Loading [MathJax]/jax/output/SVG/jax.js
Mini review

Does vitamin D level have effect on COVID-19 outcomes?

  • The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), a type of coronavirus that causes the condition known as coronavirus disease, was first reported in Wuhan, China in 2019. It commonly affects the respiratory system and is known to produce, in some cases, pneumonia like symptoms, and even death. However, 25 hydroxyvitamin D commonly known as vitamin D, is, when in its hormonal form, involved in many processes throughout the body, including bone health and immune function. Several studies have linked vitamin D to increased resistance to infection, but the link between vitamin D levels and COVID-19 infection, severity and mortality is yet to be fully ascertained. Several studies have linked vitamin D serum levels and deficiency to differing levels of COVID-19 outcome. This review seeks to investigate these claims made in these studies to help add to the body of knowledge and come to a greater understanding of the link between vitamin D and COVID-19 infection.

    Citation: Marcus Martin, Reinand Thompson, Nikhil Tirupathi. Does vitamin D level have effect on COVID-19 outcomes?[J]. AIMS Medical Science, 2023, 10(2): 141-150. doi: 10.3934/medsci.2023012

    Related Papers:

    [1] M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr . Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields. AIMS Mathematics, 2024, 9(7): 17634-17656. doi: 10.3934/math.2024857
    [2] Tabassum Naz Sindhu, Zawar Hussain, Naif Alotaibi, Taseer Muhammad . Estimation method of mixture distribution and modeling of COVID-19 pandemic. AIMS Mathematics, 2022, 7(6): 9926-9956. doi: 10.3934/math.2022554
    [3] M. G. M. Ghazal . Modified Chen distribution: Properties, estimation, and applications in reliability analysis. AIMS Mathematics, 2024, 9(12): 34906-34946. doi: 10.3934/math.20241662
    [4] Refah Alotaibi, Hassan Okasha, Hoda Rezk, Abdullah M. Almarashi, Mazen Nassar . On a new flexible Lomax distribution: statistical properties and estimation procedures with applications to engineering and medical data. AIMS Mathematics, 2021, 6(12): 13976-13999. doi: 10.3934/math.2021808
    [5] Haidy A. Newer, Bader S Alanazi . Bayesian estimation and prediction for linear exponential models using ordered moving extremes ranked set sampling in medical data. AIMS Mathematics, 2025, 10(1): 1162-1182. doi: 10.3934/math.2025055
    [6] Abdulhakim A. Al-Babtain, Amal S. Hassan, Ahmed N. Zaky, Ibrahim Elbatal, Mohammed Elgarhy . Dynamic cumulative residual Rényi entropy for Lomax distribution: Bayesian and non-Bayesian methods. AIMS Mathematics, 2021, 6(4): 3889-3914. doi: 10.3934/math.2021231
    [7] Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784
    [8] M. R. Irshad, S. Aswathy, R. Maya, Amer I. Al-Omari, Ghadah Alomani . A flexible model for bounded data with bathtub shaped hazard rate function and applications. AIMS Mathematics, 2024, 9(9): 24810-24831. doi: 10.3934/math.20241208
    [9] Abdullah Ali H. Ahmadini, Amal S. Hassan, Ahmed N. Zaky, Shokrya S. Alshqaq . Bayesian inference of dynamic cumulative residual entropy from Pareto Ⅱ distribution with application to COVID-19. AIMS Mathematics, 2021, 6(3): 2196-2216. doi: 10.3934/math.2021133
    [10] Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa . The extended gamma distribution with regression model and applications. AIMS Mathematics, 2021, 6(3): 2418-2439. doi: 10.3934/math.2021147
  • The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), a type of coronavirus that causes the condition known as coronavirus disease, was first reported in Wuhan, China in 2019. It commonly affects the respiratory system and is known to produce, in some cases, pneumonia like symptoms, and even death. However, 25 hydroxyvitamin D commonly known as vitamin D, is, when in its hormonal form, involved in many processes throughout the body, including bone health and immune function. Several studies have linked vitamin D to increased resistance to infection, but the link between vitamin D levels and COVID-19 infection, severity and mortality is yet to be fully ascertained. Several studies have linked vitamin D serum levels and deficiency to differing levels of COVID-19 outcome. This review seeks to investigate these claims made in these studies to help add to the body of knowledge and come to a greater understanding of the link between vitamin D and COVID-19 infection.



    The main objective of statistical inference is to draw conclusions about a certain population based on a random sample of that population. Conclusions may be about the functional form of the distribution for the population of interest, estimates of its characteristics, testing statistical hypotheses regarding parameters or making predictions about future events based on current knowledge.

    One of the essential elements of reliability analysis is testing the product failure times under normal operating conditions. Products are frequently highly dependable, and extensive applied testing is prohibitively costly. The use of complete samples is not a good choice in statistical analysis when the product is highly reliable and applied testing is prohibitively expensive. In such situations, statisticians have recommended many types of censoring to save time and money. Type Ⅱ-right censorship is one of these censoring types and has been more popular over the past few decades. It is expected for this type that a few lower-order statistics are observed and that subsequent inferences are then required, such as determining the distribution from which the data is collected, estimating the distribution parameters and making predictions about unobserved events. Here, the emphasis is on estimate for censored samples as well as prediction problems.

    There are many contributions to the estimation of complete and censored data. Excellent references for this subject, among others, include Balakrishnan and Cramer [1], Casella and Berger [2], Lehmann and Casella [3] and the references therein.

    Prediction of future observations is a major concern in many real-world problems. The prediction for ordered random variables (RVs) is frequently used in industrial applications and survival studies to estimate the future prevalence of defective products. In lifetimes testing experiments, the interval and point predictions are also helpful in determining the best censoring strategy. To put it more precisely, we can place identical items in a given life-test experiment and wait until a manageable number of failed items are obtained in relation to cost and time. We can therefore predict the failure times of the survivor items using these observed failure times. This prediction enables the experimenter to choose an appropriate censoring scheme. Such censoring schemes may be Type Ⅰ or Type Ⅱ censoring, progressive Type Ⅱ censoring, or hybrid censoring. The prediction has additional benefits that help us decide whether or not the life test needs to be accelerated and when a future failed item should cause the life test to end. Many authors have considered the prediction issue in statistical literature from both a theoretical and an applied standpoint. Ahsanullah [4] studied the linear prediction of record values of the two-parameter exponential distribution. Bayesian predictions of both ordinary order statistics (OOSs) and generalized order statistics (GOSs) were studied in AL-Hussaini [5] and AL-Hussaini and Ahmed [6], respectively. In Aly [7], two-point predictors of the fractional kth upper record values from the exponential distribution are given. Some predictive and reconstructive results of dual GOSs from the inverse Weibull distribution are obtained in Aly [8] via the pivotal quantities approach. The problem of predicting future lifetimes from the Weibull probability model for a simple step-stress plan under the Khamis-Higgins model is studied by Amleh and Raqab [9]. Barakat et al. [10] suggested a new method for predicting future order statistics based on some of their distributional properties. Moreover, by applying the cumulative hazard transformation, Barakat et al. [11] constructed nonparametric prediction intervals for GOSs, and their exact coverage probabilities were determined. For all distributions that are attracted to the Weibull distribution, El-Adll et al. [12] have constructed different asymptotic prediction intervals for future lower extreme order statistics. The maximum likelihood predictor was first introduced by Kaminsky and Rhodin [13]. In life-testing experiments with fixed sample sizes, Lawless [14] suggested a pivotal quantity for constructing a prediction interval for an order statistic. Lingappaiah [15] suggested a different pivotal quantity for the same purpose. Raqab [16] obtained an optimal prediction interval for m-GOSs based on a one-parameter exponential distribution. Concise reviews that are related to this topic and include several prominent prediction results may be found in the books by Aitcheson and Dunsmore [17], David and Nagaraja [18], Geisser [19] and Kaminsky and Nelson [20].

    The main contribution of the paper is presented in Section 3. More specifically, based on Rényi representation and its extensions, a new least squares method for estimation and prediction is introduced, relying on the cumulative hazard function. The proposed method is formulated in a general manner so that it can be applied to any model of ordered random variables. Furthermore, the method is used for complete or type Ⅱ right-censored data and simplifies the computations significantly for those distributions with an explicit form for the cumulative hazard function.

    The rest of this paper is organized as follows: In Section 2, some necessary preliminary results that are related to the present work are presented. A new least-squares method for estimation and prediction is presented in Section 3. The methodology presented in Section 3 is validated in Section 4 through comprehensive simulation studies. In Section 5, two real data sets are analyzed for illustrative and comparison purposes.

    As a unified model of various ascending models of ordered RVs, Kamps [22] established the GOSs, based on any continuous distribution function (CDF) F, via their joint probability density function (PDF)

    f1,...,n(x1,...,xn)=Cnnj=1[1F(xj)]γjγj+11f(xj) (2.1)

    on the cone F1(0+)<x1xn<F1(1), where Cr=ri=1γi,r=1,2,...,n, F1 denotes the quantile function of F. The model parameters are defined by the vector γ_=(γ1,...,γn), where γr=k+n1i=r(mi+1)>0,i=1,2,...,n,withγn=k>0and(m1,...,mn1)Rn1. Particular models, such as OOSs, sequential order statistics (SOSs), progressive type Ⅱ censored order statistics, standard kth record values and Pfeifer's record, result from specific choices of the model parameters, γ1,...,γn. When mi=m for all i=1,2,...n, extensive asymptotic results for bootstrapping m-GOSs are obtained by Barakat et al. [21].

    According to the restriction γiγj for ij, a wide subclass of GOSs-model, excluding record values, have discussed by Kamps and Cramer [23], where some important distributional properties have been considered. In particular, the PDF of the rth GOS Xr:n is given by

    fr:n(x)=Crri=1ai(r)[1F(x)]γi1f(x),<x<, (2.2)

    and the CDF of Xr:n is

    Fr:n(x)=1Crri=1ai(r)γi[1F(x)]γi,<x<, (2.3)

    where

    ai(r)=rj=1,ji(γjγi)1,1irn.

    In view of the probability integral transform, the RVs, Ur:n=F1(Xr:n),r=1,2,...,n, are uniform GOSs. Consequently, it can be shown that

    E[Ur:n]=1Crri=1ai(r)γi+1,r=1,2,...,n, (2.4)

    and

    Var(Ur:n)=E[Ur:n](2E[Ur:n])+Crri=1ai(r)γi+21,r=1,2,...,n. (2.5)

    For the uniform OOSs, Ur:n,r=1,2,...,n, we have

    E[Ur:n]=rn+1,r=1,2,...,n, (2.6)

    and

    Var(Ur:n)=r(nr+1)(n+2)(n+1)2,r=1,2,...,n. (2.7)

    The ordinary least squares method of estimation for complete samples was originally proposed by Swain et al. [24]. The method is based on minimizing the function

    LF(Θ|˜xn):=ni=1(F(xi;Θ)E[Ui:n])2, (2.8)

    with respect to the unknown parameter vector Θ=(θ1,θ2,...,θ), where ˜xn=(x1,x2,...,xn) is an observed ordered sample. The weighted least squares estimates can be accomplished by minimizing the function

    WLF(Θ|˜xn):=ni=1wi(F(xi;Θ)E[Ui:n])2,wherewi=1Var(Ui:n),i=1,2,...,n, (2.9)

    with respect to Θ. Several authors used the least squares method and the weighted least squares method. For estimating the parameters from different distributions; among them are Gupta and Kundu [25] and Kundu and Raqab [26].

    El-Adll and Aly [27] have extended the above results to type Ⅱ censored samples. Namely, based on the first r observed OOSs, x1,x2,...,xr, approximate least square estimates of Θ can be obtained by minimizing the least squares function

    LF,r(Θ|˜xr):=ri=1(F(xi;Θ)in+1)2+(nr)(F(xr;Θ)rn+1)2. (2.10)

    For the GOSs model, we can exptend the ordinary least squares and weighted least squares functions, respectively, to take the formulas

    LF,r(Θ|˜xr):=ri=1(F(xi;Θ)E[Ui:n])2+(nr)(F(xr;Θ)E[Ur:n])2 (2.11)

    and

    WLF,r(Θ|˜xr):=ri=1wi(F(xi;Θ)E[Ui:n])2+(nr)wr(F(xr;Θ)E[Ur:n])2, (2.12)

    where

    wi=1Var(Ui:n),i=1,2,...,n,

    ˜xr=(x1,x2,...,xr) are observed values of the GOSs X1:n,X2:n,...,Xr:n, E[Ui:n] and Var(Ui:n) are given by (2.4) and (2.5), respectively.

    Kamps [22] extended Rényi's representation [29], to GOSs model (see also Barakat et al. [28]). This representation enables us to express the rth GOS based on the exponential distribution as a linear combination of independent and identically distributed (iid) RVs from the EXP(1). Namely,

    Xr:nd=ri=1Ziγi,r=1,2,...,n, (2.13)

    where Z1,...,Zn are iid RVs from the EXP(1) and "Ud=V" means that the RVs U and V have the same CDF.

    Minimizing the least squares and weighted least squares functions in (2.11) and (2.12) is not always a simple problem. In this section, a novel and efficient method for solving such problems is proposed.

    The cumulative hazard function of any RV X with CDF F is defined by

    H(x)=log[1F(x)],<x<.

    Evidently, the function H(x) is a nonnegative and nondecreasing function on x. Suppose now that Xi:n:=X(i,n,˜m,k) denotes the ith GOS from a continuous CDF F. Therefore, the RV's

    Zi:n:=H(Xi:n),i=1,2,...,n, (3.1)

    are GOSs from the standard exponential distribution (denoted by EXP(1). Clearly, if the CDF F depends on an unknown vector of parameters Θ=(θ1,θ2,...,θ), with 1, then H depends on the same vector of parameters. Hence, we can develop a least square method based on H. In view of Kamps [22] and Barakat et al. [28], we have

    E[H(Xi:n)]=E[Zi:n]=ij=1γ1j:=μi:nandVar(H(Xi:n))=ij=1γ2j:=1wi,i=1,2,...,n. (3.2)

    Consequently, the parameters can be estimated by minimizing the least squares function

    LH(Θ|˜xn):=ni=1(H(xi;Θ)μi:n)2, (3.3)

    where <x1<x2<...<xn< are observed values of the GOSs X1:n,X2:n,...,Xn:n. Moreover, the weighted least squares estimates based on the cumulative hazard function can be obtained by minimizing the weighted least squares function.

    WLH(Θ|˜xn):=ni=1wi(H(xi;Θ)μi:n)2. (3.4)

    According to the extended Rényi's representation (2.13), we have

    LH(Θ|˜xn)=ni=1(H(xi;Θ)μi:n)2=ri=1(H(xi;Θ)μi:n)2+ni=r+1(H(xi;Θ)μi:n)2=ri=1(H(xi;Θ)μi:n)2+ni=r+1(H(xr;Θ)μr:n+ij=r+1zj1γj)2, (3.5)

    where z1,...,zn is an observed random sample from the EXP(1). Clearly, E[ij=r+1Zj1γj]=0. Therefore, we can approximate the sum of the last term by its mean. Consequently, we can suggest the modified least squares function.

    LH,r(Θ|˜xr):=ri=1(H(xi;Θ)μi:n)2+(nr)(H(xr;Θ)μr:n)2. (3.6)

    An approximate least squares estimate of Θ based on the first r observed GOSs, ˜xr:=(x1,x2,...,xr) for rn, can be obtained by minimizing LH,r(Θ|˜xr) with respect to Θ. Similarly, minimizing the function

    WLH,rΘ|˜xr):=ri=1wi(H(xi;Θ)μi:n)2+(nr)wr(H(xr;Θ)μr:n)2 (3.7)

    produces a modified weighted least squares estimate of Θ based on x1,x2,...,xr.

    The results of El-Adll and Aly [27] can be extended to GOSs through minimizing the predictive least squares function

    PLF,r,s(Θ,xs|˜xr):=ri=1(F(xi;Θ)E[Ui:n])2+(sr1)(F(xr;Θ)E[Ur:n])2+(ns+1)(F(xs;Θ)E[Us:n])2, (3.8)

    with respect to Θ and xs. Similarly, a weighted least squares predictor can be derived by choosing the weights wi defined by (2.12). As we proceeded in (3.5) and (3.6), an approximate point predictor of the unobserved sth GOS can be obtained via the minimization of the proposed predictive least squares function

    PLH,r,s(Θ,xs|˜xr):=ri=1(H(xi;Θ)μi:n)2+(sr1)(H(xr;Θ)μr:n)2+(ns+1)(H(xs;Θ)μs:n)2. (3.9)

    By the same manner, approximate weighted least squares estimates of Θ and xs based on x1,x2,...,xr are derived via minimizing the predictive weighed least squares function

    PWLH,r,s(Θ,xs|˜xr):=ri=1wi(H(xi;Θ)μi:n)2+(sr1)wr(H(xr;Θ)μr:n)2+(ns+1)ws(H(xs;Θ)μs:n)2. (3.10)

    Remark 3.1.

    One advantage of choosing the cumulative hazard function transformation is that it always follows the standard exponential distribution. In addition, its mean and variance can simply be computed for any model of ordered random variables, and they do not depend on unknown parameters. Moreover, as a quick comparison between the proposed method and one of the most well-known methods of estimation, we find that the Maximum likelihood estimation (MLE) for the distribution parameters may be difficult to obtain in certain cases. Particularly when the support of the distribution is unknown. Also, the MLEs may not be robust enough to depart from the assumed distribution. These considerations motivated the least-squares approach to be used.

    In this section, simulation experiments are carried out to compare the proposed method with different estimation and prediction techniques. We are mainly interested in some important probability distributions that can be widely applied in survival analysis, reliability theory and life-testing experiments. For brevity, we compare only three methods, namely the maximum likelihood, the ordinary weighted least squares and the weighted least squares via the cumulative hazard function. The following assumes that the first r (rn) elements of the GOSs based on a continuous distribution F are observed and used to estimate the unknown distribution parameters and predict some future observations. In this simulation, 10,000 independent random samples are generated from F and then used in the proposed estimation and prediction methods.

    In view of Kamps [22], the likelihood function based on the first r elements of the GOSs, which is the joint PDF of X1:n,X2:n,...,Xr:n, is given by

    L(Θ|˜xr)=f1,...,r(x1,...,xr;Θ)=Cr(r1j=1[1F(xj;Θ)]γjγj+11f(xj;Θ))[1F(xr;Θ)]γr1f(xr;Θ). (4.1)

    The maximum likelihood estimates (MLEs) of the unknown parameters Θ=(θ1,θ2,...,θ) can be accomplished via maximizing L(Θ|˜xr) by solving the nonlinear equations log(L(Θ|˜xr))θj=0, j=1,2,...,, numerically. The ordinary weighted least squares estimates (WLSEs) are obtained by minimizing the function WLF,r(Θ|˜xr) given in (2.12), through solving the nonlinear equations WLF,r(Θ|˜xr)θj=0,j=1,2,...,, numerically. Finally, the modified weighted least squares estimates (MWLSEs) can be obtained by minimizing the function WLH,r(Θ|˜xr) in (3.7), via solving the nonlinear equations WLH,r(Θ|˜xr)θj=0,j=1,2,...,, numerically. The OOSs model, where γi=ni+1, is primarily the focus of the next sections of the study.

    We use the root mean square error to compare different estimators or predictors. As a result of its sensitivity to extreme values, the root-mean-square error may not even exist. Pitman's measure of closeness (Pitman [30]) is also used for comparing estimators or predictors. According to Keating et al. [31], who provided several inspiring instances and examples, Pitman's measure of closeness is an efficient criterion for selecting among estimators. Pitman's measure of closeness is widely applied to assess estimators and predictors by several authors. Pitman's measure is used by Balakrishnan et al. [32] for comparing different point predictors for type Ⅱ censored data that follows an exponential distribution in one sample and two sample cases. Nagaraja [33] used the mean square error and Pitman's measure of closeness to compare the best linear predictor with the best linear invariant predictor for the record value and order statistic. Raqab et al. [34] compared different point predictors of progressively censored units using Pitman's measure of closeness.

    Let ˆθ1 and ˆθ2 be two estimators of the same parameter θ. Then, ˆθ1 is Pitman closer than ˆθ2 if

    PMC(ˆθ1,ˆθ2):=P(|ˆθ1θ|<|ˆθ2θ|)0.5,

    for all values of θ, with strict inequality for at least one value of θ.

    Pitman's measure of closeness is applied to explore which of two estimators is the closest (in probability) to the true value of a parameter.

    If the CDF of the RV X is given by

    F(x;θ,σ)=1e(xθσ),xθ,σ>0,

    it is said to have a two-parameter exponential distribution, with a location parameter θ and a scale parameter σ. The MLEs of θ and σ based on the first r elements of GOSs are given in El-Adll [35] by

    ˆθ=X1:nandˆσ=1rri=2γi(Xi:nXi1:n). (4.2)

    The WLSEs, ˜θ and ˜σ, are obtained by minimizing the function

    WLF,r(θ,σ|˜xr)=ri=1wi[1exp[(xiθσ)]E[Ui:n]]2+(nr)wr[1exp[(xrθσ)]E[Ur:n]]2,

    subject to the constrains σ>0 and θa>0, for some real constant a. We get the MWLSEs, θ and σ by minimizing the function,

    WLH,r(θ,σ|˜xr)=ri=1wi(xiθσμi:n)2+(nr)wr(xrθσμr:n)2,

    subject to σ>0 and θa>0, where a is a suitable real number chosen, provided that it is less than the minimum of the data. Minimization can be accomplished by equating the first partial derivatives with respect to θ and σ with zero and then solving the resulting equations, numerically. The results are presented in Tables 1 and 2.

    Table 1.  Different estimates of the parameters for the exponential distribution, EXP (2.5,10), along with their associated RMSEs.
    n r ˜θ(RMSE) θ(RMSE) ˆθ(RMSE) ˜σ(RMSE) σ(RMSE) ˆσ(RMSE)
    50 30 2.440(0.283) 2.450(0.276) 2.697(0.277) 10.325(1.972) 10.216(1.936) 9.687(1.835)
    40 2.435(0.287) 2.442(0.283) 2.697(0.277) 10.306(1.681) 10.254(1.667) 9.766(1.571)
    50 2.449(0.276) 2.434(0.283) 2.697(0.277) 10.196(1.553) 10.315(1.574) 9.813(1.404)
    100 30 2.473(0.141) 2.476(0.139) 2.599(0.141) 10.180(1.943) 10.120(1.926) 9.670(1.839)
    40 2.469(0.147) 2.472(0.145) 2.599(0.141) 10.184(1.673) 10.125(1.657) 9.761(1.591)
    50 2.466(0.152) 2.470(0.149) 2.599(0.141) 10.174(1.494) 10.118(1.480) 9.804(1.429)
    60 2.463(0.156) 2.467(0.153) 2.599(0.141) 10.175(1.361) 10.125(1.349) 9.839(1.305)
    70 2.460(0.159) 2.465(0.156) 2.599(0.141) 10.172(1.257) 10.133(1.249) 9.862(1.207)
    80 2.460(0.160) 2.463(0.158) 2.599(0.141) 10.159(1.170) 10.141(1.168) 9.876(1.125)
    90 2.462(0.157) 2.461(0.158) 2.599(0.141) 10.135(1.110) 10.157(1.113) 9.890(1.057)
    100 2.467(0.154) 2.460(0.157) 2.599(0.141) 10.097(1.089) 10.168(1.102) 9.896(1.004)
    200 30 2.489(0.069) 2.490(0.069) 2.550(0.070) 10.112(1.892) 10.082(1.885) 9.665(1.819)
    40 2.487(0.072) 2.488(0.072) 2.550(0.070) 10.098(1.620) 10.069(1.613) 9.742(1.567)
    50 2.486(0.075) 2.487(0.074) 2.550(0.070) 10.089(1.435) 10.060(1.429) 9.787(1.394)
    60 2.484(0.078) 2.485(0.077) 2.550(0.070) 10.096(1.316) 10.067(1.310) 9.829(1.278)
    70 2.482(0.080) 2.484(0.079) 2.550(0.070) 10.096(1.211) 10.068(1.206) 9.854(1.178)
    80 2.481(0.081) 2.483(0.080) 2.550(0.070) 10.090(1.141) 10.063(1.135) 9.868(1.111)
    90 2.480(0.083) 2.482(0.082) 2.550(0.070) 10.086(1.073) 10.059(1.068) 9.879(1.047)
    100 2.479(0.085) 2.481(0.084) 2.550(0.070) 10.087(1.021) 10.061(1.017) 9.892(0.997)
    110 2.478(0.086) 2.480(0.085) 2.550(0.070) 10.087(0.974) 10.062(0.969) 9.902(0.951)
    120 2.478(0.087) 2.479(0.086) 2.550(0.070) 10.082(0.930) 10.059(0.927) 9.905(0.911)
    130 2.477(0.088) 2.478(0.087) 2.550(0.070) 10.085(0.894) 10.063(0.891) 9.915(0.876)
    140 2.476(0.089) 2.477(0.088) 2.550(0.070) 10.089(0.861) 10.070(0.859) 9.925(0.843)
    150 2.475(0.090) 2.477(0.089) 2.550(0.071) 10.099(0.838) 10.085(0.836) 9.940(0.818)
    160 2.475(0.090) 2.476(0.089) 2.550(0.071) 10.097(0.811) 10.090(0.810) 9.946(0.790)
    170 2.475(0.090) 2.476(0.090) 2.550(0.071) 10.092(0.788) 10.093(0.789) 9.949(0.765)
    180 2.475(0.090) 2.475(0.090) 2.550(0.071) 10.085(0.770) 10.098(0.772) 9.954(0.741)
    190 2.477(0.089) 2.475(0.090) 2.550(0.071) 10.075(0.762) 10.101(0.765) 9.957(0.722)
    200 2.478(0.088) 2.475(0.089) 2.550(0.071) 10.065(0.761) 10.104(0.766) 9.961(0.703)

     | Show Table
    DownLoad: CSV
    Table 2.  Comparing different estimates of the parameters for the exponential distribution, EXP (2.5,10), via PMC.
    n r P(˜θ,θ) P(˜θ,ˆθ) P(θ,ˆθ) P(˜σ,σ) P(˜σ,ˆσ) P(σ,ˆσ)
    50 30 0.2833 0.4639 0.4657 0.4689 0.5196 0.5303
    40 0.3256 0.4461 0.4481 0.4782 0.5113 0.5181
    50 0.4665 0.4531 0.4461 0.4930 0.4669 0.4764
    100 30 0.2853 0.4593 0.4584 0.4942 0.5377 0.5443
    40 0.2616 0.4314 0.4302 0.4847 0.5301 0.5364
    50 0.2530 0.4108 0.4092 0.4816 0.5226 0.5302
    60 0.2392 0.3983 0.3971 0.4821 0.5132 0.5235
    70 0.2453 0.3916 0.3910 0.4892 0.5141 0.5190
    80 0.2877 0.3790 0.3823 0.4888 0.5120 0.5169
    90 0.3505 0.3790 0.3773 0.4914 0.4889 0.4997
    100 0.4434 0.3849 0.3815 0.4956 0.4578 0.4623
    200 30 0.2761 0.4561 0.4546 0.5019 0.5469 0.5502
    40 0.2568 0.4297 0.4292 0.5022 0.5463 0.5500
    50 0.2458 0.4089 0.4097 0.4981 0.5381 0.5421
    60 0.2355 0.3903 0.3903 0.4947 0.5303 0.5350
    70 0.2305 0.3824 0.3809 0.4877 0.5249 0.5296
    80 0.2234 0.3702 0.3702 0.4874 0.5225 0.5278
    90 0.2187 0.3614 0.3605 0.4887 0.5198 0.5237
    100 0.2109 0.3519 0.3516 0.4817 0.5141 0.5197
    110 0.2052 0.3454 0.3450 0.4824 0.5149 0.5192
    120 0.1977 0.3387 0.3397 0.4922 0.5171 0.5216
    130 0.2001 0.3332 0.3319 0.4926 0.5136 0.5179
    140 0.2072 0.3267 0.3273 0.4952 0.5081 0.5128
    150 0.2269 0.3249 0.3283 0.4914 0.5055 0.5069
    160 0.2574 0.3329 0.3322 0.4911 0.4992 0.4992
    170 0.2866 0.3305 0.3298 0.4971 0.4940 0.4962
    180 0.3302 0.3293 0.3289 0.4975 0.4784 0.4827
    190 0.3705 0.3318 0.3301 0.5060 0.4694 0.4733
    200 0.4234 0.3332 0.3300 0.5017 0.4468 0.4467

     | Show Table
    DownLoad: CSV

    Remark 4.1.

    The main reason for choosing the two-parameter exponential distribution in the simulation study is not only its theoretical importance but also because it has explicit forms for the maximum likelihood estimator of its parameters, and consequently, it can be considered a reference in comparison with the proposed method.

    We consider the three-parameter Weibull distribution with CDF

    F(x;α,σ,θ)=1exp[(xθσ)α],xθ,α,σ>0,

    where α,σ and θ are the shape, scale and location parameters, respectively. As in the exponential distribution, the MLEs, WLSEs and MWLSEs of the parameters are obtained numerically and shown in Tables 3 and 4.

    Table 3.  Different estimates of the Weibull distribution parameters, Weibull(5,10,0.65), along with their associated RMSEs.
    n r ˜θ(RMSE) θ(RMSE) ˆθ(RMSE) ˜σ(RMSE) σ(RMSE) ˆσ(RMSE) ˜α(RMSE) α(RMSE) ˆα(RMSE)
    50 20 4.940(0.257) 4.934(0.281) 5.033(0.063) 11.387(6.284) 11.048(5.945) 17.121(18.470) 0.725(0.343) 0.734(0.357) 0.451(0.235)
    30 4.963(0.204) 4.960(0.207) 5.034(0.064) 10.608(3.170) 10.366(3.047) 11.203(4.174) 0.675(0.162) 0.681(0.166) 0.498(0.176)
    40 4.975(0.116) 4.971(0.119) 5.031(0.074) 10.425(2.610) 10.250(2.549) 8.441(3.954) 0.662(0.112) 0.669(0.114) 0.526(0.169)
    50 4.979(0.095) 4.986(0.087) 5.034(0.064) 10.321(2.492) 10.320(2.477) 8.095(3.478) 0.661(0.091) 0.652(0.085) 0.553(0.136)
    100 40 4.989(0.050) 4.988(0.053) 5.011(0.023) 10.488(3.479) 10.341(3.395) 13.228(13.967) 0.669(0.132) 0.672(0.135) 0.536(0.146)
    50 4.990(0.041) 4.989(0.041) 5.011(0.022) 10.319(2.608) 10.188(2.554) 11.653(3.640) 0.662(0.107) 0.665(0.108) 0.553(0.121)
    60 4.991(0.037) 4.990(0.038) 5.010(0.036) 10.237(2.136) 10.121(2.098) 10.558(2.773) 0.658(0.091) 0.661(0.092) 0.566(0.118)
    70 4.991(0.037) 4.990(0.038) 5.010(0.028) 10.202(1.888) 10.100(1.859) 9.556(2.939) 0.655(0.081) 0.659(0.082) 0.574(0.125)
    80 4.992(0.034) 4.991(0.034) 5.010(0.048) 10.179(1.758) 10.096(1.738) 8.885(3.341) 0.653(0.071) 0.656(0.072) 0.575(0.129)
    90 4.993(0.032) 4.992(0.032) 5.011(0.021) 10.158(1.692) 10.108(1.679) 9.025(2.795) 0.652(0.063) 0.653(0.064) 0.590(0.106)
    100 4.992(0.031) 4.995(0.028) 5.011(0.021) 10.114(1.670) 10.130(1.667) 9.408(1.903) 0.654(0.060) 0.649(0.057) 0.610(0.069)
    200 60 4.996(0.016) 4.984(0.136) 5.003(0.029) 10.386(3.356) 10.068(3.226) 12.602(5.876) 0.664(0.100) 0.686(0.196) 0.582(0.106)
    70 4.997(0.013) 4.996(0.013) 5.000(0.073) 10.261(2.725) 10.177(2.680) 11.753(7.050) 0.661(0.088) 0.663(0.089) 0.590(0.135)
    80 4.997(0.013) 4.996(0.013) 5.003(0.037) 10.179(2.339) 10.106(2.315) 11.280(3.756) 0.660(0.081) 0.661(0.082) 0.595(0.095)
    90 4.997(0.013) 4.997(0.013) 5.004(0.008) 10.135(2.029) 10.066(2.009) 10.963(2.492) 0.658(0.074) 0.660(0.075) 0.599(0.080)
    100 4.997(0.013) 4.997(0.013) 5.004(0.024) 10.117(1.808) 10.051(1.791) 10.711(2.113) 0.657(0.069) 0.658(0.069) 0.603(0.078)
    110 4.997(0.013) 4.997(0.013) 5.003(0.025) 10.103(1.634) 10.043(1.620) 10.504(1.850) 0.655(0.064) 0.657(0.064) 0.608(0.070)
    120 4.997(0.012) 4.997(0.012) 5.003(0.017) 10.095(1.497) 10.037(1.484) 10.293(1.743) 0.654(0.060) 0.656(0.060) 0.611(0.069)
    130 4.997(0.012) 4.997(0.012) 5.002(0.023) 10.095(1.406) 10.042(1.395) 9.986(1.894) 0.653(0.056) 0.655(0.056) 0.615(0.077)
    140 4.997(0.012) 4.997(0.012) 5.000(0.045) 10.089(1.337) 10.040(1.328) 9.731(2.558) 0.653(0.053) 0.654(0.053) 0.620(0.092)
    150 4.997(0.012) 4.997(0.012) 4.999(0.045) 10.082(1.283) 10.037(1.275) 9.564(2.230) 0.652(0.050) 0.654(0.050) 0.624(0.092)
    200 4.997(0.011) 4.998(0.010) 5.004(0.007) 10.051(1.174) 10.067(1.174) 9.742(1.306) 0.653(0.041) 0.650(0.040) 0.631(0.044)

     | Show Table
    DownLoad: CSV
    Table 4.  Comparing different estimates of the parameters for the three-parameter Weibull distribution, Weibull (5,10,0.65), via PMC.
    n r P(˜θ,θ) P(˜θ,ˆθ) P(θ,ˆθ) P(˜σ,σ) P(˜σ,ˆσ) P(σ,ˆσ) P(˜α,α) P(˜α,ˆα) P(α,ˆα)
    50 20 0.6262 0.4889 0.4815 0.5071 0.7159 0.7155 0.5012 0.7412 0.7347
    30 0.6457 0.4907 0.4786 0.4925 0.6452 0.6323 0.4937 0.7770 0.7668
    40 0.6352 0.4840 0.4725 0.4951 0.6121 0.6275 0.4941 0.7266 0.7180
    50 0.4626 0.4811 0.5069 0.4882 0.6811 0.6908 0.4780 0.7231 0.7425
    100 40 0.6338 0.4787 0.4740 0.5111 0.6481 0.6460 0.5044 0.7162 0.7133
    50 0.6479 0.4741 0.4710 0.5019 0.6306 0.6227 0.5031 0.7326 0.7267
    60 0.6515 0.4773 0.4722 0.4961 0.6267 0.6174 0.5023 0.7318 0.7268
    70 0.6554 0.4821 0.4759 0.4931 0.6045 0.5979 0.5014 0.7303 0.7253
    80 0.6450 0.4735 0.4673 0.4950 0.5768 0.5796 0.4973 0.7135 0.7083
    90 0.5817 0.4758 0.4697 0.4908 0.5854 0.5934 0.4930 0.6783 0.6748
    100 0.4357 0.4632 0.4887 0.4861 0.5624 0.5740 0.4743 0.6365 0.6390
    200 60 0.6613 0.4647 0.4359 0.5324 0.6090 0.6095 0.5383 0.6460 0.6251
    70 0.6504 0.4717 0.4681 0.5175 0.5943 0.5931 0.5074 0.6571 0.6553
    80 0.6585 0.4689 0.4695 0.5181 0.5855 0.5828 0.5067 0.6608 0.6566
    90 0.6611 0.4697 0.4679 0.5159 0.5686 0.5654 0.5067 0.6630 0.6601
    100 0.6680 0.4687 0.4663 0.5102 0.5721 0.5674 0.5046 0.6652 0.6620
    110 0.6677 0.4713 0.4689 0.5096 0.5818 0.5740 0.5086 0.6663 0.6621
    120 0.6679 0.4687 0.4682 0.5065 0.5867 0.5787 0.4992 0.6624 0.6580
    130 0.6665 0.4771 0.4742 0.5007 0.5770 0.5694 0.4965 0.6599 0.6563
    140 0.6704 0.4784 0.4770 0.5017 0.5672 0.5701 0.4953 0.6671 0.6638
    150 0.6603 0.4803 0.4792 0.5004 0.5268 0.5552 0.4925 0.6576 0.6550
    200 0.4338 0.4634 0.4807 0.4999 0.5270 0.5323 0.4791 0.5486 0.5473

     | Show Table
    DownLoad: CSV

    Al-Babtain et al. [36] introduced a new family of continuous probability distributions, which they called the "new modified Kies family." They discussed the two-parameter MKi-exponential (MKiExp) distribution as a special case in detail. In the same paper, they demonstrated the practical importance and flexibility of fitting several types of real data. The CDF of MKiExp distribution is given by

    F(x;α,σ)=1exp[(exσ1)α],x0,α,σ>0,

    where α and σ are the shape and scale parameters, respectively. Abd El-Raheem et al. [37] consider the estimation problem of multiple constant-stress tests for progressive type-Ⅱ censored MKiExp data with binomial removals.

    The problem of determining numerical estimates in this work is reduced to a suitable minimization problem subject to the following constraints: α>0 and σ>0. The results are given in Tables 5 and 6.

    Table 5.  Different estimates of parameters for the MKiEx (0.5,10) distribution along with their associated RMSEs.
    n r ˜α(RMSE) α(RMSE) ˆα(RMSE) ˜σ(RMSE) σ(RMSE) ˆσ(RMSE)
    50 30 0.508(0.091) 0.511(0.092) 0.529(0.095) 10.389(2.986) 10.156(2.893) 9.765(2.762)
    40 0.504(0.079) 0.507(0.081) 0.520(0.080) 10.242(2.150) 10.094(2.115) 9.899(2.040)
    50 0.505(0.076) 0.499(0.074) 0.514(0.074) 10.126(1.913) 10.202(1.882) 9.994(1.687)
    100 30 0.508(0.095) 0.510(0.095) 0.530(0.097) 11.707(7.072) 11.484(6.849) 10.263(5.533)
    40 0.506(0.079) 0.508(0.080) 0.522(0.080) 10.734(3.985) 10.565(3.877) 9.996(3.516)
    50 0.505(0.068) 0.507(0.069) 0.517(0.069) 10.357(2.718) 10.220(2.661) 9.904(2.531)
    60 0.503(0.060) 0.505(0.061) 0.514(0.060) 10.225(2.085) 10.112(2.052) 9.913(1.990)
    70 0.503(0.056) 0.505(0.057) 0.511(0.056) 10.159(1.731) 10.067(1.711) 9.924(1.666)
    80 0.503(0.054) 0.504(0.054) 0.510(0.053) 10.124(1.517) 10.054(1.506) 9.936(1.453)
    90 0.502(0.052) 0.503(0.052) 0.508(0.051) 10.111(1.388) 10.076(1.381) 9.965(1.300)
    100 0.504(0.051) 0.500(0.051) 0.507(0.049) 10.062(1.345) 10.116(1.332) 9.987(1.178)
    200 30 0.509(0.100) 0.510(0.100) 0.532(0.103) 14.429(16.074) 14.245(15.791) 11.428(10.744)
    40 0.506(0.084) 0.507(0.084) 0.522(0.085) 12.234(8.582) 12.097(8.433) 10.701(6.646)
    50 0.504(0.072) 0.505(0.073) 0.517(0.072) 11.276(5.663) 11.163(5.569) 10.335(4.747)
    60 0.503(0.064) 0.504(0.064) 0.514(0.064) 10.811(4.107) 10.712(4.041) 10.175(3.615)
    70 0.503(0.058) 0.504(0.058) 0.512(0.057) 10.506(3.144) 10.418(3.097) 10.048(2.866)
    80 0.503(0.053) 0.503(0.053) 0.510(0.053) 10.333(2.545) 10.254(2.511) 9.988(2.380)
    90 0.502(0.049) 0.503(0.050) 0.509(0.049) 10.226(2.125) 10.154(2.099) 9.956(2.021)
    100 0.502(0.047) 0.503(0.047) 0.508(0.046) 10.166(1.842) 10.099(1.823) 9.948(1.776)
    110 0.502(0.044) 0.503(0.044) 0.507(0.044) 10.129(1.610) 10.068(1.595) 9.948(1.563)
    120 0.502(0.042) 0.503(0.042) 0.507(0.042) 10.094(1.439) 10.038(1.428) 9.939(1.406)
    130 0.502(0.041) 0.502(0.041) 0.506(0.040) 10.082(1.308) 10.031(1.299) 9.948(1.280)
    140 0.501(0.039) 0.502(0.039) 0.505(0.038) 10.074(1.206) 10.028(1.199) 9.957(1.181)
    150 0.501(0.038) 0.502(0.038) 0.505(0.037) 10.069(1.118) 10.028(1.113) 9.965(1.091)
    160 0.501(0.037) 0.502(0.037) 0.504(0.036) 10.065(1.056) 10.030(1.052) 9.972(1.025)
    170 0.501(0.036) 0.501(0.036) 0.504(0.035) 10.057(1.006) 10.029(1.002) 9.971(0.967)
    180 0.501(0.036) 0.501(0.036) 0.504(0.035) 10.054(0.966) 10.037(0.963) 9.979(0.916)
    190 0.501(0.035) 0.501(0.035) 0.503(0.034) 10.042(0.942) 10.044(0.937) 9.981(0.874)
    200 0.502(0.035) 0.500(0.035) 0.503(0.034) 10.023(0.936) 10.055(0.929) 9.985(0.828)

     | Show Table
    DownLoad: CSV
    Table 6.  Comparing different estimates of the parameters for MKiEx (0.5,10) distribution via PMC.
    n r P(˜α,α) P(˜α,ˆα) P(α,ˆα) P(˜σ,σ) P(˜σ,ˆσ) P(σ,ˆσ)
    50 30 0.4964 0.4921 0.4923 0.4951 0.5205 0.5323
    40 0.4834 0.4791 0.4796 0.4878 0.4721 0.4692
    50 0.5050 0.4587 0.4704 0.4634 0.4239 0.4295
    100 30 0.4944 0.4890 0.4856 0.4960 0.4966 0.4971
    40 0.4927 0.4861 0.4865 0.4981 0.5069 0.5083
    50 0.4977 0.4861 0.4854 0.4997 0.5128 0.5163
    60 0.4932 0.4744 0.4749 0.4895 0.5094 0.5108
    70 0.4990 0.4791 0.4768 0.4918 0.4859 0.4831
    80 0.4993 0.4723 0.4732 0.4973 0.4682 0.4676
    90 0.4972 0.4721 0.4738 0.4949 0.4483 0.4518
    100 0.5050 0.4638 0.4680 0.4732 0.4112 0.4120
    200 30 0.4912 0.4895 0.4908 0.5011 0.4901 0.4899
    40 0.4899 0.4780 0.4776 0.4934 0.4825 0.4831
    50 0.4867 0.4744 0.4745 0.4999 0.4848 0.4833
    60 0.4896 0.4751 0.4767 0.4901 0.4841 0.4832
    70 0.4940 0.4772 0.4771 0.4953 0.4947 0.4944
    80 0.4923 0.4779 0.4770 0.5013 0.4904 0.4901
    90 0.4933 0.4745 0.4732 0.4997 0.4960 0.4967
    110 0.4948 0.4760 0.4771 0.4950 0.4953 0.4991
    120 0.4964 0.4744 0.4716 0.4992 0.5056 0.5007
    130 0.4975 0.4718 0.4719 0.4952 0.4957 0.4928
    140 0.4951 0.4744 0.4727 0.4921 0.4900 0.4918
    150 0.4863 0.4646 0.4644 0.4927 0.4784 0.4736
    160 0.4941 0.4658 0.4632 0.4872 0.4716 0.4719
    170 0.4920 0.4653 0.4629 0.4833 0.4580 0.4584
    180 0.4974 0.4673 0.4644 0.4861 0.4480 0.4482
    190 0.5007 0.4611 0.4634 0.4800 0.4419 0.4442
    200 0.5005 0.4569 0.4597 0.4877 0.4152 0.4186

     | Show Table
    DownLoad: CSV

    According to Kaminsky and Rhodin [13], the predictive likelihood function (PLF) based on the first r observed order statistics is given by

    L(Θ,xs;˜xr)ri=1f(xi;Θ)[F(xs;Θ)F(xr;Θ)]sr1[1F(xs;Θ)]nsf(xs;Θ). (4.3)

    The above PL function was extended to the GOSs model in Barakat et al. [28] for fixed and random sample sizes.

    In view of (4.3), the log of the PLF for the three-parameter Weibull distribution, Weibull(θ,σ,α), is as follows:

    PL(θ,σ,α,xs)(r+1)logα(r+1)αlogσri=1(xiθσ)α+(α1)ri=1log(xiθ)+(sr1)log[exp[(xrθσ)α]exp[(xsθσ)α]](ns+1)(xsθσ)α+(α1)log(xsθ),

    x1<x2<...<xr<xs. The predictive WLS function takes the form

    PLF,r,s(θ,σ,α,xs)=ri=1wi[ni+1n+1exp[(xiθσ)α]]2+(sr1)wr[nr+1n+1exp[(xrθσ)α]]2+(ns+1)ws[ns+1n+1exp[(xsθσ)α]]2,

    where wi=r(ni+1)(n+2)(n+1)2,i=1,2,...,n. Similarly, the modified predictive WLS function based on the cumulative hazard function is given by

    PLH,r,s(θ,σ,α,xs)=ri=1wi[(xiθσ)αμi:n]2+(sr1)wr[(xrθσ)αμr:n]2+(ns+1)ws[(xsθσ)αμs:n]2.

    For OOSs we have μi:n=ij=1(nj+1)1 and wi=[ij=1(nj+1)2]1,i=1,2,...,n.

    Remark 4.2.

    By setting α=1, the above results are specialized to the two-parameter exponential distribution. The prediction problem of the two-parameter exponential distribution is discussed in details in Barakat et al. [38]. Moreover, θ=0 yields the two-parameter Weibull distribution.

    As in the Weibull distribution, the prediction of a future order statistic from the two-parameter modified Kies exponential distribution can be accomplished by minimizing the following three functions:

    L(α,σ,xs)=(r+1)log(α)+(r+1)log(σ)+ri=1(exi/σ1)α(α1)ri=1log[exi/σ1]ri=1xiσ(sr1)log[exp[(exr/σ1)α]+exp[(exs/σ1)α]]+(ns+1)(exs/σ1)α(α1)log[exs/σ1]xsσ,
    PLF,r,s(σ,α,xs)=ri=1wi[ni+1n+1exp[(exi/σ1)α]]2+(sr1)wr[nr+1n+1exp[(exr/σ1)α]]2+(ns+1)ws[ns+1n+1exp[(exs/σ1)α]]2

    and

    PLH,r,s(σ,α,xs)=ri=1wi[(exi/σ1)αμi:n]2+(sr1)wr[(exr/σ1)αμr:n]2+(ns+1)ws[(exs/σ1)αμs:n]2.

    The minimization problem is subject to the constraints σ>0,α>0 and xs>xr.

    Remark 4.3.

    The RMSE and PMC are obtained numerically via a simulation, and all computations are performed through Mathematica 13.1.

    In view of the simulation studies given above, the following comments are extracted:

    1. In all cases, for the scale and shape parameters as well as the point predictors, the RMSEs decreased as r increased.

    2. In most cases, the RMSE of the MLEs is smaller than the RMSEs of both the WLSEs and MWLSEs of the parameters.

    3. For the Exp(θ,σ), according to PMC shown in Table 2, the MLE is the best followed by the MWLSE, which is followed by the WLSE for estimating the location parameter θ, while for estimating the scale parameter σ, the MWLSE is the best followed by the WLSE, which is followed by the MLE.

    4. For the Weibull distribution, from Table 3, it is noted that

    5. RMSE(ˆθ)<RMSE(˜θ)<RMSE(θ), RMSE(σ)RMSE(˜σ)<RMSE(ˆσ) and RMSE(α)<RMSE(ˆα) and RMSE(˜α)<RMSE(ˆα).

    6. In view of PMC, Table 4 reveals that the WLSE is the best for the location parameter, while the MWLSEs of the scale and shape parameters are the best whenever nr is small, but the WLSEs are the best whenever nr is large. Moreover, for complete samples (i.e., r=n), the MWLSEs of the location, scale and shape parameters are the best.

    7. According to the results presented in Tables 5 and 6, there is no preference for one method over the others when estimating the MKiExp distribution parameters.

    8. In most cases, it is noted that the MWLSP and WLSP are better than the MLP, according to both the RMSE and PMC (see Tables 710).

    Table 7.  Three point predictors of future unobserved order statistics from the exponential distribution with parameters θ=2 and σ=10, as well as their associated estimates and RMSEs.
    n r s ˜θ(RMSE) θ(RMSE) ˆθ(RMSE) ˜σ(RMSE) σ(RMSE) ˆσ(RMSE) ˜Xs:n(RMSE) Xs:n(RMSE) ˆXs:n(RMSE) Xs:n
    100 34 35 1.964(0.140) 1.966(0.139) 2.101(0.143) 10.449(1.963) 10.408(1.952) 9.424(1.741) 6.421(0.379) 6.432(0.392) 6.129(0.214) 6.281
    40 1.973(0.136) 1.975(0.135) 2.101(0.143) 10.259(1.877) 10.226(1.869) 9.424(1.741) 7.146(0.542) 7.164(0.549) 6.872(0.447) 7.072
    45 1.973(0.138) 1.975(0.137) 2.101(0.143) 10.242(1.839) 10.204(1.830) 9.424(1.741) 8.013(0.704) 8.033(0.710) 7.678(0.664) 7.939
    50 1.973(0.139) 1.975(0.138) 2.101(0.143) 10.228(1.822) 10.186(1.811) 9.424(1.741) 8.962(0.889) 8.984(0.895) 8.559(0.875) 8.887
    55 1.972(0.141) 1.975(0.139) 2.100(0.143) 10.218(1.813) 10.172(1.801) 9.423(1.739) 10.009(1.097) 10.035(1.104) 9.531(1.095) 9.928
    60 1.972(0.142) 1.975(0.140) 2.101(0.143) 10.209(1.808) 10.160(1.795) 9.423(1.739) 11.176(1.337) 11.209(1.345) 10.615(1.346) 11.100
    65 1.972(0.142) 1.975(0.141) 2.101(0.143) 10.202(1.805) 10.151(1.792) 9.424(1.741) 12.497(1.602) 12.538(1.611) 11.842(1.613) 12.411
    70 1.972(0.143) 1.975(0.141) 2.101(0.143) 10.196(1.804) 10.143(1.790) 9.424(1.740) 14.015(1.923) 14.070(1.934) 13.251(1.936) 13.922
    75 1.972(0.143) 1.975(0.142) 2.100(0.143) 10.191(1.803) 10.137(1.789) 9.410(1.728) 15.802(2.304) 15.877(2.319) 14.893(2.315) 15.703
    80 1.972(0.144) 1.975(0.142) 2.101(0.143) 10.187(1.803) 10.131(1.788) 9.424(1.740) 17.971(2.778) 18.080(2.798) 16.921(2.803) 17.889
    85 1.972(0.144) 1.975(0.142) 2.101(0.143) 10.183(1.803) 10.126(1.788) 9.424(1.741) 20.735(3.391) 20.902(3.421) 19.484(3.429) 20.679
    90 1.972(0.144) 1.975(0.143) 2.101(0.143) 10.180(1.803) 10.122(1.788) 9.424(1.741) 24.543(4.277) 24.835(4.324) 23.015(4.343) 24.561
    95 1.972(0.145) 1.975(0.143) 2.079(0.176) 10.177(1.803) 10.118(1.788) 9.313(1.883) 30.783(6.892) 31.359(6.009) 28.251(6.772) 30.994
    100 1.972(0.145) 1.975(0.143) 2.101(0.143) 10.174(1.804) 10.115(1.788) 9.424(1.740) 48.942(15.563) 54.436(15.291) 45.612(16.579) 53.748
    100 64 65 1.955(0.157) 1.958(0.154) 2.101(0.143) 10.323(1.387) 10.289(1.382) 9.695(1.260) 12.693(0.740) 12.740(0.793) 12.135(0.391) 12.411
    70 1.966(0.150) 1.968(0.148) 2.101(0.143) 10.191(1.351) 10.170(1.348) 9.695(1.260) 14.005(1.120) 14.095(1.142) 13.584(0.830) 13.922
    75 1.965(0.152) 1.967(0.150) 2.101(0.143) 10.186(1.329) 10.161(1.324) 9.695(1.260) 15.788(1.405) 15.902(1.428) 15.290(1.233) 15.703
    80 1.964(0.154) 1.967(0.152) 2.101(0.143) 10.183(1.316) 10.153(1.310) 9.695(1.260) 17.957(1.780) 18.107(1.806) 17.360(1.694) 17.889
    85 1.963(0.156) 1.966(0.153) 2.101(0.143) 10.181(1.309) 10.146(1.302) 9.695(1.260) 20.721(2.305) 20.931(2.337) 19.996(2.285) 20.679
    90 1.963(0.157) 1.966(0.155) 2.101(0.143) 10.178(1.305) 10.140(1.297) 9.695(1.260) 24.531(3.083) 24.866(3.125) 23.629(3.120) 24.561
    95 1.962(0.158) 1.966(0.156) 2.101(0.143) 10.177(1.304) 10.134(1.294) 9.695(1.260) 30.694(4.577) 31.396(4.637) 29.505(4.707) 30.994
    100 1.961(0.160) 1.966(0.156) 2.101(0.143) 10.175(1.304) 10.129(1.293) 9.695(1.260) 48.981(14.304) 54.506(13.753) 46.877(15.036) 53.748

     | Show Table
    DownLoad: CSV
    Table 8.  Comparing different point predictors and their corresponding estimates of parameters for the two-parameter exponential with location parameter θ=2 and scale parameter σ=10, via PMC.
    n r s P(˜θ,θ) P(˜θ,ˆθ) P(θ,ˆθ) P(˜σ,σ) P(˜σ,ˆσ) P(σ,ˆσ) P(˜X,X) P(˜X,ˆX) P(X,ˆX)
    100 34 35 0.3089 0.4799 0.4860 0.4695 0.5370 0.5424 0.6455 0.3446 0.3447
    40 0.3324 0.4850 0.4886 0.4897 0.5492 0.5538 0.5647 0.4249 0.4270
    45 0.3031 0.4753 0.4740 0.4902 0.5609 0.5668 0.5565 0.4975 0.4958
    50 0.2884 0.4654 0.4661 0.4893 0.5628 0.5687 0.5485 0.5385 0.5378
    55 0.2842 0.4611 0.4617 0.4892 0.5640 0.5708 0.5435 0.5450 0.5404
    60 0.2836 0.4576 0.4579 0.4870 0.5634 0.5698 0.5321 0.5564 0.5519
    65 0.2821 0.4562 0.4554 0.4864 0.5635 0.5704 0.5310 0.5572 0.5514
    70 0.2810 0.4535 0.4546 0.4864 0.5648 0.5720 0.5256 0.5566 0.5511
    75 0.2829 0.4542 0.4571 0.4866 0.5667 0.5729 0.5255 0.5571 0.5519
    80 0.2841 0.4549 0.4535 0.4878 0.5675 0.5735 0.5181 0.5654 0.5564
    85 0.2843 0.4541 0.4513 0.4890 0.5682 0.5736 0.5132 0.5711 0.5614
    90 0.2840 0.4529 0.4494 0.4905 0.5682 0.5747 0.5099 0.5729 0.5589
    95 0.3042 0.4933 0.4719 0.4909 0.5716 0.5774 0.4997 0.6003 0.5792
    100 0.3120 0.4767 0.4565 0.4912 0.5693 0.5753 0.4782 0.6520 0.5709
    100 64 65 0.2699 0.4188 0.4168 0.4791 0.5148 0.5197 0.6645 0.3156 0.2903
    70 0.3151 0.4230 0.4206 0.4864 0.5103 0.5122 0.5565 0.3671 0.3678
    75 0.2995 0.4155 0.4155 0.4879 0.5261 0.5321 0.5521 0.4361 0.4355
    80 0.2821 0.4109 0.4124 0.4876 0.5336 0.5407 0.5449 0.4786 0.4777
    85 0.2640 0.4048 0.4047 0.4870 0.5380 0.5419 0.5408 0.5154 0.5137
    90 0.2611 0.4084 0.4030 0.4844 0.5389 0.5441 0.5338 0.5364 0.5248
    95 0.2990 0.4514 0.4001 0.4822 0.5389 0.5456 0.5202 0.5628 0.5334
    100 0.2855 0.4336 0.4089 0.4809 0.5391 0.5470 0.4937 0.6330 0.5381

     | Show Table
    DownLoad: CSV
    Table 9.  Three point predictors of unobserved future order statistics from the Weibull distribution with parameters σ=20 and α=1.5, as well as their associated estimates and RMSEs.
    n r s ˜α(RMSE) α(RMSE) ˆα(RMSE) ˜σ(RMSE) σ(RMSE) ˆσ(RMSE) ˜Xs:n(RMSE) Xs:n(RMSE) ˆXs:n(RMSE) Xs:n
    50 24 25 1.539(0.176) 1.544(0.107) 1.683(0.146) 20.212(10.654) 20.010(10.272) 18.824(9.683) 15.353(0.386) 15.365(0.382) 14.834(0.676) 15.420
    30 1.531(0.192) 1.536(0.108) 1.697(0.156) 20.315(10.382) 20.131(9.992) 18.772(9.519) 18.665(3.200) 18.705(3.215) 17.549(3.660) 18.533
    35 1.539(0.348) 1.538(0.109) 1.705(0.159) 20.312(10.309) 20.114(9.897) 18.779(9.482) 22.477(9.549) 22.527(9.605) 20.707(9.626) 22.193
    40 1.778(6.502) 1.542(0.111) 1.714(0.163) 20.227(10.325) 20.074(9.784) 18.771(9.462) 27.138(24.615) 27.366(23.962) 24.588(22.559) 26.863
    45 1.748(6.067) 1.545(0.113) 1.724(0.167) 20.216(10.268) 20.048(9.768) 18.752(9.449) 34.271(61.883) 34.680(61.022) 30.125(54.321) 33.837
    50 1.824(9.008) 1.546(0.115) 1.744(0.176) 22.333(11.240) 20.057(10.146) 18.704(9.473) 56.151(381.675) 56.301(333.058) 43.714(314.465) 54.141
    50 29 30 1.531(0.131) 1.540(0.088) 1.650(0.110) 20.105(7.124) 19.919(6.935) 19.127(6.867) 18.452(0.497) 18.471(0.493) 17.870(0.863) 18.533
    35 1.524(0.166) 1.529(0.083) 1.658(0.112) 20.198(7.091) 20.033(6.880) 19.126(6.776) 22.302(4.155) 22.381(4.179) 21.121(4.613) 22.193
    40 1.544(0.727) 1.531(0.085) 1.664(0.114) 20.196(7.004) 20.016(6.793) 19.143(6.751) 27.059(12.998) 27.190(13.132) 25.184(13.440) 26.863
    45 1.583(1.837) 1.534(0.086) 1.672(0.116) 20.301(7.084) 19.995(6.806) 19.150(6.746) 34.045(37.780) 34.386(38.193) 31.008(36.722) 33.837
    50 1.616(3.153) 1.536(0.088) 1.688(0.122) 20.176(7.095) 19.987(6.919) 19.141(6.738) 54.708(280.453) 55.648(247.564) 45.405(250.434) 54.141
    50 34 35 1.520(0.066) 1.532(0.068) 1.625(0.083) 20.077(5.519) 19.911(5.411) 19.356(5.437) 22.086(0.697) 22.119(0.689) 21.395(1.244) 22.193
    40 1.514(0.064) 1.523(0.066) 1.631(0.084) 20.131(5.495) 19.984(5.378) 19.368(5.384) 26.878(6.398) 27.040(6.391) 25.539(7.187) 26.863
    45 1.516(0.150) 1.525(0.066) 1.637(0.085) 20.141(5.483) 19.977(5.364) 19.394(5.371) 33.837(23.029) 34.205(23.503) 31.563(24.641) 33.837
    50 1.514(0.066) 1.527(0.068) 1.649(0.089) 20.139(5.521) 19.963(5.403) 19.417(5.363) 53.159(206.913) 55.219(189.721) 46.546(206.201) 54.141
    50 39 40 1.511(0.053) 1.523(0.054) 1.604(0.065) 20.080(4.674) 19.939(4.613) 19.546(4.598) 26.695(1.180) 26.763(1.149) 25.827(2.113) 26.863
    45 1.507(0.052) 1.516(0.053) 1.611(0.066) 20.117(4.673) 19.993(4.603) 19.569(4.569) 33.659(13.291) 34.088(13.191) 31.965(15.311) 33.837
    50 1.505(0.053) 1.517(0.054) 1.620(0.068) 20.132(4.674) 19.988(4.605) 19.618(4.554) 52.294(162.722) 55.057(148.820) 47.454(172.531) 54.141
    50 44 45 1.505(0.043) 1.512(0.043) 1.589(0.051) 20.075(4.229) 19.978(4.192) 19.686(4.100) 33.445(3.232) 33.634(3.051) 32.116(5.882) 33.837
    50 1.503(0.042) 1.507(0.043) 1.598(0.052) 20.105(4.216) 20.015(4.172) 19.741(4.082) 51.283(124.148) 54.751(109.464) 47.906(143.139) 54.141

     | Show Table
    DownLoad: CSV
    Table 10.  Comparing different point predictors and their corresponding estimates of parameters for the Weibull distribution with σ=20 and α=1.5, via PMC.
    n r s P(˜α,α) P(˜α,ˆα) P(α,ˆα) P(˜σ,σ) P(˜σ,ˆσ) P(σ,ˆσ) P(˜Xs:n,Xs:n) P(˜Xs:n,ˆXs:n) P(Xs:n,ˆXs:n)
    50 24 25 0.4923 0.5474 0.5471 0.5096 0.5754 0.5794 0.4037 0.7423 0.7430
    30 0.4779 0.5549 0.5550 0.4940 0.5724 0.5802 0.5002 0.5499 0.5499
    35 0.4760 0.5608 0.5594 0.4951 0.5686 0.5802 0.5062 0.5579 0.5544
    40 0.4767 0.5618 0.5628 0.4961 0.5694 0.5805 0.4965 0.5704 0.5680
    45 0.4799 0.5685 0.5704 0.5021 0.5735 0.5834 0.4755 0.5863 0.5835
    50 0.4809 0.5621 0.5653 0.4877 0.5610 0.5746 0.5004 0.5748 0.5722
    50 29 30 0.4964 0.5364 0.5369 0.5151 0.5694 0.5779 0.3857 0.6982 0.7298
    35 0.4838 0.5443 0.5436 0.4943 0.5605 0.5723 0.4730 0.5272 0.5297
    40 0.4838 0.5488 0.5482 0.4978 0.5613 0.5743 0.4936 0.5636 0.5573
    45 0.4868 0.5523 0.5524 0.5007 0.5617 0.5737 0.4780 0.5778 0.5719
    50 0.5029 0.5642 0.5652 0.5074 0.5624 0.5756 0.4453 0.5873 0.5815
    50 34 35 0.4949 0.5357 0.5365 0.5139 0.5580 0.5706 0.3127 0.4972 0.4579
    40 0.4828 0.5406 0.5437 0.5003 0.5484 0.5625 0.4617 0.5189 0.5219
    45 0.4863 0.5438 0.5427 0.5054 0.5481 0.5633 0.4721 0.5780 0.5654
    50 0.4922 0.5541 0.5537 0.5064 0.5481 0.5643 0.4512 0.6039 0.5794
    50 39 40 0.4856 0.5262 0.5249 0.5126 0.5411 0.5398 0.2868 0.4653 0.4245
    45 0.4798 0.5302 0.5322 0.5013 0.5289 0.5440 0.4510 0.5314 0.5311
    50 0.4855 0.5391 0.5400 0.5020 0.5327 0.5446 0.4538 0.6051 0.5602
    50 44
    44
    45 0.4876 0.5219 0.5250 0.5085 0.5114 0.5005 0.2712 0.4670 0.4296
    50 0.4850 0.5325 0.5333 0.4998 0.5158 0.5235 0.4439 0.5816 0.5441

     | Show Table
    DownLoad: CSV

    The windscreen on a large aircraft is a complex piece of equipment comprised of several layers. Failures of these items typically involve damage to or delamination of the heating system's nonstructural outer ply. These failures do not result in damage to the aircraft but do require replacement. Data of this type is incomplete in that all failure times have not yet been observed and may include failures to date of a particular model or combination of models. Murthy et al. [39] reported failure and service times for a specific model windscreen in Table 16.11 on page 297. The data represents 84 observed failure times for a specific windscreen device. Al-Babtain et al. [36] have shown that the MKiExp is an appropriate model for fitting this data.

    We assume that the first r failure times have been observed, and we apply our prediction methods to predict the remaining failure times in two different scenarios. Three-point predictors, along with their related estimates and their relative errors, are obtained in the first scenario. Alternatively, to avoid complications in computations, in the second scenario, we first estimate the parameters based on the first r observed failure times and then compute three different point predictors for the future sth failure. In order to assess the prediction results, we compute the relative error (RE) for each point predictor. Recall that the RE is defined by RE=100×|˜Xs:nXs:n|Xs:n, where ˜Xs:n denotes the point predictor and Xs:n is the exact value of the quantity to be predicted. The results are presented in Table 11.

    Table 11.  Different predictors, their associated estimations of parameters and the relative errors for xs:n, s=r+1,...,n(2) based on the first r order statistics with r=47 for the above failure times.
    r s ˜α α ˆα ˜σ σ ˆσ ˜Xs:n (RE) Xs:n (RE) ˆXs:n (RE) Xs:n ˜Ys:n (RE) Ys:n (RE) ˆYs:n (RE)
    47 48 2.114 2.123 1.895 4.024 4.013 4.062 2.632(0.5) 2.632(0.5) 2.632(0.5) 2.646 2.643(0.1) 2.645(0.0) 2.632(0.5)
    50 2.196 2.188 1.895 3.952 3.954 4.063 2.633(2.0) 2.642(1.7) 2.700(0.4) 2.688 2.704(0.6) 2.706(0.7) 2.703(0.6)
    52 2.168 2.164 1.895 3.975 3.975 4.064 2.705(6.4) 2.714(6.1) 2.768(4.2) 2.890 2.766(4.3) 2.768(4.2) 2.775(4.0)
    54 2.149 2.1 1.896 3.993 3.991 4.065 2.776(5.4) 2.784(5.1) 2.837(3.3) 2.934 2.828(3.6) 2.830(3.5) 2.847(3.0)
    56 2.134 2.134 1.896 4.006 4.002 4.066 2.845(4.0) 2.853(3.7) 2.908(1.9) 2.964 2.892(2.4) 2.894(2.4) 2.921(1.5)
    58 2.123 2.125 1.897 4.016 4.012 4.067 2.916(6.0) 2.923(5.8) 2.980(4.0) 3.103 2.957(4.7) 2.959(4.6) 2.996(3.5)
    60 2.114 2.117 1.897 4.025 4.019 4.068 2.987(4.2) 2.993(4.0) 3.053(2.0) 3.117 3.023(3.0) 3.026(2.9) 3.073(1.4)
    62 2.106 2.111 1.897 4.032 4.025 4.069 3.059(8.5) 3.066(8.3) 3.129(6.4) 3.344 3.092(7.5) 3.094(7.5) 3.152(5.7)
    64 2.100 2.106 1.898 4.037 4.030 4.070 3.134(9.0) 3.140(8.8) 3.208(6.8) 3.443 3.162(8.1) 3.166(8.1) 3.234(6.1)
    66 2.095 2.101 1.898 4.042 4.034 4.071 3.211(7.7) 3.218(7.5) 3.291(5.4) 3.478 3.236(6.9) 3.240(6.8) 3.320(4.5)
    68 2.091 2.098 1.898 4.0 4.038 4.072 3.292(8.4) 3.299(8.2) 3.378(6.0) 3.595 3.314(7.8) 3.319(7.7) 3.410(5.1)
    70 2.087 2.094 1.899 4.050 4.041 4.073 3.377(10.6) 3.385(10.4) 3.470(8.2) 3.779 3.397(10.1) 3.402(10.0) 3.506(7.2)
    72 2.084 2.091 1.899 4.054 4.044 4.073 3.469(14.0) 3.478(13.8) 3.570(11.5) 4.035 3.486(13.6) 3.493(13.4) 3.610(10.5)
    74 2.081 2.089 1.899 4.057 4.0 4.074 3.569(14.4) 3.579(14.1) 3.679(11.7) 4.167 3.583(14.0) 3.592(13.8) 3.723(10.7)
    76 2.078 2.087 1.900 4.059 4.049 4.075 3.680(13.5) 3.693(13.2) 3.801(10.7) 4.255 3.692(13.2) 3.703(13.0) 3.850(9.5)
    78 2.076 2.085 1.900 4.061 4.051 4.076 3.808(11.5) 3.825(11.1) 3.943(8.4) 4.305 3.818(11.3) 3.834(10.9) 3.998(7.1)
    80 2.074 2.083 1.901 4.064 4.053 4.077 3.964(10.9) 3.989(10.3) 4.117(7.5) 4.449 3.971(10.7) 3.995(10.2) 4.179(6.1)
    82 2.072 2.081 1.901 4.065 4.055 4.078 4.173(8.7) 4.217(7.7) 4.355(4.7) 4.570 4.177(8.6) 4.221(7.6) 4.425(3.2)
    84 2.070 2.080 1.902 4.067 4.056 4.079 4.542(2.6) 4.681(0.4) 4.795(2.8) 4.663 4.544(2.5) 4.682(0.4) 4.883(4.7)

     | Show Table
    DownLoad: CSV

    The second data set is reported and analyzed by Hoel [40] and Abu El Azm [41] among others. According to these data, male mice received a radiation dose of 300 roentgen at an age of 5–6 weeks. Each mouse's cause of death was identified by autopsy as either thymic lymphoma, reticulum cell sarcoma or other causes. Reticulum cell sarcoma is designated as cause 1 in this instance, and the other two causes of death are merged to make cause 2. There were 77 observations in this set of data, 39 of which are attributable to the second cause of death, while 38 are attributed to the first. For analysis purposes, we consider the following observations that are due to the first cause of death: 317,318,399,495,525,536,549,552,554,557,558,571,586,594,596,605,612,621,628,631,636,643,647,648,649,661,663,666,670,695,697,700,705,712,713,738,748,753.

    It has been shown that the Makeham-Gompertz distribution is quite adequate for fitting reticulum cell sarcomas (e.g., Hoel [40]). Arguing as in the first data set, the prediction results are shown in Table 12.

    Table 12.  Three different point predictors, the corresponding estimates and the relative errors of future OOSs xs:n, s=r+1,...,n based on the first r{22,26,30} OOS for Example 2.
    r s ˜Ys:n (RE) Ys:n (RE) ˆYs:n (RE) Ys ˜Ys:n (RE) Ys:n (RE) ˆYs:n (RE)
    22 23 648.37(0.2) 648.14(0.2) 653.07(0.9) 647 648.44(0.2) 648.38(0.2) 643.00(0.6)
    24 653.79(0.9) 653.61(0.9) 648.39(0.1) 648 653.85(0.9) 653.78(0.9) 649.06(0.2)
    25 659.20(1.6) 659.02(1.5) 653.57(0.7) 649 659.24(1.6) 659.18(1.6) 655.01(0.9)
    26 664.51(0.5) 664.45(0.5) 658.55(0.4) 661 664.65(0.6) 664.59(0.5) 660.91(0.0)
    27 670.06(1.1) 669.87(1.0) 669.06(0.9) 663 670.09(1.1) 670.05(1.1) 666.79(0.6)
    28 675.58(1.4) 675.50(1.4) 675.46(1.4) 666 675.61(1.4) 675.60(1.4) 672.70(1.0)
    29 681.20(1.7) 681.18(1.7) 673.07(0.5) 670 681.23(1.7) 681.26(1.7) 678.68(1.3)
    30 686.95(1.2) 686.88(1.2) 677.46(2.5) 695 687.00(1.2) 687.10(1.1) 684.79(1.5)
    31 692.96(0.6) 693.10(0.6) 691.58(0.8) 697 692.98(0.6) 693.18(0.5) 691.10(0.8)
    32 701.95(0.3) 699.53(0.1) 687.02(1.9) 700 699.24(0.1) 699.58(0.1) 697.68(0.3)
    33 705.83(0.1) 706.38(0.2) 692.17(1.8) 705 705.90(0.1) 706.43(0.2) 704.67(0.0)
    34 823.31(15.6) 713.87(0.3) 700.56(1.6) 712 713.09(0.2) 713.91(0.3) 712.22(0.0)
    35 846.87(18.8) 722.31(1.3) 724.49(1.6) 713 721.07(1.1) 722.34(1.3) 720.61(1.1)
    36 730.28(1.0) 732.09(0.8) 712.51(3.5) 738 730.28(1.0) 732.30(0.8) 730.36(1.0)
    37 791.65(5.8) 745.14(0.4) 776.74(3.8) 748 741.64(0.8) 745.16(0.4) 742.55(0.7)
    38 757.88(0.6) 765.77(1.7) 745.23(1.0) 753 757.88(0.6) 765.78(1.7) 760.69(1.0)
    26 27 666.63(0.5) 666.69(0.6) 661.00(0.3) 663 666.36(0.5) 666.41(0.5) 661.00(0.3)
    28 671.89(0.9) 672.04(0.9) 664.50(0.2) 666 671.66(0.9) 671.75(0.9) 666.98(0.1)
    29 677.26(1.1) 677.45(1.1) 677.29(1.1) 670 677.07(1.1) 677.21(1.1) 672.99(0.4)
    30 682.78(1.8) 683.04(1.7) 677.04(2.6) 695 682.62(1.8) 682.84(1.8) 679.11(2.3)
    31 688.51(1.2) 688.73(1.2) 682.39(2.1) 697 688.38(1.2) 688.69(1.2) 685.38(1.7)
    32 786.67(12.4) 694.85(0.7) 687.95(1.7) 700 694.40(0.8) 694.86(0.7) 691.91(1.2)
    33 700.90(0.6) 701.57(0.5) 694.85(1.4) 705 700.81(0.6) 701.45(0.5) 698.81(0.9)
    34 707.80(0.6) 708.75(0.5) 700.24(1.7) 712 707.73(0.6) 708.66(0.5) 706.25(0.8)
    35 715.33(0.3) 716.85(0.5) 721.92(1.3) 713 715.41(0.3) 716.78(0.5) 714.49(0.2)
    36 881.63(19.5) 726.43(1.6) 725.07(1.8) 738 724.27(1.9) 726.37(1.6) 724.04(1.9)
    37 735.23(1.7) 738.80(1.2) 792.61(6.0) 748 735.20(1.7) 738.76(1.2) 735.95(1.6)
    38 778.12(3.3) 758.65(0.7) 788.50(4.7) 753 750.82(0.3) 758.63(0.7) 753.63(0.1)
    30 31 793.87(13.9) 695.00(0.3) 695.00(0.3) 697 697.79(0.1) 697.15(0.0) 695.00(0.3)
    32 696.37(0.5) 698.25(0.2) 698.69(0.2) 700 704.56(0.7) 703.87(0.6) 701.89(0.3)
    33 704.53(0.1) 706.72(0.2) 718.16(1.9) 705 711.75(1.0) 711.07(0.9) 709.17(0.6)
    34 753.55(5.8) 715.61(0.5) 719.47(1.0) 712 719.53(1.1) 718.93(1.0) 717.00(0.7)
    35 722.31(1.3) 725.27(1.7) 722.35(1.3) 713 728.16(2.1) 727.79(2.1) 725.68(1.8)
    36 732.73(0.7) 736.39(0.2) 746.07(1.1) 738 738.11(0.0) 738.25(0.0) 735.73(0.3)
    37 745.33(0.4) 750.56(0.3) 747.77(0.0) 748 750.39(0.3) 751.77(0.5) 748.28(0.0)
    38 778.76(3.4) 772.77(2.6) 779.69(3.5) 753 767.94(2.0) 773.44(2.7) 766.92(1.8)

     | Show Table
    DownLoad: CSV

    The real data analysis given the the two preceding applications revealed that the maximum RE appears for the WLS method, followed by the MWLS method, followed by the ML method.

    In this article, by using the cumulative hazard function, a new least squares method for estimation and prediction has been proposed. The method is presented in a general setup so that it can be applied to any model of GOSs. A simulation study and numerical comparisons based on the RMSEs and PMCs have been performed through three important probability distributions. For applicability, two examples of real data sets are provided to illustrate the prescribed method. The comparisons reveal that the method is comparable with the ML and WLS methods, in the sense that there is no obvious preference for one method over the others for all estimation and prediction situations. Moreover, analyzing the real data revealed that the second scenario, in which we first estimate the unknown distribution parameters using Type Ⅱ right censoring and then predict future unobserved failures, performs better than the first scenario for the three methods.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to express their sincere gratitude to the anonymous reviewers for their insightful comments and recommendations that raised the caliber of this paper.

    This study is supported via funding from Prince Sattam Bin Abdulaziz University project number (PSAU/2023/R/1444).

    The authors declare no conflict of interest.



    Use of AI tools declaration



    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] To KK, Sridhar S, Chiu KH, et al. (2021) Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect 10: 507-535. https://doi.org/10.1080/22221751.2021.1898291
    [2] Rothan HA, Byrareddy SN (2020) The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 109: 102433. https://doi.org/10.1016/j.jaut.2020.102433
    [3] Li Q, Guan X, Wu P, et al. (2020) Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 382: 1199-1207. https://doi.org/10.1056/NEJMoa2001316
    [4] Wang W, Tang J, Wei F (2020) Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 92: 441-447. https://doi.org/10.1002/jmv.25689
    [5] Huang C, Wang Y, Li X, et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
    [6] Singhal T (2020) A review of Coronavirus disease-2019 (COVID-19). Indian J Pediatr 87: 281-286. https://doi.org/10.1007/s12098-020-03263-6
    [7] Shang J, Wan Y, Liu C, et al. (2020) Structure of mouse coronavirus spike protein complexed with receptor reveals mechanism for viral entry. PLoS Pathog 16: e1008392. https://doi.org/10.1371/journal.ppat.1008392
    [8] Angeletti S, Benvenuto D, Bianchi M, et al. (2020) COVID-2019: the role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 92: 584-588. https://doi.org/10.1002/jmv.25719
    [9] Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17: 181-192. https://doi.org/10.1038/s41579-018-0118-9
    [10] Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 39: 529-539. https://doi.org/10.1007/s00281-017-0629-x
    [11] Channappanavar R, Fehr AR, Vijay R, et al. (2016) Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe 19: 181-193. https://doi.org/10.1016/j.chom.2016.01.007
    [12] Chu CM, Poon LL, Cheng VC, et al. (2004) Initial viral load and the outcomes of SARS. CMAJ 171: 1349-1352. https://doi.org/10.1503/cmaj.1040398
    [13] Kohlmeier JE, Cookenham T, Roberts AD, et al. (2010) Type I interferons regulate cytolytic activity of memory CD8(+) T cells in the lung airways during respiratory virus challenge. Immunity 33: 96-105. https://doi.org/10.1016/j.immuni.2010.06.016
    [14] Schuster I (2011) Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta 1814: 186-199. https://doi.org/10.1016/j.bbapap.2010.06.022
    [15] Haussler MR, Haussler CA, Bartik L, et al. (2008) Vitamin D receptor: molecular signaling and actions of nutritional ligands in disease prevention. Nutr Rev 66: S98-S112. https://doi.org/10.1111/j.1753-4887.2008.00093.x
    [16] Jurutka PW, Bartik L, Whitfield GK, et al. (2007) Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J Bone Miner Res 22: V2-V10. https://doi.org/10.1359/jbmr.07s216
    [17] Bell NH, Shary J, Shaw S, et al. (1985) Hypercalcemia associated with increased circulating 1, 25 dihydroxyvitamin D in a patient with pulmonary tuberculosis. Calcif Tissue Int 37: 588-591.
    [18] Rook GA, Steele J, Fraher L, et al. (1986) Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 57: 159-163.
    [19] Liu PT, Stenger S, Li H, et al. (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311: 1770-1773. https://doi.org/10.1126/science.1123933
    [20] Brennan A, Katz DR, Nunn JD, et al. (1987) Dendritic cells from human tissues express receptors for the immunoregulatory vitamin D3 metabolite, dihydroxycholecalciferol. Immunology 61: 457-461.
    [21] Nunn JD, Katz DR, Barker S, et al. (1986) Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3. Immunology 59: 479-484.
    [22] Rondanelli M, Miccono A, Lamburghini S, et al. (2018) Self-care for common colds: the pivotal role of vitamin D, vitamin C, Zinc, and Echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds-practical advice on dosages and on the time to take these nutrients/botanicals in order to prevent or treat common colds. Evid Based Complement Alternat Med 2018: 5813095. https://doi.org/10.1155/2018/5813095
    [23] Ali N (2020) Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health 13: 1373-1380. https://doi.org/10.1016/j.jiph.2020.06.021
    [24] Chen H, Lu R, Zhang YG, et al. (2018) Vitamin D receptor deletion leads to the destruction of tight and adherens junctions in lungs. Tissue Barriers 6: 1-13. https://doi.org/10.1080/21688370.2018.1540904
    [25] Gniadecki R, Gajkowska B, Hansen M (1997) 1,25-dihydroxyvitamin D3 stimulates the assembly of adherens junctions in keratinocytes: involvement of protein kinase C. Endocrinology 138: 2241-2248. https://doi.org/10.1210/endo.138.6.5156
    [26] Clairmont A, Tessman D, Stock A, et al. (1996) Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear Induction of gap junctional intercellular communication by vitamin D in human skin fibroblasts is dependent on the nuclear vitamin D receptor. Carcinogenesis 17: 1389-1391. https://doi.org/10.1093/carcin/17.6.1389
    [27] Currie SM, Findlay EG, McHugh BJ, et al. (2013) The human cathelicidin LL-37 has antiviral activity against respiratory syncytial virus. PloS One 8: e73659. https://doi.org/10.1371/journal.pone.0073659
    [28] Hansdottir S, Monick MM, Hinde SL, et al. (2008) Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol 181: 7090-7099. https://doi.org/10.4049/jimmunol.181.10.7090
    [29] Lemire JM, Archer DC, Beck L, et al. (1995) Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr 125: 1704S-1708S. https://doi.org/10.1093/jn/125.suppl_6.1704S
    [30] Boonstra A, Barrat FJ, Crain C, et al. (2001) 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 167: 4974-4980. https://doi.org/10.4049/jimmunol.167.9.4974
    [31] Kaiko GE, Horvat JC, Beagley KW, et al. (2008) Immunological decision-making: how does the immune system decide to mount a helper T-cell response?. Immunology 123: 326-338. https://doi.org/10.1111/j.1365-2567.2007.02719.x
    [32] Sabetta JR, DePetrillo P, Cipriani RJ, et al. (2010) Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PloS One 5: e11088. https://doi.org/10.1371/journal.pone.0011088
    [33] Science M, Maguire JL, Russell ML, et al. (2013) Low serum 25-hydroxyvitamin D level and risk of upper respiratory tract infection in children and adolescents. Clin Infect Dis 57: 392-397. https://doi.org/10.1093/cid/cit289
    [34] Autier P, Boniol M, Pizot C, et al. (2014) Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol 2: 76-89. https://doi.org/10.1016/S2213-8587(13)70165-7
    [35] Major JM, Graubard BI, Dodd KW, et al. (2013) Variability and reproducibility of circulating vitamin D in a nationwide U.S. population. J Clin Endocrinol Metab 98: 97-104. https://doi.org/10.1210/jc.2012-2643
    [36] Terushkin V, Bender A, Psaty EL, et al. (2010) Estimated equivalency of vitamin D production from natural sun exposure versus oral vitamin D supplementation across seasons at two US latitudes. J Am Acad Dermatol 62: 929.e1-929.e9. https://doi.org/10.1016/j.jaad.2009.07.028
    [37] Thuesen B, Husemoen L, Fenger M, et al. (2012) Determinants of vitamin D status in a general population of Danish adults. Bone 50: 605-610. https://doi.org/10.1016/j.bone.2011.12.016
    [38] Pourshahidi LK (2015) Vitamin D and obesity: current perspectives and future directions. Proc Nutr Soc 74: 115-124. https://doi.org/10.1017/S0029665114001578
    [39] Singh R, Rathore SS, Khan H, et al. (2022) Association of obesity with COVID-19 severity and mortality: an updated systemic review, meta-analysis, and meta-regression. Front Endocrinol 13: 780872. https://doi.org/10.3389/fendo.2022.780872
    [40] Huang Y, Lu Y, Huang YM, et al. (2020) Obesity in patients with COVID-19: a systematic review and meta-analysis. Metabolism 113: 154378. https://doi.org/10.1016/j.metabol.2020.154378
    [41] Ames BN, Grant WB, Willett WC (2021) Does the high prevalence of vitamin D deficiency in African Americans contribute to health disparities?. Nutrients 13: 499. https://doi.org/10.3390/nu13020499
    [42] Carlberg C (2022) Vitamin D and pigmented skin. Nutrients 14: 325. https://doi.org/10.3390/nu14020325
    [43] Wierzbicka A, Oczkowicz M (2022) Sex differences in vitamin D metabolism, serum levels and action. Br J Nutr 128: 2115-2130. https://doi.org/10.1017/S0007114522000149
    [44] Meltzer DO, Best TJ, Zhang H, et al. (2020) Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw Open 3: e2019722. https://doi.org/10.1001/jamanetworkopen.2020.19722
    [45] Merzon E, Tworowski D, Gorohovski A, et al. (2020) Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. FEBS J 287: 3693-3702. https://doi.org/10.1111/febs.15495
    [46] Mendy A, Apewokin S, Wells AA, et al. (2020) Factors associated with hospitalization and disease severity in a racially and ethnically diverse population of COVID-19 patients. medRxiv . https://doi.org/10.1101/2020.06.25.20137323
    [47] Kotur N, Skakic A, Klaassen K, et al. (2021) Association of vitamin D, Zinc and Selenium related genetic variants with COVID-19 disease severity. Front Nutr 8: 689419. https://doi.org/10.3389/fnut.2021.689419
    [48] Carpagnano GE, Di Lecce V, Quaranta VN, et al. (2021) Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 44: 765-771. https://doi.org/10.1007/s40618-020-01370-x
    [49] Fasano A, Cereda E, Barichella M, et al. (2020) COVID-19 in Parkinson's disease patients living in Lombardy, Italy. Mov Disord 35: 1089-1093. https://doi.org/10.1002/mds.28176
    [50] Szeto B, Zucker JE, LaSota ED, et al. (2021) Vitamin D status and COVID-19 clinical outcomes in hospitalized patients. Endocr Res 46: 66-73. https://doi.org/10.1080/07435800.2020.1867162
    [51] Dror AA, Morozov N, Daoud A, et al. (2022) Pre-infection 25-hydroxyvitamin D3 levels and association with severity of COVID-19 illness. PloS One 17: e0263069. https://doi.org/10.1371/journal.pone.0263069
    [52] Hastie CE, Mackay DF, Ho F, et al. (2020) Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab Syndr 14: 561-565. https://doi.org/10.1016/j.dsx.2020.04.050
    [53] Bae M, Kim H (2020) Mini-review on the roles of vitamin C, vitamin D, and Selenium in the immune system against COVID-19. Molecules 25: 5346. https://doi.org/10.3390/molecules25225346
    [54] Lips P, Cashman KD, Lamberg-Allardt C, et al. (2019) Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. Eur J Endocrinol 180: P23-P54. https://doi.org/10.1530/EJE-18-0736
    [55] Alipio M (2020) Vitamin D supplementation could possibly improve clinical outcomes of patients infected with coronavirus-2019 (COVID-2019). Available at SSRN 3571484
    [56] Tan CW, Ho LP, Kalimuddin S, et al. (2020) Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B12 in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition 79–80: 111017. https://doi.org/10.1016/j.nut.2020.111017
    [57] Darling AL, Ahmadi KR, Ward KA, et al. (2020) Vitamin D concentration, body mass index, ethnicity and SARS-CoV-2/COVID-19: initial analysis of the first- reported UK Biobank Cohort positive cases (n 1474) compared with negative controls (n 4643). P Nutr Soc 80: E17. https://doi.org/10.1017/S0029665121000185
    [58] Vassiliou AG, Jahaj E, Pratikaki M, et al. (2020) Low 25-Hydroxyvitamin D levels on admission to the intensive care unit may predispose COVID-19 pneumonia patients to a higher 28-day mortality risk: a pilot study on a Greek ICU cohort. Nutrients 12: 3773. https://doi.org/10.3390/nu12123773
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1641) PDF downloads(131) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog