Homogenization of spectral problems in bounded domains with doubly high contrasts

  • Received: 01 April 2008
  • Primary: 35B27; Secondary: 34E.

  • Homogenization of a spectral problem in a bounded domain with a high contrast in both stiffness and density is considered. For a special critical scaling, two-scale asymptotic expansions for eigenvalues and eigenfunctions are constructed. Two-scale limit equations are derived and relate to certain non-standard self-adjoint operators. In particular they explicitly display the first two terms in the asymptotic expansion for the eigenvalues, with a surprising bound for the error of order ε5/4 proved.

    Citation: Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts[J]. Networks and Heterogeneous Media, 2008, 3(3): 413-436. doi: 10.3934/nhm.2008.3.413

    Related Papers:

    [1] Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev . Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3(3): 413-436. doi: 10.3934/nhm.2008.3.413
    [2] Vivek Tewary . Combined effects of homogenization and singular perturbations: A bloch wave approach. Networks and Heterogeneous Media, 2021, 16(3): 427-458. doi: 10.3934/nhm.2021012
    [3] Mohamed Camar-Eddine, Laurent Pater . Homogenization of high-contrast and non symmetric conductivities for non periodic columnar structures. Networks and Heterogeneous Media, 2013, 8(4): 913-941. doi: 10.3934/nhm.2013.8.913
    [4] Marc Briane, David Manceau . Duality results in the homogenization of two-dimensional high-contrast conductivities. Networks and Heterogeneous Media, 2008, 3(3): 509-522. doi: 10.3934/nhm.2008.3.509
    [5] Gabriela Jaramillo . Inhomogeneities in 3 dimensional oscillatory media. Networks and Heterogeneous Media, 2015, 10(2): 387-399. doi: 10.3934/nhm.2015.10.387
    [6] François Murat, Ali Sili . A remark about the periodic homogenization of certain composite fibered media. Networks and Heterogeneous Media, 2020, 15(1): 125-142. doi: 10.3934/nhm.2020006
    [7] Giovanni Scilla . Motion of discrete interfaces in low-contrast periodic media. Networks and Heterogeneous Media, 2014, 9(1): 169-189. doi: 10.3934/nhm.2014.9.169
    [8] Xavier Blanc, Claude Le Bris . Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks and Heterogeneous Media, 2010, 5(1): 1-29. doi: 10.3934/nhm.2010.5.1
    [9] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [10] Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski . Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7(1): 151-178. doi: 10.3934/nhm.2012.7.151
  • Homogenization of a spectral problem in a bounded domain with a high contrast in both stiffness and density is considered. For a special critical scaling, two-scale asymptotic expansions for eigenvalues and eigenfunctions are constructed. Two-scale limit equations are derived and relate to certain non-standard self-adjoint operators. In particular they explicitly display the first two terms in the asymptotic expansion for the eigenvalues, with a surprising bound for the error of order ε5/4 proved.


  • This article has been cited by:

    1. Michel Bellieud, Homogenization of Stratified Elastic Composites with High Contrast, 2017, 49, 0036-1410, 2615, 10.1137/15M1012050
    2. R. V. Craster, J. Kaplunov, A. V. Pichugin, High-frequency homogenization for periodic media, 2010, 466, 1364-5021, 2341, 10.1098/rspa.2009.0612
    3. Yue Chen, Robert Lipton, Controlling Refraction Using Sub-Wavelength Resonators, 2018, 8, 2076-3417, 1942, 10.3390/app8101942
    4. I. V. Andrianov, J. Awrejcewicz, V. V. Danishevs’kyy, D. Weichert, Wave Propagation in Periodic Composites: Higher-Order Asymptotic Analysis Versus Plane-Wave Expansions Method, 2011, 6, 1555-1415, 10.1115/1.4002389
    5. Andrea Bacigalupo, Second-order homogenization of periodic materials based on asymptotic approximation of the strain energy: formulation and validity limits, 2014, 49, 0025-6455, 1407, 10.1007/s11012-014-9906-0
    6. Latifa Ait Mahiout, Grigory Panasenko, Vitaly Volpert, Homogenization of the diffusion equation with a singular potential for a model of a biological cell network, 2020, 71, 0044-2275, 10.1007/s00033-020-01401-w
    7. Giuseppe Failla, Esmaeal Ghavanloo, 2021, Chapter 14, 978-3-030-63049-2, 393, 10.1007/978-3-030-63050-8_14
    8. Li-Ming Yeh, Uniform bound and convergence for elliptic homogenization problems, 2016, 195, 0373-3114, 1803, 10.1007/s10231-015-0530-y
    9. Antonio Gaudiello, Ali Sili, Homogenization of Highly Oscillating Boundaries with Strongly Contrasting Diffusivity, 2015, 47, 0036-1410, 1671, 10.1137/140987225
    10. Alexander Elbert, Grigory Panasenko, Asymptotic Analysis of the One-Dimensional Diffusion-Absorption Equation with Rapidly and Strongly Oscillating Absorption Coefficient, 2012, 44, 0036-1410, 2099, 10.1137/100817802
    11. Jean Soubestre, Claude Boutin, Non-local dynamic behavior of linear fiber reinforced materials, 2012, 55, 01676636, 16, 10.1016/j.mechmat.2012.06.005
    12. Yuri A. Godin, Boris Vainberg, Clusters of Bloch waves in three-dimensional periodic media, 2022, 478, 1364-5021, 10.1098/rspa.2022.0519
    13. J.-L. Auriault, C. Boutin, Long wavelength inner-resonance cut-off frequencies in elastic composite materials, 2012, 49, 00207683, 3269, 10.1016/j.ijsolstr.2012.07.002
    14. A. Piatnitski, E. Zhizhina, Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment, 2017, 169, 0022-4715, 595, 10.1007/s10955-017-1883-y
    15. Guy Bonnet, Vincent Monchiet, Dynamic mass density of resonant metamaterials with homogeneous inclusions, 2017, 142, 0001-4966, 890, 10.1121/1.4995999
    16. Yuri A. Godin, Boris Vainberg, Dispersion of waves in two and three-dimensional periodic media, 2022, 32, 1745-5030, 1150, 10.1080/17455030.2020.1810822
    17. Mikhail Cherdantsev, Spectral Convergence for High‐Contrast Elliptic Periodic Problems with a Defect Via Homogenization, 2009, 55, 0025-5793, 29, 10.1112/S0025579300000942
    18. Yue Chen, Robert Lipton, Double Negative Dispersion Relations from Coated Plasmonic Rods, 2013, 11, 1540-3459, 192, 10.1137/120864702
    19. Claude Boutin, Jean-Louis Auriault, Guy Bonnet, 2018, Chapter 6, 978-3-319-72439-3, 83, 10.1007/978-3-319-72440-9_6
    20. IIia V. Kamotski, Valery P. Smyshlyaev, Bandgaps in two-dimensional high-contrast periodic elastic beam lattice materials, 2019, 123, 00225096, 292, 10.1016/j.jmps.2018.08.024
    21. Xavier Pellet, Lucia Scardia, Caterina Ida Zeppieri, Homogenization of High-contrast Mumford--Shah Energies, 2019, 51, 0036-1410, 1696, 10.1137/18M1189804
    22. I. V. Kamotski, V. P. Smyshlyaev, Two-scale homogenization for a general class of high contrast PDE systems with periodic coefficients, 2019, 98, 0003-6811, 64, 10.1080/00036811.2018.1441994
    23. Michel Bellieud, Torsion Effects in Elastic Composites with High Contrast, 2010, 41, 0036-1410, 2514, 10.1137/07069362X
    24. Antoine Rallu, Stéphane Hans, Claude Boutin, Asymptotic analysis of high-frequency modulation in periodic systems. Analytical study of discrete and continuous structures, 2018, 117, 00225096, 123, 10.1016/j.jmps.2018.04.014
    25. Yuri A. Godin, Boris Vainberg, Dispersive and effective properties of two-dimensional periodic media, 2019, 475, 1364-5021, 20180298, 10.1098/rspa.2018.0298
    26. ZOUHAIR ABDESSAMAD, ILYA KOSTIN, GRIGORY PANASENKO, VALERY P. SMYSHLYAEV, MEMORY EFFECT IN HOMOGENIZATION OF A VISCOELASTIC KELVIN–VOIGT MODEL WITH TIME-DEPENDENT COEFFICIENTS, 2009, 19, 0218-2025, 1603, 10.1142/S0218202509003905
    27. I. V. Kamotski, V. P. Smyshlyaev, Localized Modes Due to Defects in High Contrast Periodic Media Via Two-Scale Homogenization, 2018, 232, 1072-3374, 349, 10.1007/s10958-018-3877-y
    28. Habib Ammari, Hyundae Lee, Hai Zhang, Bloch Waves in Bubbly Crystal Near the First Band Gap: A High-Frequency Homogenization Approach, 2019, 51, 0036-1410, 45, 10.1137/18M116722X
    29. G. Bonnet, V. Monchiet, Dynamic behaviour of elastic metamaterials containing soft elliptic fibers, 2020, 140, 00225096, 103953, 10.1016/j.jmps.2020.103953
    30. Guy Bonnet, Vincent Monchiet, Low frequency locally resonant metamaterials containing composite inclusions, 2015, 137, 0001-4966, 3263, 10.1121/1.4921273
    31. T. L. VAN NOORDEN, A. MUNTEAN, Homogenisation of a locally periodic medium with areas of low and high diffusivity, 2011, 22, 0956-7925, 493, 10.1017/S0956792511000209
    32. N. O. Babych, 2010, Chapter 6, 978-0-8176-4898-5, 53, 10.1007/978-0-8176-4899-2_6
    33. Valery P. Smyshlyaev, Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization, 2009, 41, 01676636, 434, 10.1016/j.mechmat.2009.01.009
    34. Andrii Khrabustovskyi, Michael Plum, Spectral properties of an elliptic operator with double-contrast coefficients near a hyperplane, 2016, 98, 18758576, 91, 10.3233/ASY-161363
    35. Yuri A. Godin, Boris Vainberg, Propagation and dispersion of Bloch waves in periodic media with soft inclusions, 2024, 65, 0022-2488, 10.1063/5.0195029
    36. Evgeny M. Rudoy, Sergey A. Sazhenkov, The homogenized dynamical model of a thermoelastic composite stitched with reinforcing filaments, 2024, 382, 1364-503X, 10.1098/rsta.2023.0304
    37. Andrey Piatnitski, Elena Zhizhina, Homogenization of convolution type semigroups in high contrast media, 2025, 15, 1664-2368, 10.1007/s13324-025-01034-0
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3582) PDF downloads(128) Cited by(37)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog