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Abstract. Homogenization of a spectral problem in a bounded domain with
a high contrast in both stiffness and density is considered. For a special critical
scaling, two-scale asymptotic expansions for eigenvalues and eigenfunctions are
constructed. Two-scale limit equations are derived and relate to certain non-

standard self-adjoint operators. In particular they explicitly display the first
two terms in the asymptotic expansion for the eigenvalues, with a surprising
bound for the error of order ε5/4 proved.

1. Introduction. Homogenization for problems with physical properties which are
not only highly oscillatory but also highly heterogeneous has long been documented
to display unusual effects, such as the memory effects observed by E. Ya. Khruslov
[17, 21, 22] and other nonlocal effects, e.g. [27, 3, 11, 12, 1]. In models of particular
interest, often referred to as double porosity models, e.g. [4, 10], the parameter
of high-contrast δ is critically scaled against the periodicity size ε, δ ∼ ε2. Among
other approaches, those have been treated by a high-contrast version of the classical
method of asymptotic expansions, e.g. [24, 26, 15, 20], and using the techniques
of two-scale convergence, e.g. [29, 30, 14, 13]. In particular, for spectral problems
in bounded [29] and unbounded [30] periodic domains V.V. Zhikov studied the
spectral convergence, introduced two-scale limit operator, developed the techniques
of two-scale resolvent convergence and two-scale compactness. In [20] the spectral
convergence of eigenvalues in the gaps of Floquet-Bloch spectrum due to defects in
double-porosity type media were studied, and [13] supplemented this by the analysis
of eigenfunction convergence based on an analysis of a two-scale uniform exponential
decay.

In this work we study spectral problems of double-porosity type in a bounded
domain Ω where the high contrast might occur not only in the “stiffness” coefficient
but also in the “density”, and argue that this leads to some interesting new effects.
Namely, referring to the next section for precise technical formulations, for the
spectral problem

− div (aε (x)∇uε) = λερε (x) uε, (1)
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with Dirichlet boundary conditions on the exterior boundary, most generally, both
stiffness1 aε and mass density ρε are ε-periodic, aε = ρε = 1 in the connected matrix
and aε ∼ εα, ρε ∼ εβ in the disconnected inclusions. Outside homogenization, the
above resembles problems of vibrations with high contrasts in both density and
stiffness, e.g. [5, 6]; within homogenization, dynamic or spectral problems with
periodic high contrast densities were studied in e.g. [7, 8, 24, 25, 26]. The double-
porosity corresponds to α = 2 and β = 0. For β 6= 0, it is not hard to see that it is
α = β + 2 when the spectral problems at the macro and micro-scales are coupled
in a non-trivial way. To explore this, we choose β = −1 and α = 1 and show that
this leads to some unusually coupled two-scale limit behaviors of the eigenfunctions
and the eigenvalues.

Namely, although the limit behavior of the eigenfunctions uε is still somewhat
similar to that of double porosity, i.e. the two-scale limit is a function of only slow
variable x in the matrix and a function of both x and the fast variable y in the inclu-
sions, the limit equations themselves are quite different. We show that there exist
asymptotic series of eigenvalues λε ∼ λ0 +ελ1 with λ0 being an arbitrary eigenvalue
of a non-standard self-adjoint “microscopic” inclusion problem (see Theorem 3.1).
The eigenfunctions corresponding to λ0 are directly related to the two-scale limit
w0(x, y) of uε in the inclusions. In fact, λ0 is either a solution of β(λ0) = |Q1|λ0,
where β(λ) is a function introduced by Zhikov [29]2, or is an eigenvalue of the
Dirichlet Laplacian in the inclusion Q0 with a zero mean eigenfunction. In the
matrix Q1, uε ∼ v0(x), where v0 is an eigenfunction of the homogenized operator
in Ω, whose eigenvalue ν determines the second term λ1 in the asymptotics of λε,
see (57). This is first derived via formal asymptotic expansions, but then we prove
a non-standard error bound:

|λε − λ0 − ελ1| ≤ Cε5/4,

see Theorems 4.6 & 4.7. The proof employs a combination of a high contrast
boundary layer analysis with maximum principle arguments and estimates in Hilbert
spaces with ε-dependent weights. We finally briefly discuss further refinement of
the results via the technique of two-scale convergence. Namely, some version of the
two-scale compactness result holds, cf. [29], indicating at the presence of gaps in
the spectrum for small enough ε, see Proposition 1.

The paper is organized as follows. The next section formulates the problem and
introduces necessary notation, Section 3 executes formal asymptotic expansion and
derives associated homogenized equations. Section 4 proves the error bounds and
Section 5 discusses the two-scale convergence approach. Some technical details are
assembled in the appendices.

2. Problem statement and notations. We consider a model of eigenvibrations
for a body occupying a bounded domain Ω in R

d (d = 2, 3, . . . ) containing a periodic
array of small inclusions, see Figure 1. The size of inclusions is controlled by a small
positive parameter ε, ε→ 0. First we introduce necessary notation.

Let Q = (0, 1)d be a reference periodicity cell in R
d. Let Q̃0 be a periodic set of

“inclusions”, i.e. Q̃0 +m = Q̃0, ∀m ∈ Z
d, and Q0 = Q̃0 ∩Q is a reference inclusion

with C2-smooth boundary Γ lying inside Q, see Figure 1. Let Q1 = Q\Q0, Q̃1 =

1 For this scalar model the adopted terminology from linear elasticity is adequate for anti-plane
shear; however the model also admits other physical realizations.

2See also [9].
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Figure 1. The geometry and the periodicity cell

R
d\Q̃0, Γ̃ = ∂Q̃0 = ∂Q̃1. Introducing y = x/ε we refer to y as to a fast variable, as

opposes to the slow variable x. We denote Ωε
0 := Ω ∩ εQ̃0, Ωε

1 := Ω ∩ εQ̃1 = Ω\Ωε
0,

Γε := εΓ̃ ∩ Ω, see Figure 1. The trace on Γε of a function f : Ωε
j → R

d is denoted
by f |j . Denote by n = n(y) the outer unit normal to Q0 on its boundary Γ and by
nε = nε(x) the outer unit normal to Ωε

0 at x ∈ Γε.
Let stiffness aε and density ρε be as follows

aε (x) =

{
1, x ∈ Ωε

1

ε, x ∈ Ωε
0

and ρε (x) =

{
1, x ∈ Ωε

1

ε−1, x ∈ Ωε
0

with a small positive ε.
We study the asymptotic behavior of spectral problem
∫

Ω

aε (x)∇uε · ∇φdx − λε

∫

Ω

ρε (x)uεφdx = 0, ∀φ ∈ H1
0 (Ω); uε ∈ H1

0 (Ω), (2)

as ε → 0. If Γ and ∂Ω are smooth enough then variational problem (2) can be
equivalently represented in a classical form

− div (aε (x)∇uε) = λερε (x) uε, x ∈ Ω, (3)

uε|∂Ω = 0, (4)

implying that at the interfaces Γε the transmission conditions are satisfied

uε

∣∣∣
1

= uε

∣∣∣
0
,

∂uε

∂nε

∣∣∣
1

= ε
∂uε

∂nε

∣∣∣
0
. (5)

For an operator formulation of problem (2) see Section 4.1.

3. Formal asymptotic expansions. We seek formal asymptotic expansions for
the eigenvalues λε and eigenfunctions uε in the form

λε ∼ λ0 + ελ1 + ε2λ2 + . . . , (6)

uε(x) ∼





v0

(
x,
x

ε

)
+ εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)
+ . . . , x ∈ Ωε

1,

w0

(
x,
x

ε

)
+ εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)
+ . . . , x ∈ Ωε

0.
(7)

Here all the functions vj(x, y), wj(x, y), j ≥ 0, are required to be periodic in the
“fast” variable y; v0 and w0 are not simultaneously identically zero

v2
0 + w2

0 6≡ 0. (8)
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In a standard way, the ansatz (6), (7) is then formally substituted into (3)–(5).
In particular, from (3), for (x, y) ∈ Ω ×Q1, we obtain

− ∆yv0 = 0, (9)

−∆yv1 = 2
∂2v0
∂xj∂yj

, (10)

−∆yv2 = 2
∂2v1
∂xj∂yj

+ ∆xv0 + λ0v0, (11)

(with ∆y and ∆x denoting the Laplace operators in y and x, respectively, and
summation implied henceforth with respect to repeated indices). For (x, y) ∈ Ω×Q0

we have

− ∆yw0 = λ0w0, (12)

−∆yw1 = 2
∂2w0

∂xj∂yj
+ λ1w0 + λ0w1, (13)

−∆yw2 = 2
∂2w1

∂xj∂yj
+ ∆xw0 + λ2w0 + λ1w1 + λ0w2. (14)

Further, the first of conditions (5) transforms to

wj(x, y)
∣∣∣
y∈Γ

= vj(x, y)
∣∣∣
y∈Γ

, x ∈ Ω, j = 0, 1 . . . . (15)

Similarly, the other transmission condition (5) yields

∂v0
∂ny

∣∣∣
y∈Γ

= 0, (16)

∂v1
∂ny

∣∣∣
y∈Γ

= −
∂v0
∂nx

∣∣∣
y∈Γ

+
∂w0

∂ny

∣∣∣
y∈Γ

, (17)

∂v2
∂ny

∣∣∣
y∈Γ

= −
∂v1
∂nx

∣∣∣
y∈Γ

+
∂w1

∂ny

∣∣∣
y∈Γ

+
∂w0

∂nx

∣∣∣
y∈Γ

, (18)

where ∂
∂ny

:= ny · ∇y, ∂
∂nx

:= ny · ∇x, with ∇y and ∇x standing for gradients in y

and x, respectively. The above has employed the identity

∂u

∂nε

(
x,
x

ε

)
= ε−1 ∂u

∂ny
(x, y) +

∂u

∂nx
(x, y), y =

x

ε
. (19)

Finally, (4) suggests

v0

∣∣∣
x∈∂Ω

= w0

∣∣∣
x∈∂Ω

= 0. (20)

(The boundary layer effect does not generally permit satisfying (4) by vj and wj

for j ≥ 1, as is clarified later.)
Combining (9) and (16), together with the periodicity conditions in y, implies

that v0 is a constant with respect to y, i.e.

v0(x, y) ≡ v0(x).

Then, (10) and (17) form the following boundary value problem for v1

− ∆yv1(x, y) = 0 in Ω ×Q1,
∂v1
∂ny

∣∣∣
y∈Γ

= −
∂v0

∂nx

∣∣∣
y∈Γ

+
∂w0

∂ny

∣∣∣
y∈Γ

. (21)
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The latter is solvable if and only if
∫

Γ

∂w0

∂ny
dy = 0. (22)

Considering next (12) and (15) gives

− ∆yw0 = λ0w0 in Ω ×Q0, w0(x, y)
∣∣∣
y∈Γ

= v0(x). (23)

Since ∫

Γ

∂w0

∂ny
dy =

∫

Q0

∆yw0 dy = −λ0

∫

Q0

w0 dy,

condition (22) implies that

λ0〈w0〉 = 0, (24)

where

〈u〉 :=

∫

Q0

u(y) dy.

We notice that (23)–(24) together with (8) constitute restrictions on possible
values of λ0. Those are described by Theorem 3.1 below. Before, let us consider an
auxiliary Dirichlet problem

− ∆yφ = λDφ in Q0, φ
∣∣∣
Γ

= 0. (25)

Let {λD
j }∞j=1 be eigenvalues for (25), labeled in the ascending order counting for the

multiplicities, and let {φj}∞j=1 be the corresponding eigenfunctions, orthonormal in
L2(Q0), i.e. ∫

Q0

φjφk dy = δjk,

where δjk is Kronecker’s delta. Denote by σD the spectrum of (25): σD =
⋃∞

j=1 λ
D
j .

We additionally introduce the following auxiliary problem:

− ∆yη = λ0η in Q0, η(y)
∣∣∣
y∈Γ

= 1. (26)

Notice that (26) is solvable if and only if either λ0 6∈ σD or λ0 = λD
j with all the

associated eigenfunctions φj having zero mean3, 〈φj〉 = 0. In the former case η is
determined uniquely and (23) implies w0(x, y) = v0(x)η(y). In the latter case η is
determined up to an arbitrary eigenfunction φj associated with λD

j , however 〈η〉 is
determined uniquely.

By direct inspection, (23), (24) has a non-trivial solution (v0, w0), i.e. with (8)
holding, if and only if λ0 is an eigenvalue of following problem:

− ∆yζ = λ0ζ in Q0, ζ(y)
∣∣∣
y∈Γ

= constant, λ0〈ζ〉 = 0. (27)

We claim that (27) corresponds to a self-adjoint operator associated with the (sym-
metric, closed, densely defined, bounded from below) Dirichlet form

α(ζ, h) :=

∫

Q0

∇ζ · ∇h dy (28)

3We remark that the case of eigenfunctions with zero mean is known to be not a “generic”
case, i.e. it is unstable via a small perturbation of the shape of Q0, see e.g. discussion in [18] and
further references therein.
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with domain

D(α) := {h ∈ H1(Q0) : h
∣∣∣
y∈Γ

= constant}. (29)

Theorem 3.1. The problem (27) is equivalent to an eigenvalue problem for a self-
adjoint operator in L2(Q0) associated with (28)–(29). The spectrum of (27) is a
countable set of real non-negative eigenvalues (of finite multiplicity) with the only
accumulation point at +∞, with the eigenfunctions complete in L2(Q0) and those
corresponding to different λ0 mutually orthogonal.

The spectrum consists of all the eigenvalues λD of problem (25) with a zero mean
eigenfunction and all the solutions of the equation

B(λ0) := λ0〈η〉 = λ0


|Q0| + λ0

∞∑

j=1

〈φj〉2

λD
j − λ0


 = 0 (30)

(which are hence all real non-negative). In (30) the summation is with respect to
only those λD

j for which there exists an eigenfunction with a non-zero mean.
The associated eigenfunctions ζ are either proportional to η as in (26) or are

eigenfunctions of (25) with zero mean.

Proof. In the weak formulation of the eigenvalue problem associated with (28)–(29),
∫

Q0

∇ζ · ∇h dy = λ0

∫

Q0

ζ h dy, ∀h ∈ D(α), (31)

we first set h to be an arbitrary function from C∞
0 (Q0) which implies −∆yζ = λ0ζ in

Q0, and then set h ≡ 1 yielding λ0〈ζ〉 = 0. Conversely, multiplying the first equation
of (27) by h ∈ D(α) and integrating by parts we obtain (31). Further, since D(α) is
compactly embedded into L2(Q0), each eigenvalue has a finite multiplicity, the set
of all eigenfunctions ζ is complete in L2(Q0) and those corresponding to different
λ0 are mutually orthogonal.

Obviously, the spectrum of (27) includes those and only those eigenvalues of
(25) which have an eigenfunction φj with zero mean. In this case corresponding
eigenfunctions of (27) are given by ζj = Cφj , C 6= 0. If λD

j does not have a zero-

mean eigenfunction, then the solvability of (27) requires ζ
∣∣∣
y∈Γ

= 0 implying ζ ≡ 0.

Considering other possibilities, fix λ0 outside σD and let η be the unique solution
of (26). Then λ0 is an eigenvalue of (27) if and only if

λ0〈η〉 = 0, (32)

with corresponding eigenfunction given by ζ(y) = Cη(y), C 6= 0.
Via the spectral decomposition, the solution to (26) is found to be, cf. [29]:

η(y) = 1 + λ0

∞∑

j=1

〈φj〉

λD
j − λ0

φj(y). (33)

Substituting (33) further into (32) yields (30).

The formula (30) can be transformed to read

B(λ0) = β(λ0) − |Q1|λ0 = 0, (34)

where function β(λ) has been introduced by Zhikov [29] (see also [9]),

β(λ) = λ+ λ2
∞∑

j=1

〈φj〉2

λD
j − λ

, (35)
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Figure 2. The limit eigenvalues λ0 = µj

see Figure 2 (λD
j are re-labeled to include only those with a nonzero-mean eigen-

function). This implies that λ0 is either a solution to the nonlinear equation

β(λ) = |Q1|λ, (36)

as visualized on Figure 2, or is an eigenvalue of (25) with a zero mean eigenfunction.

Remark 1. If Q0 is a ball of radius 0 < a < 1/2, i.e Q0 = Ba = {y : |y| < a}+ y0,
then we have an explicit representation for β(λ). Indeed, for λ0 6∈ σD the solution
of (26) is radially symmetric and (placing the origin in the ball’s center) reads

η(y) = |y|
2−d
2 J d−2

2

(λ
1/2
0 |y|)

(
|a|

2−d
2 J d−2

2

(λ
1/2
0 a)

)−1

,

where J d−2

2

(z) is Bessel’s function. Further, we have

B(λ0) = λ0〈η〉 = −

∫

∂Ba

∂η

∂ny
dy

= −
1

a
|Γ|
(
1 − d/2 + aλ

1/2
0 J ′

d−2

2

(λ
1/2
0 a)/J d−2

2

(λ
1/2
0 a)

)
.

Using (35), (33) we obtain

β(λ) = λ(1 − |Ba|) −
1

a
|Γ|
(
1 − d/2 + aλ1/2J ′

d−2

2

(λ1/2a)/J d−2

2

(λ1/2a)
)
.

In particular, for d = 3 we have,

B(λ0) = λ0〈η〉 = 4πa
(
1 − aλ

1/2
0 cotan (λ

1/2
0 a)

)
,

β(λ) = λ(1 − 4πa3/3) + 4πa
(
1 − aλ1/2 cotan (λ1/2a)

)
.

We next explore in detail the further steps in the method of asymptotic expan-
sions, to determine v0, etc. Let us consider a K-dimensional eigenspace (K ≥ 1) for
a given eigenvalue λ0 of (27), and let ζ1, . . . , ζK be associated linearly independent
eigenfunctions. Then, (23) and (24) imply

w0(x, y) =

K∑

k=1

ck(x)ζk(y). (37)

Following Theorem 3.1 we distinguish two cases:
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(a) λ0 6∈ σD. In this case (26) and (23) dictate

w0(x, y) = v0(x)η(y), (38)

and (8) implies v0 6≡ 0.
(b) λ0 ∈ σD. The latter means λ0 = λD

j for some j. This includes two further
possibilities:
(i) The eigenspace of (25) has an eigenfunction φ∗j with a non-zero mean.

Since the solvability conditions for (23) include

v0(x)〈φ∗j 〉 = 0, (39)

necessarily v0 ≡ 0. Moreover, with KD denoting the multiplicity of λD
j

as of the eigenvalue of the Dirichlet problem (25), necessarily KD ≥ 2: if
KD = 1 then w0 = C(x)φ∗j and thus (24) implies C(x) ≡ 0 and w0 ≡ 0

contradicting to (8). Hence w0 is given by (37) with K = KD − 1, with
ζk, k = 1, ...,K being linearly independent eigenfunctions of (25) with
zero mean (such K eigenfunctions do exist).

(ii) All of the eigenfunctions corresponding λD
j have a zero mean. In this

case, if 〈η〉 6= 0 i.e. B(λ0) 6= 0 then v0 ≡ 0 and w0 is again given by
(37), with K = KD. Alternatively, i.e. if B(λ0) = 0 then (37) gives w0

with K = KD + 1 and ζKD+1 = η is an arbitrary solution of (26), and
v0(x) = cK(x) an arbitrary function sufficiently smooth and vanishing at
∂Ω.

We henceforth consider Cases (a) and (b) separately.

3.1. Case (a): λ0 6∈ σD. In this case λ0 are solutions of (36). There is a countable
set of λ0 = µj , j = 1, 2, . . . as Figure 2 illustrates. Note that this includes λ0 = 0.
Function β blows up at the points λD

j , which are eigenvalues of (25) having an
eigenfunction with a non-zero mean, monotonically increasing between such points.
It also directly follows from (35) that β(λ) > |Q1|λ for λ ∈ (0, λD

1 ), implying
λD

1 < µ2 < λD
2 . Let λ0 satisfying (36) be fixed.

We consider problem (21) taking into account (38), i.e.

− ∆yv1(x, y) = 0 in Ω×Q1,
∂v1
∂ny

∣∣∣
y∈Γ

= −
∂v0

∂nx

∣∣∣
y∈Γ

+ v0(x)
∂η

∂ny

∣∣∣
y∈Γ

, (40)

where η(y) solves (26) and is given by (33). Hence v1 is a solution to a problem
depending linearly on v0 and ∇xv

0, implying

v1(x, y) = v0(x)N (y) +
∂v0

∂xj
Nj(y) + v∗1(x), (41)

with an arbitrary function v∗1(x). The choice of v∗1 does not affect the subsequent
constructions, so we set for simplicity v∗1 ≡ 0. In (41) functions Nj and N are
solutions to the periodic problems

∆yNj(y) = 0 in Q1,
∂Nj

∂ny

∣∣∣
y∈Γ

= −nj(y), (42)

and

∆yN (y) = 0 in Q1,
∂N

∂ny

∣∣∣
y∈Γ

=
∂η

∂ny

∣∣∣
y∈Γ

, (43)

where nj(y) are components of the vector n = (n1(y), . . . , nd(y)). Henceforth the
periodicity conditions are implied with respect to y.
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Solvability of (43) requires
∫

Γ

∂η

∂ny
dy = 0,

which is equivalent to (32) and is hence already assured. Since the solutions of (42)
and (43) are unique up to an arbitrary constant, we fix those by choosing

∫

Q1

Nj(y) dy =

∫

Q1

N (y) dy = 0.

We next consider the problem for w1, which from (13) and (15) combined with
(38) and (41) reads

−∆yw1 − λ0w1 = λ1v
0η + 2

∂v0

∂xj

∂η

∂yj
in Ω ×Q0, (44)

w1

∣∣∣
y∈Γ

= v0N (y)
∣∣∣
y∈Γ

+
∂v0

∂xj
Nj(y)

∣∣∣
y∈Γ

. (45)

Since the problem depends linearly on v0, λ1v
0 and ∂v0

∂xj
, the solution admits repre-

sentation

w1(x, y) =
∂v0

∂xj
(x)Mj(y) + v0(x)P(y) + λ1v

0(x)R(y), (46)

where functions Mj, P and R are solutions to the problems

−∆yMj − λ0Mj = 2
∂η

∂yj
(y) in Q0, Mj

∣∣∣
Γ

= Nj

∣∣∣
Γ
, (47)

−∆yP − λ0P = 0 in Q0, P
∣∣∣
Γ

= N
∣∣∣
Γ
, (48)

−∆yR− λ0R = η(y) in Q0, R
∣∣∣
Γ

= 0. (49)

Since by the assumption λ0 6∈ σD, all the problems (47) – (49) are uniquely solvable.
The problem for v2 is in turn given by (11) and (18), whose solvability condition

hence reads
∫

Q1

(
∆xv

0 + λ0v
0 + 2

∂2v1
∂xj∂yj

)
dy =

∫

Γ

(
−
∂v1
∂nx

+
∂w1

∂ny
+
∂w0

∂nx

)
dy, (50)

with functions v1, w1 and w0 given by (41), (46) and (38), respectively.
Appendix A provides a detailed calculation showing that the above yields the

following equations for v0:

− div (Ahom∇xv
0) = ν(λ1)v

0 in Ω, (51)

v0
∣∣∣
∂Ω

= 0. (52)

Here Ahom =
(
Ahom

jk

)d

j,k=1
is the classical homogenized matrix for periodic perfo-

rated domains, see e.g. [19]

Ahom
jk = |Q1|δjk +

∫

Q1

∂Nk

∂yj
dy; (53)

ν(λ1) = Cλ1 + λ0

(
|Q1| +

∫

Q0

P dy
)
, (54)
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where

C :=

∫

Q0

η2dy > 0. (55)

Note that the problem (51)–(52) involves ν = ν(λ1) as a spectral parameter.
The spectrum of (51)–(52) consists of a countable set of eigenvalues

0 < ν1 < ν2 ≤ · · · ≤ νm ≤ · · · → +∞. (56)

Corresponding eigenfunctions v0
m form an orthonormal basis in L2(Ω),
∫

Ω

v0
l v

0
m dx = δlm.

Fixing an eigenvalue ν of (51), (52) with corresponding eigenfunction v0 of unit
norm in L2(Ω), according to (54) we find

λ1 = C−1

(
ν − λ0

(
|Q1| +

∫

Q0

P dy
))

. (57)

The following diagram summarizes the algorithm for constructing the first terms
of the asymptotic expansions (for the case λ0 6∈ σD)

Nj
(53)
→ Ahom (51),(52)

→ ν, v0

λ0
(26)
→ η

(43)
→ N

}
(57)
→ λ1
(41)
→ v1
(47)−(49)

→ Mj ,P ,R
(38)
→ w0





(46)
→ w1

(11),(18)
→ v2.

We can additionally constructw2 from (14) and (15), whose unique solution exists
for any choice of λ2. For purposes of the justification of the first two terms in the
asymptotics (the next section) it is sufficient to set λ2 = 0 and fix the corresponding
solution w2.

This completes constructing a formal asymptotic approximation, which we now
summarize. We introduce an approximate eigenvalue

Λε = λ0 + ελ1, (58)

and corresponding approximate eigenfunction

Wε(x) =





v0(x) + εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)
, x ∈ Ωε

1,

w0

(
x,
x

ε

)
+ εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)
, x ∈ Ωε

0.
(59)

The essence of the above formal asymptotic construction is that the action of
differential operator Aε on Wε defined by

AεWε := div (aε∇Wε) + ΛερεWε (60)

produces a small right-hand side in both Ωε
1 and Ωε

0, and on the interface Γε in the
following sense.

Lemma 3.2. (i) max
Ω̄ε

1

| div (aε∇Wε) + ΛερεWε| ≤ Cε.

(ii) max
Ω̄ε

0

| div (aε∇Wε) + ΛερεWε| ≤ Cε2.

(iii) max
Γε

∣∣∣∣aε
∂Wε

∂n

∣∣∣∣
0

− aε
∂Wε

∂n

∣∣∣∣
1

∣∣∣∣ ≤ Cε2.
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Proof. (i) The function Wε explicitly depends on the fast and slow variables in Ωε
1.

Therefore, we obtain

div (aε∇Wε) + ΛερεWε

=

(
ε−2∆y + ε−12

∂2

∂xj∂yj
+ ∆x + λ0 + ελ1

)(
v0 + εv1 + ε2v2

)
|y= x

ε

=

{
ε−1∆yv1(x, y) + ε0

(
∆yv2 + 2

∂2v1
∂xj∂yj

+ ∆xv
0 + λ0v

0

)

+ ε1
(

2
∂2v2
∂xj∂yj

+ ∆xv1 + λ1v
0 + λ0v1

)

+ε2(∆xv2 + λ1v1 + λ0v2) + ε3λ1v2

}∣∣∣∣
y=x

ε

.

(61)

Since v1 is a solution to (40), the coefficient of ε−1 vanishes. The same is with
the coefficient of ε0 since v2 satisfies (11). Functions v0, v1 and v2 are solutions of
elliptic problems with smooth enough coefficients to guarantee belonging solutions
to C2. Thus, maxima for coefficients of ε1, ε2 and ε3 in (61) exist.

(ii) Similarly, in Ωε
0

div (aε∇Wε) + ΛερεWε

=

(
ε−1∆y + 2

∂2

∂xj∂yj
+ ε∆x + ε−1λ0 + λ1

)(
w0 + εw1 + ε2w2

)
|y= x

ε

=

{
ε−1(∆yw0 + λ0w0) + ε0

(
∆yw1 + 2

∂2w0

∂xj∂yj
+ λ0w1 + λ1w0

)

+ ε1
(

∆yw2 + 2
∂2w1

∂xj∂yj
+ ∆xw0 + λ0w2 + λ1w1

)

+ ε2
(

2
∂2w2

∂xj∂yj
+ ∆xw1 + λ1w2

)
+ ε3∆xw2

}∣∣∣∣
y= x

ε

.

Since w0(x, y) = v0(x)η(y) is chosen according to (26), the coefficient of ε−1 van-
ishes. The coefficient of ε0 vanishes due to (44). Further, w2 satisfies (14) with
λ2 = 0 and thus the coefficient of ε1 is zero as well. Since w1 and w2 are solutions
of elliptic problems with smooth enough coefficients, the maxima of the coefficients
of ε2 and ε3 exist.

(iii) Using (19), we obtain

aε
∂Wε

∂n

∣∣∣∣
0

− aε
∂Wε

∂n

∣∣∣∣
1

=

(
∂

∂ny
+ ε

∂

∂nx

)(
w0 + εw1 + ε2w2

) ∣∣∣x∈Γε

y∈Γ

−

(
ε−1 ∂

∂ny
+

∂

∂nx

)(
v0 + εv1 + ε2v2

) ∣∣∣x∈Γε

y∈Γ

=ε0
(
∂w0

∂ny
−
∂v1
∂ny

−
∂v0

∂nx

) ∣∣∣x∈Γε

y∈Γ

+ ε1
(
∂w1

∂ny
+
∂w0

∂nx
−
∂v2
∂ny

−
∂v1
∂nx

) ∣∣∣x∈Γε

y∈Γ

+ ε2
(
∂w2

∂ny
+
∂w1

∂nx
−
∂v2
∂nx

) ∣∣∣x∈Γε

y∈Γ

+ ε3
∂w2

∂nx

∣∣∣x∈Γε

y∈Γ

.

(62)

The coefficients of ε0 and ε1 vanish because of (21) and (18) respectively. The rest
of the coefficients are smooth enough to guarantee that their maxima for x ∈ Γε

and y ∈ Γ exist.
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3.2. Case (b): λ0 = λD
j . For simplicity, we consider here only the case of eigen-

values of multiplicity K = 1 with zero mean eigenfunction (φ = φj), assuming
additionally λ0 is not a solution of (34). This corresponds to a subcase of b(ii) on
page 420. All other degenerate cases could be considered similarly.

In this case v0 ≡ 0 and we can introduce a refined approximation for the eigen-
function

W ∗
ε (x) =





εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)
, x ∈ Ωε

1,

w0

(
x,
x

ε

)
+ εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)
, x ∈ Ωε

0,
(63)

where

w0(x, y) = c(x)φ(y), c(x) 6≡ 0. (64)

Lemma 3.3. For an arbitrary function c ∈ C3(Ω) there exist smooth v1, w1, v2, w2

in form (B.1)-(B.4) and a constant λ1 such that Λε = λD
j + ελ1 and W ∗

ε defined by
(63) satisfy

(i) W ∗
ε (x) ∈ C(Ω),

(ii) max
Ω̄ε

1

| div (aε∇W
∗
ε ) + ΛερεW

∗
ε | ≤ C0ε,

(iii) max
Ω̄ε

0

| div (aε∇W
∗
ε ) + ΛερεW

∗
ε | ≤ C0ε,

(iv) max
Γε

∣∣∣∣aε
∂W ∗

ε

∂n

∣∣∣∣
0

− aε
∂W ∗

ε

∂n

∣∣∣∣
1

∣∣∣∣ ≤ C0ε
2.

Proof. See Appendix B.

4. Justification of asymptotics.

4.1. Operator formulation. We use a standard notation for Lebesgue and So-
bolev spaces: L2

p(Ω) is a p-weighted L2-space of square-integrable functions in Ω.
Notation (·, ·)H is used for the inner product in a Hilbert space H .

Let Lε = L2
ρε

(Ω) and Hε be H1
0 (Ω) Sobolev space with inner product

(u, v)Hε =

∫

Ω

aε(x)∇u · ∇v dx+

∫

Ω

ρε(x)uv dx.

Following a standard procedure, see e.g. [19], we introduce a bounded operator
Bε : Lε → Lε such that

(Bεf, v)Hε = (f, v)Lε , ∀v ∈ Hε. (65)

In other words Bεf = uε, where uε is the unique solution of the problem

− div (aε∇uε) + ρεuε = ρεf, x ∈ Ω, (66)

uε|∂Ω = 0, (67)

uε

∣∣∣
1

= uε

∣∣∣
0
,

∂uε

∂nε

∣∣∣
1

= ε
∂uε

∂nε

∣∣∣
0
. (68)

Note that the operator Bε is positive, self-adjoint and compact for any fixed ε > 0
(since its image is in Hε). Eigenvalue problem (2) is equivalent to

Bεuε = (λε + 1)−1uε in Lε. (69)
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Hence the spectrum of the problem consists of a countable set of eigenvalues

0 < λε
1 < λε

2 ≤ · · · ≤ λε
k ≤ · · · → +∞,

with the only accumulation point at +∞. Moreover, the set of corresponding eigen-
functions is complete in Lε.

4.2. Case (a). In this Section we justify the leading terms of the asymptotic ex-
pansions constructed above in case λ0 6∈ σD and thus v0 6≡ 0, see Section 3.1. Let
λ0 be a solution to equation (36). All the functions (η, Nj , N , M, P , R, w0,
w1, v1 and w2, v2) are as defined in Section 3.1. We also fix λ1 according to (57).
The approximate eigenvalue Λε and eigenfunction Wε are given by (58) and (59),
respectively.

Notice that although Wε ∈ H1(Ω) since Wε

∣∣∣
1

= Wε

∣∣∣
0
, it does not satisfy the

zero Dirichlet boundary conditions on ∂Ω. To remedy for this we introduce the
following boundary-layer corrector to our approximation.

Lemma 4.1. There exists a corrector Vε solving the problem

−div(aε∇Vε) + ρεVε = 0 in Ω, (70)

Vε|∂Ω = −Wε|∂Ω, Vε

∣∣∣
1

= Vε

∣∣∣
0
,

∂Vε

∂nε

∣∣∣
1

= ε
∂Vε

∂nε

∣∣∣
0
, (71)

such that Uε = Wε + Vε ∈ H1
0 (Ω) and max

Ω̄
|Vε| ≤ Cε.

Proof. Clearly a solution of (70), (71) does exist. On each of the subsets Ωε
1 and Ωε

0

the coefficients of (70) are smooth. Then, by the maximum principle, the function
Vε can reach its positive maximum or negative minimum only at the boundaries
Γε or ∂Ω. Let us prove that this cannot be Γε. Assume to the contrary the
existence of x∗ ∈ Γε such that max

Ω̄
|Vε| = |Vε(x∗)| > 0. The strong maximum

principle yields that there is no more point inside Ωε
1 or Ωε

0 where the maximum is
reached. Without loss of generality we assume Vε(x∗) > Vε(x) for any x ∈ Ω\Γε

and Vε(x∗) > 0 (otherwise the point would be a positive maximum for −Vε and we
would then consider −Vε). Then by the virtue of Hopf’s Lemma, e.g. [16, p.330],
applied in the relevant component of Ωε

0 we have

∂Vε

∂nε

∣∣∣∣
0

(x∗) > 0.

From transmission conditions (71) we have that the normal derivative on the Ωε
1

side of domain is also positive. Therefore the value of Vε increases from the point
x∗ inside Ωε

1 in the n-direction and hence x∗ is not a point of maximum of Vε in
Ωε

1. The contradiction proves that |Vε| reaches it’s maximum at ∂Ω. Then, from
boundary conditions (71),

max
Ω̄

|Vε| = max
∂Ω

|Vε| = max
∂Ω

|Wε|

≤ εmax
∂Ω

∣∣∣v1
(
x,
x

ε

)
+ εv2

(
x,
x

ε

)∣∣∣+ εmax
∂Ω

∣∣∣w1

(
x,
x

ε

)
+ εw2

(
x,
x

ε

)∣∣∣ ≤ Cε.

Obviously Uε = Wε + Vε satisfies zero boundary condition on ∂Ω and thus belongs
to H1

0 (Ω).

Lemma 4.2. The constructed corrector Vε satisfies the estimate ‖Vε‖Lε ≤ Cε3/4.
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Proof. Let χ ∈ C∞(R) and χ(t) = 0, t ≤ 1 and χ(t) = 1, t ≥ 2. Define a family of
cut-off functions:

χε(x) = χ
(
ε−1/2 dist (x, ∂Ω)

)
, x ∈ Ω.

Then χε : Ω → R satisfies the properties

• χε(x) = 0 if dist (x, ∂Ω) ≤ ε1/2,
• χε(x) = 1 if dist (x, ∂Ω) ≥ 2ε1/2,
• |∇χε| ≤ Cε−1/2 and |supp∇χε| ≤ Cε1/2,

where “supp” denotes function’s support, and |supp ·| is the measure of the corre-
sponding support. Multiplying (70) by χ2

εVε and integrating by parts, we obtain
∫

Ω

aε∇Vε · ∇(χ2
εVε) dx+

∫

Ω

ρεχ
2
εV

2
ε dx = 0. (72)

Then using the identity

∇Vε · ∇(χ2
εVε) = |∇(χεVε)|

2 − V 2
ε |∇χε|

2,

we get from (72)
∫

Ω

aε|∇(χεVε)|
2 dx+

∫

Ω

ρεχ
2
εV

2
ε dx =

∫

Ω

aεV
2
ε |∇χε|

2 dx, (73)

implying ∫

Ω

ρεχ
2
εV

2
ε dx ≤

∫

Ω

aεV
2
ε |∇χε|

2 dx. (74)

Lemma 4.1 provides the estimate V 2
ε ≤ Cε2. Moreover, |supp∇χε| ≤ Cε1/2 and

|∇χε|2 ≤ Cε−1. Therefore (74) yields

‖χεVε‖
2
Lε =

∫

Ω

ρεχ
2
εV

2
ε dx ≤ Cε3/2. (75)

Similarly we estimate

‖(1 − χε)Vε‖
2
Lε =

∫

Ω

ρε(1 − χε)
2V 2

ε dx ≤ Cε3/2, (76)

since |supp (1 − χε)| ≤ Cε1/2 and |ρε| ≤ Cε−1. Combining (75) and (76), we obtain
‖Vε‖Lε = ‖(1 − χε)Vε + χεVε‖Lε ≤ Cε3/4.

Lemma 4.3. If ϕ ∈ H1
0 (Ω) then

( ∫

Γε

|ϕ|2 dx
)1/2

≤ C‖ϕ‖Hε . (77)

Proof. Extend function ϕ by zero to the whole of R
n. Then (77) follows upon

rescaling y = x/ε from the standard trace estimates applied to each connected

component of Q̃0 (which are shifts of Q0).

Lemma 4.4. The corrected approximation Uε satisfies the estimate

‖BεUε − (Λε + 1)−1Uε‖Lε ≤ ‖BεUε − (Λε + 1)−1Uε‖Hε ≤ Cε3/4.
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Proof. For an arbitrary ϕ ∈ Hε consider

|(BεUε − (Λε + 1)−1Uε, ϕ)Hε | = |Λε + 1|−1|(Uε − (Λε + 1)BεUε, ϕ)Hε |

≤C |(Uε, ϕ)Hε − (Λε + 1)(Uε, ϕ)Lε |

=C

∣∣∣∣
∫

Ω

aε∇Uε · ∇ϕdx − Λε

∫

Ω

ρεUεϕdx

∣∣∣∣

≤C

∣∣∣∣∣

∫

Ωε
0
∪Ωε

1

( div (aε∇Uε) + ΛερεUε)ϕdx

∣∣∣∣∣

+ C

∫

Γε

∣∣∣∣aε
∂Uε

∂n

∣∣∣∣
0

− aε
∂Uε

∂n

∣∣∣∣
1

∣∣∣∣ |ϕ| dx.

(78)

Denote the right-hand side of (78) by Fε(Uε, ϕ). Substituting Uε = Wε + Vε and
taking into account (70) and (71),

Fε(Uε, ϕ) ≤ Fε(Wε, ϕ) + C

∣∣∣∣(Λε + 1)

∫

Ω

ρεVεϕdx

∣∣∣∣ ≤ Fε(Wε, ϕ) + C‖Vε‖Lε‖ϕ‖Lε .

By Lemma 4.2 and obvious inequality ‖ϕ‖Lε ≤ ‖ϕ‖Hε ,

Fε(Uε, ϕ) ≤ Fε(Wε, ϕ) + Cε3/4‖ϕ‖Hε . (79)

According to Lemma 3.2 (i) and (ii),

Fε(Wε, ϕ) ≤ Cε‖ϕ‖L2(Ω) + C

∫

Γε

∣∣∣∣aε
∂Wε

∂n

∣∣∣∣
0

− aε
∂Wε

∂n

∣∣∣∣
1

∣∣∣∣ |ϕ| dx.

Due to Lemmas 3.2 (iii) and 4.3 the latter yields

Fε(Wε, ϕ) ≤ Cε‖ϕ‖Lε + Cε3/2
( ∫

Γε

|ϕ|2 dx
)1/2

≤ Cε‖ϕ‖Hε . (80)

Using (80) and (79) in (78) provides

|(BεUε − (Λε + 1)−1Uε, ϕ)Hε | ≤ Cε3/4‖ϕ‖Hε

for all ϕ ∈ Hε. Hence, ‖BεUε − (Λε + 1)−1Uε‖Hε ≤ Cε3/4.

Lemma 4.5. ‖Uε‖Lε ≥ Cε−1/2.

Proof. By the triangle inequality we have

‖Uε‖Lε ≥ ‖Wε‖Lε − ‖Vε‖Lε . (81)

We consider

‖Wε‖
2
Lε =ε−1

∫

Ωε
0

∣∣∣w0

(
x,
x

ε

)
+ εw1

(
x,
x

ε

)
+ ε2w2

(
x,
x

ε

)∣∣∣
2

dx

+

∫

Ωε
1

∣∣∣v0(x) + εv1

(
x,
x

ε

)
+ ε2v2

(
x,
x

ε

)∣∣∣
2

dx

=ε−1

∫

Ωε
0

∣∣∣w0

(
x,
x

ε

)∣∣∣
2

dx+O(1)

=ε−1

∫

Ωε
0

∣∣∣v0(x)η
(x
ε

)∣∣∣
2

dx+O(1), ε→ 0.

(82)
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Extending η : Q0 → R by zero onto entire periodicity cell Q, by the mean value
property we obtain∫

Ωε
0

∣∣∣v0(x)η
(x
ε

)∣∣∣
2

dx → C∗ := 〈η2〉

∫

Ω

∣∣v0(x)
∣∣2 dx as ε→ 0, (83)

where 〈η2〉 is the mean value of function η2 over Q, namely

〈η2〉 =

∫

Q

η2(y) dy =

∫

Q0

η2(y) dy > 0.

Since also v0(x) 6≡ 0, C∗ is positive. Therefore (83) and (82) yield

‖Wε‖Lε = C
1/2
∗ ε−1/2 + o(ε−1/2), ε→ 0. (84)

Due to Lemma 4.2 and (84), it follows from (81) that ‖Uε‖Lε ≥ C
1/2
∗ ε−1/2+o(ε−1/2)

as ε→ 0.

Theorem 4.6. Let λ0 be a solution to (36) such that λ0 6= λD
j and λ1 is defined

according to (57). Then
1. For sufficiently small ε > 0 there exists an eigenvalue λε of (2) such that

|λε − λ0 − ελ1| ≤ C1ε
5/4, (85)

with positive constant C1 independent of ε.

2. Let Wε be defined by (59) and W̃ε = ‖Wε‖
−1
LεWε. Then there exist constants

dj(ε) such that ∥∥∥W̃ε −
∑

j∈Jε

dj(ε)u
ε
j

∥∥∥
Lε

≤ C2ε
5/4, (86)

where Jε = {j : |λε
j − λ0 − ελ1| ≤ C1ε

5/4}, and λε
j , u

ε
j are eigenvalues and (Lε-

normalized) eigenfunctions of (2), and the positive constants C1 and C2 are inde-
pendent of ε.

Proof. Application of classical lemma on “approximate eigenvalues”, e.g. [28], with

Ũε = ‖Uε‖
−1
LεUε as a test function and Λε = λ0 + ελ1 as an approximate eigenvalue,

ensures, via Lemmas 4.4 & 4.5, the existence of an eigenvalue µε of operator Bε

such that
|(Λε + 1)−1 − µε| ≤ Cε5/4, (87)

and delivers the estimate analogous to (86) with uε
j being eigenfunctions of Bε and

W̃ε replaced by Ũε. It suffices to notice that the eigenfunctions of problem (2) and
of operator Bε coincide, their eigenvalues are related via µ−1

ε = λε + 1 and that Lε

norm of the difference between Ũε and W̃ε can be estimated via the right hand side
of (86) (see Lemmas 4.2 and 4.5).

Remark 2. Notice that (86) implies weaker but more transparent interpretations
on the approximate eigenfunctions. For example, introducing

u(x, y) =

{
v0 (x) , y ∈ Q1,

w0 (x, y) , y ∈ Q0,
(88)

we claim that ∥∥∥u
(
x,
x

ε

)
−
∑

j∈Jε

dj(ε)u
ε
j

∥∥∥
L2(Ω)

≤ Cε3/4, (89)

with appropriate dj(ε). Note that ‖u(·, ·
ε)‖L2(Ω) ≥ C0 > 0. Then (89) follows

from (86) by splitting its left hand side into the parts corresponding to Ωε
1 and
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Ωε
0, removing the weight, retaining only the main-order terms and then adding the

inequalities up.

We also remark that, in principle, the result (86) on the convergence of eigenfunc-
tions could be further sharpened, e.g. using the technique of two-scale convergence,
cf. Section 5 below and [13].

4.3. Case (b). In this section we assume that λ0 = λD
j for some j, its multiplicity

is equal to 1 and the corresponding eigenfunction φ has zero mean, i.e. 〈φ〉 = 0, see
Section 3.2.

Theorem 4.7. Let c ∈ C3(Ω), c = 0 on ∂Ω, λ0 be not a solution to (36) and
λ1 be defined according to (B.17). Then there exist ε0 > 0 and constants C1, C2

independent of ε (but dependent on c) such that for any 0 < ε ≤ ε0,
1. There exists an eigenvalue λε of (2) such that

|λε − λ0 − ελ1| ≤ C1ε
5/4. (90)

2. Let W ∗
ε be defined by (63) and W̃ ∗

ε = ‖W ∗
ε ‖

−1
LεW ∗

ε . Then there exist constants
dj(ε) such that ∥∥∥W̃ ∗

ε −
∑

j∈Jε

dj(ε)u
ε
j

∥∥∥
Lε

≤ C2ε
5/4, (91)

where Jε = {j : |λε
j − λ0 − ελ1| ≤ C1ε

5/4}, and λε
j , u

ε
j(x) are eigenvalues and

(Lε-normalized) eigenfunctions of (2).

Proof. Proof of this theorem literally follows the proof of Theorem 4.6 with reference
to Lemma 3.3.

A direct analogue of Remark 2 also holds.

5. On the eigenfunction convergence. In this section we give a brief sketch of a
possible further refinement of the presented results using the technique of two-scale
convergence, see [23, 2, 29].

First, the inclusions intersecting or touching the boundary are “excluded”, e.g.
by re-defining aε and ρε there as in the matrix phase (aε(x) = ρε(x) = 1). Denoting
now via ε → 0 an appropriate subsequence in ε, without relabeling, let uε and λε

be eigenfunctions and eigenvalues of the original problem, with normalization
∫

Ωε
1

∇u2
ε + ε2

∫

Ωε
0

∇u2
ε = 1. (92)

The boundedness of uε in L2(Ω) is then implied by (92) e.g. via the uniform
positivity of the double-porosity operator whose form is given by the left hand

side of (92), [29, Thm 8.1]. This implies that, up to a subsequence, uε
2
⇀ u(x, y)

and ε∇uε
2
⇀ ∇yu(x, y), where u ∈ L2(Ω, H1

per) and
2
⇀ denotes weak two-scale

convergence. Additionally, since (92) implies ε‖∇uε‖L2(Ωε
1
) → 0, [29, Thm 4.1]

assures that the two-scale limit is independent of y in the matrix, i.e. is exactly in
the form (88). Further, by [29, Thm 4.2], v0 ∈ H1

0 (Ω) and

θε
1∇uε

2
⇀ θ1(y)(∇v

0(x) + p(x, y)), (93)

where p ∈ L2(Ω, Vpot) with θε
1 and θ1(y) denoting the characteristic functions of Ωε

1

and Q1, respectively, and Vpot standing for the space of potential vector fields on
Q1, i.e. with respect to the Lebesgue measure supported on Q1, cf. [29, §3.2].
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Let λε → λ0 and (λε − λ0)/ε→ λ1. Selecting then in (2) appropriate oscillating
test functions φ = φε one can pass to the limit recovering the weak forms of the
equations derived in Section 3. For example, selecting φε(x) = εψ(x)b(x/ε), ψ ∈
C∞

0 (Ω), b(y) ∈ C∞
per(Q) yields

∫

Ω

∫

Q1

(∇v0(x) + p(x, y)) · ∇yb(y)ψ(x)dydx +

∫

Ω

∫

Q0

∇yw0(x, y) · ∇yb(y)ψ(x)dydx

= λ0

∫

Ω

∫

Q0

w0(x, y)b(y)ψ(x)dydx. (94)

This can be seen to be a weak form of (23) and (21). Selecting further φε(x) = ψ(x)
can be seen, after some careful technical analysis, to recover (51), (52) and (54).

The above implies that as long as (v0)2 +w2
0 6≡ 0, λ0, λ1, v

0 and w0 can only be
those constructed in Section 3. This does not however rule out the possibility that
v0 and w0 are both trivial (equivalently, the two-scale limit u(x, y) is identically
zero). Therefore additional two-scale compactness type arguments are required, cf.
[29, Lemma 8.2]. In fact, following literally the argument of Zhikov one observes

that the two-scale compactness of the eigenfunctions does hold, i.e. uε
2
→ u(x, y),

where
2
→ denotes strong two-scale convergence, in particular there is a convergence

of norms:

‖uε − u(x, x/ε)‖L2(Ω) → 0 as ε→ 0. (95)

However, this in turn does not rule out the possibility of ‖uε‖ → 0 with the nor-
malization (92), which requires a separate analysis.

We announce here a partial result with this effect, postponing detailed discussions
for future.

Proposition 1. Let λε → λ0, (λε − λ0)/ε → λ1, and let λ0 be not an eigenvalue
of the Dirichlet problem in Q0, i.e. λ0 6= λD

j , j ≥ 1, see (25). Then

(i) In the above setting, necessarily, β(λ0) ≥ |Q1|λ0, i.e. there are gaps developed
for small enough ε in the spectrum, containing in the limit at least {λ : β(λ) <
|Q1|λ}.

(ii) If β(λ0) = |Q1|λ0, necessarily u(x, y) 6≡ 0. Consequently, λ1 can only be
one of those described by (56), (57). The eigenfunctions converge strongly, in
particular (95) holds. For fixed λ0 and λ1 for any sufficiently small positive
constant C∗ for small enough ε the multiplicity of the eigenvalues λε in the
interval [Λε−C∗ε,Λε+C∗ε] with Λε = λ0+ελ1 does not exceed the multiplicity
of ν as an eigenvalue of (51), (52).

We remark that the above statement does not provide a full analogue of Hausdorff
convergence of the spectra as in the double porosity case [29, Thm 8.1]. It does
ensure however the existence of the gaps (on Figure 2, (λD

j , µj+1), j ≥ 1) and of

the spectrum accumulation near the left ends µj , j ≥ 1, of the “bands” [µj , λ
D
j ].

However it does not clarify whether the “rests” of the bands, (µj , λ
D
j ] could be

accumulation points. We conjecture that they could. According to (57), (56), for a

chosen λ0 = µj there exist infinitely many λ1 = λ
(k)
1 and λ

(k)
1 → +∞ as k → ∞.

According to Proposition 1, on any band, for any small enough ε there exists a
finite but infinitely increasing number M(ε) of the eigenvalues. The issue is hence,

in a sense, whether ελ
(k)
1 may become of order one for large k (k ∼ M(ε)). For

λ
(k)
1 ∼ ε−1, according to (57) ν ∼ ε−1, and hence, formally, the solutions v0 of



HOMOGENIZATION WITH DOUBLY HIGH CONTRASTS 431

the homogenized equation (51) becomes oscillatory on the new scale z := x/ε1/2.
One can attempt deriving asymptotic expansions similarly to those in Section 3,
involving this new scale z. A preliminary analysis has shown that those have formal
asymptotic solutions near every point inside the band. More detailed analysis is
beyond the scope of the present work and will be reported elsewhere.

Appendix A. Derivation of the limit equation for v0. Since

−

∫

Γ

∂v1
∂nx

dy = −

∫

Γ

∂v1
∂xj

nj dy =

∫

Q1

∂2v1
∂xj∂yj

dy,

(50) transforms to

(∆xv0 + λ0v0)|Q1| +

∫

Q1

∂2v1
∂xj∂yj

dy =

∫

Γ

(
∂w1

∂ny
+
∂w0

∂nx

)
dy.

Taking into account (41) and (38) this yields

(∆xv0 + λ0v0)|Q1|+
∂2v0
∂xj∂xk

∫

Q1

∂Nk

∂yj
dy

=
∂v0
∂xj

(
−

∫

Q1

∂N

∂yj
dy +

∫

Γ

ηnj dy
)

+

∫

Γ

∂w1

∂ny
dy.

(A.1)

Since η(y) = 1 on Γ, ∫

Γ

ηnj dy =

∫

Γ

nj dy = 0. (A.2)

We introduce homogenized matrix Ahom = (Ahom
jk )d

j,k=1 by (53). According to (46)
we have∫

Γ

∂w1

∂ny
dy =

∂v0

∂xj

∫

Γ

∂Mj

∂ny
dy + v0

∫

Γ

∂P

∂ny
dy + λ1v

0

∫

Γ

∂R

∂ny
dy. (A.3)

Substituting (A.2) – (A.3) into (A.1) yields

− divAhom∇xv
0 = ν(λ1)v

0 + Kj
∂v0

∂xj
in Ω, (A.4)

with

ν(λ1) = λ0|Q1| − λ1

∫

Γ

∂R

∂ny
dy −

∫

Γ

∂P

∂ny
dy

and

Kj =

∫

Q1

∂N

∂yj
dy −

∫

Γ

∂Mj

∂ny
dy. (A.5)

Lemma A.1. ν(λ1) depends on λ1 with a positive linear coefficient.

Proof. We estimate the linear coefficient

C := −

∫

Γ

∂R

∂ny
dy.

Note that, via (49) and (26),

C =

∫

Γ

(
R
∂η

∂ny
− η

∂R

∂ny

)
dy =

∫

Q0

(R∆yη − η∆yR) dy =

∫

Q0

η2 dy > 0.

Thus

ν(λ1) = Cλ1 + λ0|Q1| −

∫

Γ

∂P

∂ny
dy
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with positive constant C (depending on the choice of λ0).

Corollary 1. (i) If λ0 = 0 then η(y) ≡ 1 and hence C = |Q0|.
(ii) According to (48) we also have the representation

ν(λ1) = Cλ1 + λ0

(
|Q1| +

∫

Q0

P dy
)
. (A.6)

Lemma A.2. All Kj defined by (A.5) equal zero.

Proof. First we prove an auxiliary identity, namely
∫

Γ

(
∂Mj

∂ny
η −Mj

∂η

∂ny

)
dy = 0. (A.7)

Notice for this that the left-hand side is∫

Q0

(∆Mjη −Mj∆η) dy = −

∫

Q0

2
∂η

∂yj
η dy = −

∫

Q0

∂η2

∂yj
dy,

where equations (47) and (26) have been used. Since η(y) = 1 on Γ,
∫

Q0

∂η2

∂yj
dy =

∫

Γ

η2nj dy =

∫

Γ

nj dy = 0,

which proves (A.7).
Then consider

Kj = −

∫

Γ

Nnj dy −

∫

Γ

∂Mj

∂ny
η dy,

which, according to (42) and (A.7), yields

Kj =

∫

Γ

N
∂Nj

∂ny
dy −

∫

Γ

Mj
∂η

∂ny
dy. (A.8)

Since N and Nj are both harmonic in Q1,∫

Γ

N
∂Nj

∂ny
dy =

∫

Γ

Nj
∂N

∂ny
dy. (A.9)

Using (47) and (43) we obtain
∫

Γ

Mj
∂η

∂ny
dy =

∫

Γ

Nj
∂N

∂ny
dy. (A.10)

Substitution of (A.9) and (A.10) into (A.8) proves the lemma.

Finally we come to the formulation of homogenized problem for the function v0,
which comes from (A.4) and boundary condition (4), resulting in (51), (52).

Appendix B. Proof of Lemma 3.3. We look for v1, w1, v2, w2 in the form

v1(x, y) = c(x)V1(y), (B.1)

w1(x, y) = c(x)W1(y) +
∂c(x)

∂xk
Z

(k)
1 (y), (B.2)

v2(x, y) = c(x)V2(y) +
∂c(x)

∂xk
Pk(y), (B.3)

w2(x, y) = c(x)W2(y) +
∂c(x)

∂xk
Z

(k)
2 (y), (B.4)

where c is an arbitrary smooth function in Ω and Vi,Wi,Z
(k)
i ,Pk, with i = 1, 2 and

k = 1, .., d, are functions to be found.
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Applying differential operator Aε given by (60) to (63) in Ωε
1 we obtain

div (aε∇W
∗
ε ) + ΛερεW

∗
ε

=

{
ε−1c∆yV1 + ε0

(
c∆yV2(y) +

∂c

∂xk

{
∆yPk(y) + 2

∂V1

∂yk

})
(B.5)

+ ε1
(

2
∂2v2
∂xj∂yj

+ ∆xv1 + λ0v1

)
+ ε2(∆xv2 + λ1v1 + λ0v2) + ε3λ1v2

}∣∣∣∣
y= x

ε

.

Applying next Aε to (63) in Ωε
0, and using (64) where (∆y + λ0)φ = 0, we obtain

div (aε∇W
∗
ε ) + ΛερεW

∗
ε

=

{
ε0
(
c [(∆y + λ0)W1 + λ1φ] +

∂c

∂xk
[(∆y + λ0)Z

(k)
1 + 2

∂φ

∂yk
]

)

+ ε1
(

(∆y + λ0)w2 + 2
∂2w1

∂xj∂yj
+ ∆xw0 + λ1w1

)

+ ε2
(

2
∂2w2

∂xj∂yj
+ ∆xw1 + λ1w2

)
+ ε3∆xw2

}∣∣∣∣
y= x

ε

.

(B.6)

Evaluating the jumps of conormal derivatives on Γε, we obtain

aε
∂W ∗

ε

∂n

∣∣∣∣
0

− aε
∂W ∗

ε

∂n

∣∣∣∣
1

= ε0c

(
∂φ

∂ny
−
∂V1

∂ny

) ∣∣∣x∈Γε

y∈Γ

+ ε1

(
c

{
∂W1

∂ny
−
∂V2

∂ny

}
+

∂c

∂xk

{
∂Z

(k)
1

∂ny
+ nkφ−

∂Pk

∂ny
− nkV1

}) ∣∣∣x∈Γε

y∈Γ

+ ε2
(
∂w2

∂ny
+
∂w1

∂nx
−
∂v2
∂nx

) ∣∣∣x∈Γε

y∈Γ

+ ε3
∂w2

∂nx

∣∣∣x∈Γε

y∈Γ

.

(B.7)

On the other hand function W ∗
ε is required to be continuous, i.e we have

W1 = V1 on Γ, (B.8)

Z
(k)
1 = 0 on Γ, (B.9)

W2 = V2 on Γ, (B.10)

Z
(k)
2 = Pk on Γ. (B.11)

Equating to zero the term of order ε−1 in (B.5) and the term of order ε0 in (B.7),
we obtain periodic problem for V1:

∆yV1 = 0 in Q1,
∂V1

∂ny
=

∂φ

∂ny
on Γ. (B.12)

A solution to this problem exists since 〈φ〉 = 0 and we can present it as:

V1 = Ṽ1 + Ã, (B.13)

where < Ṽ1 >= 0 and Ã is a constant which will be determined later.
Equating to zero the terms of order ε0 in (B.6), and using (B.8), (B.9) we obtain

problems for Z
(k)
1

(∆y + λ0)Z
(k)
1 = −2

∂φ

∂yk
in Q0, Z

(k)
1 = 0 on Γ, (B.14)
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which admits an explicit solution

Z
(k)
1 (y) = −ykφ(y), (B.15)

and for W1

(∆y + λ0)W1 = −λ1φ in Q0, W1 = V1 on Γ. (B.16)

A solution to the latter exists if and only if

λ1 =

∫

Γ

V1
∂φ

∂ny
dy = −

∫

Q1

|∇V1|
2dy = −

∫

Q1

|∇Ṽ1|
2dy, (B.17)

and we can present it in the following way:

W1 = W̃1 + Ãη, (B.18)

where W̃1 solves (B.16) with V1 replaced by Ṽ1 (a solution exists for the same
reason), and η solves (26) (a solution exists since 〈φ〉 = 0). Notice that

λ0〈η〉 = −

∫

Γ

∂η

∂ny
dy 6= 0,

otherwise λ0 would be a solution of (36) which contradicts to the assumptions of
this section.

Equating to zero the terms of order ε0 in (B.5) and of order ε1 in (B.7), we obtain
problems for V2 and Pk. For V2 we have periodic problem

∆yV2 = 0 in Q1,
∂V2

∂ny
=
∂W1

∂ny
on Γ. (B.19)

A solution to this problem exists if and only if

0 =

∫

Γ

∂W1

∂ny
dy =

∫

Γ

∂W̃1

∂ny
dy + Ã

∫

Γ

∂η

∂ny
dy, (B.20)

and consequently

Ã = (λ0〈η〉)
−1

∫

Γ

∂W̃1

∂ny
dy. (B.21)

The problem for Pk has the form:

∆yPk(y) = −2
∂V1

∂yk
in Q1,

∂Pk

∂ny
=
∂Z

(k)
1

∂ny
− nkV1 on Γ. (B.22)

The solvability condition for this problem is

2

∫

Q1

∂V1

∂yk
dy =

∫

Γ

(
∂Z

(k)
1

∂ny
− nkV1

)
dy. (B.23)

The left hand side of (B.23) can be transformed as follows,
∫

Q1

2
∂V1

∂yk
dy = −2

∫

Γ

nkV1 dy. (B.24)

On the other hand, for the right hand side of (B.23),
∫

Γ

(
∂Z

(k)
1

∂ny
− nkV1

)
dy =

∫

Γ

(
−yk

∂φ

∂ny
− nkV1

)
dy

=

∫

Γ

(
−yk

∂V1

∂ny
− nkV1

)
dy = −2

∫

Γ

nkV1 dy.

(B.25)
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Here we have used (B.15), (B.12) and the integration by parts. Comparing (B.24)
and (B.25) we see that solvability condition (B.23) is satisfied. Finally, we choose

W2 and Z
(k)
2 as arbitrary smooth functions satisfying (B.10) and (B.11). This

ensures, via (B.5)–(B.7), that the assertions of Lemma 3.3 are satisfied. �
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