Loading [MathJax]/jax/output/SVG/jax.js
Research article

On the number of unit solutions of cubic congruence modulo n

  • Received: 31 January 2021 Accepted: 11 August 2021 Published: 22 September 2021
  • MSC : 11D79, 11L03, 11L03

  • For any positive integer n, let Zn:=Z/nZ={0,,n1} be the ring of residue classes module n, and let Z×n:={xZn|gcd(x,n)=1}. In 1926, for any fixed cZn, A. Brauer studied the linear congruence x1++xmc(modn) with x1,,xmZ×n and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer n, we give an explicit formula for the number of incongruent solutions of the following cubic congruence

    x31++x3m0(modn)   with x1,,xmZ×n.

    Citation: Junyong Zhao. On the number of unit solutions of cubic congruence modulo n[J]. AIMS Mathematics, 2021, 6(12): 13515-13524. doi: 10.3934/math.2021784

    Related Papers:

    [1] Shujie Zhou, Li Chen . On the sixth power mean values of a generalized two-term exponential sums. AIMS Mathematics, 2023, 8(11): 28105-28119. doi: 10.3934/math.20231438
    [2] Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434
    [3] JingJun Yu . Some congruences for $ \ell $-regular partitions with certain restrictions. AIMS Mathematics, 2024, 9(3): 6368-6378. doi: 10.3934/math.2024310
    [4] Wenxu Ge, Weiping Li, Tianze Wang . A remark for Gauss sums of order 3 and some applications for cubic congruence equations. AIMS Mathematics, 2022, 7(6): 10671-10680. doi: 10.3934/math.2022595
    [5] Sufyan Asif, Muhammad Khalid Mahmood, Amal S. Alali, Abdullah A. Zaagan . Structures and applications of graphs arising from congruences over moduli. AIMS Mathematics, 2024, 9(8): 21786-21798. doi: 10.3934/math.20241059
    [6] Jizhen Yang, Yunpeng Wang . Congruences involving generalized Catalan numbers and Bernoulli numbers. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240
    [7] Hu Jiayuan, Chen Zhuoyu . On distribution properties of cubic residues. AIMS Mathematics, 2020, 5(6): 6051-6060. doi: 10.3934/math.2020388
    [8] Xingxing Lv, Wenpeng Zhang . The generalized quadratic Gauss sums and its sixth power mean. AIMS Mathematics, 2021, 6(10): 11275-11285. doi: 10.3934/math.2021654
    [9] Wenpeng Zhang, Tingting Wang . The primitive roots and a problem related to the Golomb conjecture. AIMS Mathematics, 2020, 5(4): 3899-3905. doi: 10.3934/math.2020252
    [10] Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603
  • For any positive integer n, let Zn:=Z/nZ={0,,n1} be the ring of residue classes module n, and let Z×n:={xZn|gcd(x,n)=1}. In 1926, for any fixed cZn, A. Brauer studied the linear congruence x1++xmc(modn) with x1,,xmZ×n and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer n, we give an explicit formula for the number of incongruent solutions of the following cubic congruence

    x31++x3m0(modn)   with x1,,xmZ×n.



    For any positive integer n, let Zn:=Z/nZ={0,,n1} be the ring of residue classes modulo n, and let Z×n:={xZn|gcd(x,n)=1}, Zn:={xZn|x0} respectively. In 1926, for any fixed cZn, A. Brauer [2] studied the linear congruence

    x1++xmc(modn),   with x1,,xmZ×n,

    and gave a formula for the number of incongruent solutions. This answered a problem of H. Rademacher [7]. In 2014, Sun and Yang [9] generalized A. Brauer's result by giving an explicit formula for the number of incongruent solutions of general linear congruence

    k1x1++kmxmc(modn)   with x1,,xmZ×n,

    where k1,,km,cZn.

    Recently, Taki Eldin [8] studied the quadratic case and provided an explicit formula for the number of incongruent solutions of

    k1x21++kmx2mc(modn)   with x1,,xmZ×n,

    where k1,,km,cZn with gcd(k1km,n)=1, which extended the result of Yang and Tang [10].

    Therefore, it is natural to consider the following cubic congruence:

    k1x31++kmx3mc(modn).

    with k1,,km,cZn such that gcd(k1km,n)=1.

    When n=p is a prime number, k1==km=1, S. Chowla, J. Cowles and M. Cowles [3], Hong and Zhu [4] gave a formula of the number of incongruent solutions of the above congruence with c=0 and c0 respectively. In this note, we investigate the following cubic congruence

    x31++x3m0(modn)   with x1,,xmZ×n. (1.1)

    Denote by Nm(n) the number of incongruent solutions of (1.1). Li and Ouyang [6], in 2018, presented a relation between Nm(pa) and Nm(pb) for some certain integers a and b with ab. In this paper, we will give an explicit formula of Nm(n), which couldn't be obtained by the results in [6]. Particularly, we have the first main theorem as follows.

    Theorem 1.1. Let p be a prime number and m be a positive integer. Then each of the following holds.

    (1). If p1(mod3), then

    N1(p)=0,  N2(p)=3(p1),  N3(p)=p2+(c9)p+(8c),

    and

    Nm(p)+3Nm1(p)3(p1)Nm2(p)(pc+3p1)Nm3(p)=(p1)m3(p23pc),

    for all m4, where c is uniquely determined by

    4p=c2+27d2,   c1(mod3).

    (2). If p1(mod3), then

    Nm(p)=(p1)m+(1)m+1p+(1)m.

    For every nonzero integer n, let rad(n) be the radical of n, i.e., the product of distinct prime divisors of n. As usual, for any prime number p, let vp(n) be the p-adic valuation of n, i.e., pvp(n)n and pvp(n)+1n. For any aZ, let an be the unique element in Zn such that aan(modn). Now, we can state our second main Theorem.

    Theorem 1.2. Let n and m be positive integers and let ξ:=exp(2πi9). Then

    Nm(n)=δm(n)nm1(rad(n))m1p|nNm(p),

    where

    δm(n)={1, if v3(n)1,9Nm(9)2m+2(1)m, if v3(n)2,
    Nm(9)={199j=1(ξm92)9j(1+ξj)m, if m9 is even,199j=1(ξm9+92)9j(1+ξj)m, if m9 is odd and m10,0, otherwise,

    Nm(p) was obtained in Theorem 1.1.

    The paper is organized as follows: Section 2 provides some notations and lemmas which will be used in the sequel. In Section 3, we give the proofs of Theorem 1.1 and Theorem 1.2.

    Throughout, p denotes a prime number. For any finite set A, denote by |A| the cardinality of A. For any aZ, let

    Ta:=xZpexp(2πiax3p).

    Next, we give some lemmas which are needed in the proofs of Theorem 1.1 and Theorem 1.2. We begin with the following famous result.

    Lemma 2.1. ([1]) (Chinese Remainder Theorem) Let f(x1,,xm)Z[x]. If n1,,nr are pairwise relatively prime positive integers, let Ni be the number of zeros of

    f(x1,,xm)0(modni),

    and N be the number of zeros of

    f(x1,,xm)0(modn1nr),

    then N=N1Nr.

    The following classical result was obtained by Gauss.

    Lemma 2.2. ([3]) Let g be a primitive root modulo p. Then T1+1, Tg+1, Tg2+1 are the roots of equation

    x33pxpc=0,

    where c is uniquely determined by

    4p=c2+27d2,   c1(mod3).

    Lemma 2.3. Let g be a primitive root modulo p, and let S={1,g,g2}. Then for any aZp, there exists a unique bS such that

    Ta=Tb.

    Proof. Since g is a primitive root modulo p, for any aZp, one has agc(modp) for some integer c with 1cp1. Let c=3q+r with q,rZ and 0r2. It then follows that

    Ta=xZpexp(2πiax3p)=xZpexp(2πigcx3p)=xZpexp(2πiagr(gqx)3p)=xZpexp(2πiagrx3p)=Tgr

    as desired. So Lemma 2.3 is proved.

    Lemma 2.4. ([1]) For any aZp, we have

    bZpexp(2πiabp)={p,  if  pa,0,  if  pa.

    Lemma 2.5. ([5]) Let aZp. Then x3a(modp) is solvable if and only if ap1d1(modp), where d=gcd(3,p1).

    For any positive integer m, let

    Am(p):={(x1,,xm)(Zp)m|x31++x3m0(modp)}.

    We have the following lemma.

    Lemma 2.6. Suppose p1(mod3). Then for any positive integer m, we have

    |Am(p)|=pm1.

    Proof. Let f:ZpZp be a map satisfying that f(a)=a3p for any aZp. We claim that f is bijective. In fact, by Lemma 2.5, it is easy to see that f is subjective. Moreover, since |Zp| is finite, one has that f is also injective. So the claim is true.

    Therefore, we deduce that

    |Am(p)|=|{(x1,,xm)(Zp)m|x31++x3m0(modp)}|=|{(x1,,xm)(Zp)m|x1++xm0(modp)}|=pm1

    as expected.

    Lemma 2.7. Let ξ:=exp(2πi9) and let Nm(9) be the number of solutions of congruence

    x1++xm0(mod9) with x1,,xm{1,1}. (2.1)

    Then

    Nm(9)={199j=1(ξm92)9j(1+ξj)m, if m9 is even,199j=1(ξm9+92)9j(1+ξj)m, if m9 is odd and m10,0, otherwise.

    Proof. Let S1 and S1 be the number of terms of Eq (2.1) for which xi=1 and xi=1 (1im) respectively. Then the Eq (2.1) has a solution if and only if S1S1(mod9). We distinguish two cases as follows.

    Case 1. Let m9 be even.

    The congruence (2.1) has a solution if and only if

    S1{m92, m92+9, m92+18, ,mm92}.

    Therefore, one gets

    Nm(9)=(mm92)+(mm92+9)+(mm92+18)++(mmm92). (2.2)

    Since ξ=exp(2πi9), we easily obtain the well-known fact:

    ξ9=1, 1+ξj+(ξj)2++(ξj)8=0 with (j=1,8). (2.3)

    By (2.3) and computing directly, one gets the following identity:

    199j=1(ξm92)9j(1+ξj)m=(mm92)+(mm92+9)+(mm92+18)++(mmm92). (2.4)

    By (2.2) and (2.4), we have

    Nm(9)=199j=1(ξm92)9j(1+ξj)m. (2.5)

    Case 2. Let m9 be odd.

    Obviously, the congruence (2.1) has no solution if m=1,3,5,7. So we suppose that m10.

    The Eq (2.1) has a solution if and only if

    S1{m9+92, m9+92+9, m9+92+18, ,mm9+92}.

    From an argument which is similar to that in Case 1, we get

    Nm(9)=199j=1(ξm9+92)9j(1+ξj)m. (2.6)

    From the above discussion, we can conclude that

    Nm(9)={199j=1(ξm92)9j(1+ξj)m, if m9 is even,199j=1(ξm9+92)9j(1+ξj)m, if m9 is odd and m10,0, otherwise.

    This finishes the proof of Lemma 2.7.

    In this section, we give the proofs of Theorem 1.1 and Theorem 1.2.

    Proof of Theorem 1.1. We divide the proof into two cases.

    Case 1. Let p1(mod3). By Lemma 2.3 and Lemma 2.4, we deduce that

    Nm(p)=1p(x1,,xm)(Zp)mp1a=0exp(2πia(x31++x3m)p)=(p1)mp+1pp1a=1(x1,,xm)(Zp)mexp(2πia(x31++x3m)p)=(p1)mp+1pp1a=1(xZpexp(2πiax3p))m=(p1)mp+1p(p13Tm1+p13Tmg+p13Tmg2). (3.1)

    By Lemma 2.2, T1, Tg, Tg2 are roots of equation

    x3+3x23(p1)x(pc+3p1)=0, (3.2)

    where c is uniquely determined by

    4p=c2+27d2,   c1(mod3).

    It then follows from (3.2) that

    T1+Tg+Tg2=3,T1Tg+T1Tg2+TgTg2=33p,T1TgTg2=pc+3p1. (3.3)

    Clearly, N1(p)=0. Moreover, using (3.1) and (3.3), we get that

    N2(p)=(p1)2p+p13p(T21+T2g+T2g2)=(p1)2p+p13p((T1+Tg+Tg2)22(T1Tg+T1Tg2+TgTg2))=3(p1),

    and

    N3(p)=(p1)3p+p13p(T31+T3g+T3g2)=(p1)3p+p16p(3(T1+Tg+Tg2)(T21+T2g+T2g2)+6T1TgTg2(T1+Tg+Tg2)3)=p2+(c9)p+(8c).

    Now, let m be any integer with m4. Then for any a{1,g,g2}, we have

    Tma+3Tm1a3(p1)Tm2a(pc+3p1)Tm3a=0 (3.4)

    by (3.2). It then follows from (3.1) and (3.4) that

    Nm(p)(p1)mp+3(Nm1(p)(p1)m1p)3(p1)(Nm2(p)(p1)m2p)(pc+3p1)(Nm3(p)(p1)m3p)=0,

    which is equivalent to

    Nm(p)+3Nm1(p)3(p1)Nm2(p)(pc+3p1)Nm3(p)=(p1)m3(p23pc).

    So Theorem 1.1 is proved in this case.

    Case 2. Let p1(mod3). For any integer i with 1im, define

    Am,i(p):={(x1,,xi1,0,xi+1,,xm)(Zp)m|x31++x3m0(modp)}.

    Then using principle of cross-classification, we derive that

    Nm(p)=|Am(p)mi=1Am,i(p)|=|Am(p)|+mt=1(1)t1i1<<itm|tj=1Am,ij(p)|. (3.5)

    Let t be an integer with 1tm1. Then for any integer t-tuple (i1,,it) with 1i1<<itm, it is obvious that

    |tj=1Am,ij(p)|=|Amt(p)|. (3.6)

    Thus by Lemma 2.5, (3.5) and (3.6), one gets that

    Nm(p)=pm1+m1t=1(1)t(mt)pmt1+(1)m=1pm1t=0(1)t(mt)pmt+(1)m=(p1)m+(1)m+1p+(1)m.

    This finishes the proof of Theorem 1.1.

    Now, we begin the proof of Theorem 1.2.

    Proof of Theorem 1.2. Let n have the prime decomposition

    n=p|npvp(n).

    By Lemma 2.1, one has the product formla

    Nm(n)=p|nNm(pvp(n)). (3.7)

    So to compute Nm(n), it is enough to study the prime power case Nm(pvp(n)) with p|n.

    Now, we consider the following two cases with p|n.

    Case 1. For any p|n it holds either p3 or p=3, v3(n)=1.

    If p3, by Theorem B(1) of [6], we have

    Nm(pvp(n))=p(m1)(vp(n)1)Nm(p),

    where Nm(p) has been studied in Theorem 1.1.

    If p=3 and v3(n)=1, one has

    Nm(3v3(n))=Nm(3)=3(m1)(v3(n)1)Nm(3).

    Hence, for p3 or p=3, v3(n)=1, we get

    Nm(pvp(n))=p(m1)(vp(n)1)Nm(p). (3.8)

    It then follows from (3.7) and (3.8) that

    Nm(n)=p|nNm(pvp(n))=p|np(m1)(vp(n)1)Nm(p)=p|np(m1)vp(n)pm1Nm(p)=nm1(rad(n))m1p|nNm(p)

    as expected.

    Case 2. p=3 and v3(n)2.

    By Theorem B(1) in [6], one has

    Nm(3v3(n))=3(m1)(v3(n)2)Nm(9). (3.9)

    Since x31(mod9) for x{1,4,7} and x31(mod9) for x{2,5,8}, one gets that

    Nm(9)=3mNm(9). (3.10)

    Therefore, by (3.7)–(3.10), we have

    Nm(n)=p|nNm(pvp(n))=3(m1)(v3(n)2)Nm(9)p|np3Nm(pvp(n))=3(m1)(v3(n)2)+mNm(9)p|np3p(m1)(vp(n)1)Nm(p)=(3v3(n))m13m2Nm(9)p|np3(pvp(n))m1pm1Nm(p)=3Nm(9)Nm(3)nm1(rad(n))m1p|nNm(p).

    By Theorem 1.1, we have

    Nm(3)=2m+2(1)m3.

    Hence, we get

    Nm(n)=9Nm(9)2m+2(1)mnm1(rad(n))m1p|nNm(p).

    From the above discussion of Case 1 and Case 2, we can conclude that

    Nm(n)=δm(n)nm1(rad(n))m1p|nNm(p),

    where

    δm(n)={1, if v3(n)1,9Nm(9)2m+2(1)m, if v3(n)2,

    Nm(9) and Nm(p) were obtained in Lemma 2.7 and Theorem 1.1, respectively.

    This finishes the proof of Theorem 1.2.

    In this paper, we present an explicit formula of the number of unit solutions of diagonal cubic form over Zn, by using the method of exponential sums. As future directions, one can find the formula of the number of unit solutions of x31++x3nc(modn) over Zn with c0(modn).

    We declare that we have no conflict of interest.



    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer, 1976.
    [2] A. Brauer, Lösung der Aufgabe 30, Jahresber. Dtsch. Math.-Ver., 35 (1926), 92–94.
    [3] S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. doi: 10.1016/0022-314X(77)90010-5
    [4] S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. doi: 10.1515/forum-2020-0354
    [5] K. Ireland, M. Rosen, A classical introduction to modern number theory, 2 Eds., Graduate Texts in Mathematics, New York: Springer-Verlag, 1990.
    [6] S. Li, Y. Ouyang, Counting the solutions of λ1xk11++λtxkttc mod n, J. Number Theroy, 187 (2018), 41–65. doi: 10.1016/j.jnt.2017.10.017
    [7] H. Rademacher, Aufgabe 30, Jahresber. Dtsch. Math.-Ver., 34 (1925), 158.
    [8] R. F. Taki Eldin, On the number of incongruent solutions to a quadratic congruence over algebraic integers, Int. J. Number Theory, 15 (2019), 105–130. doi: 10.1142/S1793042118501762
    [9] C. Sun, Q. Yang, On the sumset of atoms in cyclic groups, Int. J. Number Theory, 10 (2014), 1355–1363. doi: 10.1142/S1793042114500328
    [10] Q. Yang, M. Tang, On the addition of squares of units and nonunits modulo n, J. Number Theory, 155 (2015), 1–12. doi: 10.1016/j.jnt.2015.02.019
  • This article has been cited by:

    1. Wenxu Ge, Weiping Li, Tianze Wang, A note on some diagonal cubic equations over finite fields, 2024, 9, 2473-6988, 21656, 10.3934/math.20241053
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2181) PDF downloads(120) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog