Citation: Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography[J]. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145
[1] | Andreas Hiltebrand, Siddhartha Mishra . Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11(1): 145-162. doi: 10.3934/nhm.2016.11.145 |
[2] | Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie . A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11(1): 1-27. doi: 10.3934/nhm.2016.11.1 |
[3] | Lan Zhu, Li Xu, Jun-Hui Yin, Shu-Cheng Huang, Bin Li . A discontinuous Galerkin Method based on POD model reduction for Euler equation. Networks and Heterogeneous Media, 2024, 19(1): 86-105. doi: 10.3934/nhm.2024004 |
[4] | Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen . Comparison of two data assimilation algorithms for shallow water flows. Networks and Heterogeneous Media, 2009, 4(2): 409-430. doi: 10.3934/nhm.2009.4.409 |
[5] | Graziano Guerra, Michael Herty, Francesca Marcellini . Modeling and analysis of pooled stepped chutes. Networks and Heterogeneous Media, 2011, 6(4): 665-679. doi: 10.3934/nhm.2011.6.665 |
[6] | Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015 |
[7] | Shyam Sundar Ghoshal, John D. Towers, Ganesh Vaidya . BV regularity of the adapted entropy solutions for conservation laws with infinitely many spatial discontinuities. Networks and Heterogeneous Media, 2024, 19(1): 196-213. doi: 10.3934/nhm.2024009 |
[8] | Michele Gianfelice, Enza Orlandi . Dynamics and kinetic limit for a system of noiseless $d$-dimensional Vicsek-type particles. Networks and Heterogeneous Media, 2014, 9(2): 269-297. doi: 10.3934/nhm.2014.9.269 |
[9] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[10] | Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163 |
[1] |
E. Audusse, F. Bouchut, M. O. Bristeau, R. Klien and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM. J. Sci. Comp., 25 (2004), 2050-2065. doi: 10.1137/S1064827503431090
![]() |
[2] |
M. Castro, J. M. Gallardo and C. Parés, High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with non-conservative products, Math. Comp., 75 (2006), 1103-1134. doi: 10.1090/S0025-5718-06-01851-5
![]() |
[3] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2000. doi: 10.1007/3-540-29089-3_14
![]() |
[4] |
U. S. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, Journal of Computational Physics, 230 (2011), 5587-5609. doi: 10.1016/j.jcp.2011.03.042
![]() |
[5] |
J. M. Greenberg and A. Y. LeRoux, A well-balanced scheme for numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16. doi: 10.1137/0733001
![]() |
[6] | A. Hiltebrand, Entropy-stable Discontinuous Galerkin Finite Element Methods with Streamline Diffusion and Shock-capturing for Hyperbolic Systems of Conservation Laws, Ph.D thesis, ETH Zurich, 2014, No. 22279. |
[7] |
A. Hiltebrand and S. Mishra, Entropy stable shock capturing space-time discontinuous Galerkin schemes for systems of conservation laws, Numerische Mathematik, 126 (2014), 103-151. doi: 10.1007/s00211-013-0558-0
![]() |
[8] |
J. Jaffre, C. Johnson and A. Szepessy, Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Math. Model. Meth. Appl. Sci., 5 (1995), 367-386. doi: 10.1142/S021820259500022X
![]() |
[9] |
S. Jin, A steady state capturing method for hyperbolic systems with geometrical source terms, Math. Model. Numer. Anal., 35 (2001), 631-645. doi: 10.1051/m2an:2001130
![]() |
[10] | S. Jin and X. Wen, An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comput. Math., 22 (2004), 230-249. |
[11] |
A. Kurganov and D. Levy, Central-upwind schemes for the St. Vernant system, Math. Model. Num. Anal., 36 (2002), 397-425. doi: 10.1051/m2an:2002019
![]() |
[12] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253
![]() |
[13] |
R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput. Phys., 146 (1998), 346-365. doi: 10.1006/jcph.1998.6058
![]() |
[14] |
S. Noelle, N. Pankratz, G. Puppo and J. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213 (2006), 474-499. doi: 10.1016/j.jcp.2005.08.019
![]() |
1. | Hadi Minbashian, Hojatolah Adibi, Mehdi Dehghan, An adaptive wavelet space-time SUPG method for hyperbolic conservation laws, 2017, 33, 0749159X, 2062, 10.1002/num.22180 | |
2. | Xenia Kerkhoff, Sandra May, Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation, 2023, 13, 2156-8472, 193, 10.3934/mcrf.2021054 | |
3. | Gregor J. Gassner, Andrew R. Winters, A Novel Robust Strategy for Discontinuous Galerkin Methods in Computational Fluid Mechanics: Why? When? What? Where?, 2021, 8, 2296-424X, 10.3389/fphy.2020.500690 | |
4. | Caixia Li, Xueshang Feng, Fengsi Wei, An Entropy-stable Ideal EC-GLM-MHD Model for the Simulation of the Three-dimensional Ambient Solar Wind, 2021, 257, 0067-0049, 24, 10.3847/1538-4365/ac16d5 | |
5. | Dominik Derigs, Gregor J. Gassner, Stefanie Walch, Andrew R. Winters, Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics, 2018, 120, 0012-0456, 153, 10.1365/s13291-018-0178-9 | |
6. | Valerio Caleffi, Alessandro Valiani, Well balancing of the SWE schemes for moving-water steady flows, 2017, 342, 00219991, 85, 10.1016/j.jcp.2017.04.031 | |
7. | Ludovic Martaud, Christophe Berthon, How to enforce an entropy inequality of (fully) well-balanced Godunov-type schemes for the shallow water equations, 2025, 59, 2822-7840, 955, 10.1051/m2an/2025012 |