0, q1] for the distribution of the flow at b0 generates a state with the given
inflow q0 and the given density ρ0 at a0 where in general the generated density
values at the vertices g0 and h0 will not be equal.

The induction argument works as follows: Suppose that for the graph that con-
sists of the first bifurcation GV and is extended such that it contains the edges of
the N parallel chords, the data at the output nodes are known as a function of the
parameter q2 ∈ [0, q1] that determines the distribution of the flow at b0. We call
the upper output node (for N = 1 this is g0) elN and the lower output node (for
N = 1 this is h0) erN . We make the following induction assumption that holds for
N = 1 by the derivation of Lemma 4.4:
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erN erN+1

elN elN+1

Figure 8. The notation for the vertices at the right-hand side of
the graph with (N + 1) parallel chords.

The functions ρe
l
N (q2), ρe

r
N (q2) are known and continuous and ρe

l
N is strictly

decreasing, ρe
r
N is strictly increasing. Moreover, we assume that the corresponding

flow rates qe
l
N (q2), qe

r
N (q2) are known and continuous and qe

l
N is strictly increasing,

qe
r
N is strictly decreasing. Moreover we assume the inequalities

qe
l
N (0) < 0 (61)

qe
r
N (0) > q1 (62)

ρe
l
N (0) > ρe

r
N (0) (63)

qe
l
N (q1) > q1 (64)

qe
r
N (q1) < 0 (65)

ρe
l
N (q1) < ρe

r
N (q1). (66)

The interpretation of (61) in terms of the flow for N = 1 is that if q2 = 0, that is
the complete flow is lead through e3, then there is a suction effect at g0 since the
flow through e4 is strictly positive. Hence at h0, not only q1 but also the flow that
enters at g0 and passes through e4 arrives, which implies (62). So in this situation
we have a flow from g0 to h0. Since the gas flows from points with higher density
values to points with lower density values, this implies (63). The assumptions (64),
(65), (66) can be interpreted analogously.

In the induction step to obtain the graph with N + 1 parallel chords the next
parallel chord is glued to the output nodes of the given graph with N parallel chords.

For example, for the step from N = 1 to 2 we go from the graph G1 to
the graph G2 = (V2, E2) where with V2 = {a0, b0, e0, f0, g0, h0, i0, j0}, E2 =
{e1, e2, e3, e4, e5, e6, e7, e8, e9}. Using the functions ρ and q, we can give an ex-
plicit representation of the flow through the resulting graph.

Figure 8 shows the notation for the vertices at the right-hand side of the graph
with (N + 1) parallel chords. We have

ρe
l
N+1(q2) = ρ(e

l
N ,e

l
N+1)(ρe

l
N (q2), qe

l
N (q2)− q(e

l
N , e

r
N )(ρe

l
N (q2), ρe

r
N (q2))).

Note that ρe
l
N+1(q2) is strictly decreasing. Analogously we have

ρe
r
N+1(q2) = ρ(e

r
N ,e

r
N+1)(ρe

r
N (q2), qe

r
N (q2) + q(e

l
N , e

r
N )(ρe

l
N (q2), ρe

r
N (q2)))

and ρe
r
N+1(q2) is strictly increasing. Now we define the function

βN+1(q2) = ρe
l
N+1(q2)− ρe

r
N+1(q2).
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Then βN+1 is strictly decreasing.
Due to (63), (61) and (62) we have

qe
l
N+1(0) < 0 and qe

r
N+1(0) > q1. (67)

Moreover we get

ρe
l
N+1(0) > ρe

r
N+1(0). (68)

This implies

βN+1(0) > 0.

Moreover, we have shown that for N + 1 our induction assumptions (63), (61) and
(62) hold. Due to (66), (64) and (65) we have

qe
l
N+1(q1) > q1 and qe

r
N+1(q1) < 0. (69)

Hence we get

ρe
l
N+1(q1) < ρe

r
N+1(q1). (70)

This implies

βN+1(q1) < 0.

Moreover, we have shown that for N + 1 our induction assumptions (66), (64) and
(65) hold.

By induction, this implies that for all N the function βN has a unique root q∗ in
the interval [0, q1]. Moreover, since β is decreasing, there cannot exist a root that
corresponds to a subsonic state outside the interval [0, q1].

If the vertices elN+1 and erN+1 are now identified to the edge c0 (that is in the
case N = 2, i0 and j0 are identified with c0, that is the edges e10 and e11 vanish
as edges of length zero), this value of q∗ determines the unique subsonic stationary
flow through the graph with a circle and N chords that do not intersect.

5. Stationary states for sloped pipes. In this section we consider the case of
pipes with nonzero slopes ze 6= 0. This case is of particular importance for pipelines
that transport gas over mountains. In this section we assume that θe and ze are
constant.

First we consider the case qe = 0. Then for ρe the stationary states are deter-
mined by the ordinary differential equation

a2 (ρe)x = −(ρe) gze.

This yields the density

ρe(x) = ρe(0) exp(−g z
e

a2
x). (71)

In the sequel we assume that q 6= 0. We define the number

ce0 =
2 g ze

a2 θe sign(qe)
.

Define the interval

Ice0 =

{
(0, 1), if ce0 > 0;
(−ce0, 1), if ce0 ∈ (−1, 0).

For τ ∈ Ice0 define the auxiliary function

Fce0(τ) =
1

c0
((1 + ce0) ln(|ce0 + τ |)− ln(τ)) .
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Then Fce0 is differentiable and for the derivative

F ′ce0(τ) =
τ − 1

τ(τ + ce0)

we have F ′ce0(τ) < 0, thus Fce0 is strictly decreasing on Ice0 . The second derivative is

F ′′ce0(τ) =
−τ2 + 2 τ + c0
τ2(τ + ce0)2

For ce0 > −1 and τ ∈ Ice0 we have F ′′ce0(τ) > 0, thus Fce0 is convex.

With the function Fce0 , we can write the differential equation (4) in the form of
the differential equation (7) with d0 = θe sign(qe). Due to Lemma 3.1 for ηe(0) ∈ Ice0
we can represent the solution in the form

ηe(x) = F−1ce0

(
Fce0(η0)− θe sign(qe) x

)
. (72)

If ce0 is a rational number, ce0 = m
n with integers n and m, with the notation

f = Fce0(τ) the number τ = F−1ce0
(f) is a solution of the equation

exp(m f) τn −
∣∣∣m
n

+ τ
∣∣∣n+m = 0.

Example 6. For ce0 = − 1
2 this yields

F−1ce0
(f) =

1

2
ef
(

1−
√

1− 2e−f
)

=
1

1 +
√

1− 2e−f
.

Observe that F−1ce0
(f) is defined for f ∈ (ln(2),∞) and is decreasing from 1 to 1

2 .

Since F ′ce0(1) = 0, For qe > 0, Lemma 3.3 implies that there is a critical length

xc > 0 where the state becomes sonic and there is a blow up in the derivative ρx.
Hence at this point the stationary state breaks down as a classical solution. For
qe < 0, this follows from Lemma 3.4.

Analogously to Lemma 3.6, we can derive the sensitivities of the stationary states
with respect to qe and ρe(0).

Lemma 5.1. Assume that a subsonic classical stationary solution exists on [0, Le].
For subsonic states with qe 6= 0 and ηe(0) ∈ Ice0 we have the partial derivatives

∂ρe(0)ρ
e(Le) =

F ′ce0(ηe(0))

F ′ce0(ηe(Le))
> 0, (73)

∂qeρ
e(Le) =

ρe(Le)

qe

(
1− ηe(0)

ηe(Le)

F ′ce0(ηe(0))

F ′ce0(ηe(Le))

)
< 0. (74)

In particular, ρe(Le) is strictly increasing as a function of ρe(0) for a fixed value
of qe. Moreover, ρe(Le) is strictly decreasing as a function of qe.

If qe = 0, we have ρe(Le) = ρe(0) exp(− g z
e

a2 Le). Thus for qe = 0, we have

∂ρe(0)ρ
e(Le)|qe=0 = exp(−g z

e

a2
Le)

and also in this case ρe(Le) is strictly increasing as a function of ρe(0).

Proof. Let x and x0 ∈ [0, Le] be given. By (2) again we get

∂ρe(x0)ρ
e(x) =

|qe|
a

(
−1

2

1

(ηe(x))3/2

)
∂ηe(x0)η

e(x) ∂ρe(x0)η
e(x0). (75)
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We have ∂ρe(x0)η
e(x0) = −2 (qe)2

a2 ρe(x0)3
and (9) yields

∂ηe(x0)η
e(x) =

F ′ce0(ηe(x0))

F ′ce0(ηe(x))
(76)

With the choice x0 = 0 and x = Le inserting (76) in (75) yields (73).
By (2) again we get

∂qeρ
e(x) =

sign(qe)

a
√
ηe(x)

− |qe|
2 a (ηe(x))3/2

∂ηe(x0)η
e(x) ∂qη

e(x0). (77)

We have ∂qη
e(x0) = 2 qe

a2 ρe(x0)2
and inserting (76) in (77) yields (74) with the choice

x0 = 0 and x = Le. The fact that the auxiliary function Hce0
(τ) = τ F ′ce0(τ) < 0 is

strictly increasing implies that the partial derivative in (74) is negative.

5.1. The case ηe(0) < −ce0. As already stated, for ηe(0) = −ce0, the differential
equation (5) has the constant solution (6) and for ηe(0) = 0 it has the constant
solution zero. Now we consider the case where ce0 < 0 and ηe(0) ∈ (0, 1) satisfies
ηe(0) < −ce0. In this case the corresponding trajectories are caught between the
two constant solutions. Define the interval

I0 = (0, 1) ∩ (0, −ce0).

For τ ∈ I0 we have F ′ce0(τ) > 0. Therefore in contrast to the case that we have

considered in the previous section for ηe(0) ∈ I0 we define d0 = −θe sign(qe) and for
τ ∈ I0 we set F−(τ) = −Fce0(τ). Then we have F ′−(τ) < 0, and with the function
F−, for ηe(0) ∈ I0 we can write the differential equation (5) in the form of the
differential equation (7) and the assumptions of Lemma 3.1 hold. Thus we can
represent the solution in the form (72)

Note that (5) implies that in this case ηe is strictly decreasing for qe > 0.
If ce0 is a rational number, ce0 = m

n with integers n and m, with the notation

f = F−(τ) the number τ = F−1− (f) ∈ I0 is a solution of the equation

exp(−m f) τn −
∣∣∣m
n

+ τ
∣∣∣n+m = 0.

Example 7. For ce0 = − 1
2 this yields

F−1− (f) =
1

1 +
√

1 + 2ef
.

Observe that for negative values of f , F−1ce0
(f) is close to 1

2 and decreases rapidly

around zero to values close to 0 that are attained on the positive half-axis. In
particular, F−1− is neither convex nor concave. Note that in this example where
ce0 ∈ (−1, 0), the solution of (5) for ηe(0) ∈ I0 exists on the whole real line.

The representations of the partial derivatives that we have given in (73) and (74)
from Lemma 5.1 hold also for the case that we consider in this section since

F ′ce0(ηe(0))

F ′ce0(ηe(Le))
=

F ′−(ηe(0))

F ′−(ηe(Le))
.

In particular, ρe(Le) is strictly increasing as a function of ρe(0) for a fixed value of
qe, since also in this case we have ∂ρe(0)ρ

e(Le) > 0. In order to analyse the sign of
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the partial derivative with respect to qe, also in this case we consider the auxiliary
function Hce0

(τ) = τ F ′ce0(τ) > 0. For the derivative of Hce0
we have

H ′ce0(τ) =
1 + ce0

(τ + ce0)2
> 0 (78)

for ce0 > −1, thus Hce0
is strictly increasing. Therefore as in (74) for ce0 > −1 we get

∂qeρ
e(Le) < 0, hence ρe(Le) is strictly decreasing as a function of qe.

We summarize our results in stating that for all e ∈ E, both for the case of
horizontal pipes where ze = 0 that we have discussed in Section 3.2 and in the case
of sloped pipes for ce0 > −1 where ze 6= 0 that is discussed in Section 5, the value
ρe(Le) is strictly decreasing as a function of qe for a fixed value of ρe(0). Moreover,
for a fixed value of qe the value ρe(Le) is strictly increasing as a function of ρe(0).

6. Outlook. In this paper we have shown how subsonic classical stationary states
for the isothermal Euler equations can be constructed for certain networks that can
contain an arbitrary number of circles. We have also shown that the stationary
states are uniquely determined by the prescribed boundary values.

The construction of the states has shown that in many case, for example for
horizontal pipes, if the input pressure is too low, the stationary state breaks down
as a classical solution at some point in the pipes (the critical length) where the Mach
number converges to one, that is the state is sonic. For the purpose of gas transport,
such a state is not suitable. Sound speed is much to fast for the transportation
of gas because pipe vibrations can occur that can damage the system and cause
noise pollution. From the mathematical point of view, the stationary solution can
be continued over the critical length by considering a weaker notion of solutions,
where a singularity in the derivative is allowed. For a discussion of such solutions
see [6].

Our construction of classical stationary solutions on networks of horizontal pipes
with circles has also clarified that due to the continuity of the density, reversed flow
in parallel pipes cannot occur. In fact nonzero circular flows do not satisfy the node
conditions. If we follow a nonzero circular flow, then along the circle, the density
values are strictly decreasing, thus there cannot be a continuity of the density in
the circle.

In the future, we want to generalize the construction of stationary states to
obtain a method that works for networks that have a structure that is given by an
arbitrary graph. Moreover, the questions of exact controllability between stationary
states and stabilization are of interest. The control action in the system is driven
by compressors that are located in the interior of the network, see [13, 14].

The stabilization of the flow in fan–shaped graph has already been investigated
in [11]. For more general graphs, as in [11], the existence of classical solutions in a
C1–neighborhood of the stationary states can be shown using Theorem 2.1 in [16].
In order to show the exponential decay of the system with linear Riemann feedback,
a network Lyapunov function of the type that is defined in [11] can be used. This
Lyapunov function is an extension of the Lyapunov function introduced in [8] by
Coron, d’Andrea-Novel and Bastin.
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