Loading [Contrib]/a11y/accessibility-menu.js

Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography

  • Received: 01 April 2015 Revised: 01 July 2015
  • Primary: 65M60, 35L60.

  • We describe a shock-capturing streamline diffusion space-time discontinuous Galerkin (DG) method to discretize the shallow water equations with variable bottom topography. This method, based on the entropy variables as degrees of freedom, is shown to be energy stable as well as well-balanced with respect to the lake at rest steady state. We present numerical experiments illustrating the numerical method.

    Citation: Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography[J]. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145

    Related Papers:

    [1] Andreas Hiltebrand, Siddhartha Mishra . Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145
    [2] Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie . A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11(1): 1-27. doi: 10.3934/nhm.2016.11.1
    [3] Lan Zhu, Li Xu, Jun-Hui Yin, Shu-Cheng Huang, Bin Li . A discontinuous Galerkin Method based on POD model reduction for Euler equation. Networks and Heterogeneous Media, 2024, 19(1): 86-105. doi: 10.3934/nhm.2024004
    [4] Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen . Comparison of two data assimilation algorithms for shallow water flows. Networks and Heterogeneous Media, 2009, 4(2): 409-430. doi: 10.3934/nhm.2009.4.409
    [5] Graziano Guerra, Michael Herty, Francesca Marcellini . Modeling and analysis of pooled stepped chutes. Networks and Heterogeneous Media, 2011, 6(4): 665-679. doi: 10.3934/nhm.2011.6.665
    [6] Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015
    [7] Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya . BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities. Networks and Heterogeneous Media, 2024, 19(1): 196-213. doi: 10.3934/nhm.2024009
    [8] Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269
    [9] Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025
    [10] Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163
  • We describe a shock-capturing streamline diffusion space-time discontinuous Galerkin (DG) method to discretize the shallow water equations with variable bottom topography. This method, based on the entropy variables as degrees of freedom, is shown to be energy stable as well as well-balanced with respect to the lake at rest steady state. We present numerical experiments illustrating the numerical method.


    [1] E. Audusse, F. Bouchut, M. O. Bristeau, R. Klien and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM. J. Sci. Comp., 25 (2004), 2050-2065. doi: 10.1137/S1064827503431090
    [2] M. Castro, J. M. Gallardo and C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with non-conservative products, Math. Comp., 75 (2006), 1103-1134. doi: 10.1090/S0025-5718-06-01851-5
    [3] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2000. doi: 10.1007/3-540-29089-3_14
    [4] U. S. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, Journal of Computational Physics, 230 (2011), 5587-5609. doi: 10.1016/j.jcp.2011.03.042
    [5] J. M. Greenberg and A. Y. LeRoux, A well-balanced scheme for numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16. doi: 10.1137/0733001
    [6] A. Hiltebrand, Entropy-stable Discontinuous Galerkin Finite Element Methods with Streamline Diffusion and Shock-capturing for Hyperbolic Systems of Conservation Laws, Ph.D thesis, ETH Zurich, 2014, No. 22279.
    [7] A. Hiltebrand and S. Mishra, Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numerische Mathematik, 126 (2014), 103-151. doi: 10.1007/s00211-013-0558-0
    [8] J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Math. Model. Meth. Appl. Sci., 5 (1995), 367-386. doi: 10.1142/S021820259500022X
    [9] S. Jin, A steady state capturing method for hyperbolic systems with geometrical source terms, Math. Model. Numer. Anal., 35 (2001), 631-645. doi: 10.1051/m2an:2001130
    [10] S. Jin and X. Wen, An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comput. Math., 22 (2004), 230-249.
    [11] A. Kurganov and D. Levy, Central-upwind schemes for the St. Vernant system, Math. Model. Num. Anal., 36 (2002), 397-425. doi: 10.1051/m2an:2002019
    [12] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253
    [13] R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365. doi: 10.1006/jcph.1998.6058
    [14] S. Noelle, N. Pankratz, G. Puppo and J. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499. doi: 10.1016/j.jcp.2005.08.019
  • This article has been cited by:

    1. Hadi Minbashian, Hojatolah Adibi, Mehdi Dehghan, An adaptive wavelet space-time SUPG method for hyperbolic conservation laws, 2017, 33, 0749159X, 2062, 10.1002/num.22180
    2. Xenia Kerkhoff, Sandra May, Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation, 2023, 13, 2156-8472, 193, 10.3934/mcrf.2021054
    3. Gregor J. Gassner, Andrew R. Winters, A Novel Robust Strategy for Discontinuous Galerkin Methods in Computational Fluid Mechanics: Why? When? What? Where?, 2021, 8, 2296-424X, 10.3389/fphy.2020.500690
    4. Caixia Li, Xueshang Feng, Fengsi Wei, An Entropy-stable Ideal EC-GLM-MHD Model for the Simulation of the Three-dimensional Ambient Solar Wind, 2021, 257, 0067-0049, 24, 10.3847/1538-4365/ac16d5
    5. Dominik Derigs, Gregor J. Gassner, Stefanie Walch, Andrew R. Winters, Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics, 2018, 120, 0012-0456, 153, 10.1365/s13291-018-0178-9
    6. Valerio Caleffi, Alessandro Valiani, Well balancing of the SWE schemes for moving-water steady flows, 2017, 342, 00219991, 85, 10.1016/j.jcp.2017.04.031
    7. Ludovic Martaud, Christophe Berthon, How to enforce an entropy inequality of (fully) well-balanced Godunov-type schemes for the shallow water equations, 2025, 59, 2822-7840, 955, 10.1051/m2an/2025012
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4274) PDF downloads(147) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog