In this paper, we proposed a generalized of Darbo's fixed point theorem via the concept of operators S(∙;.) associated with the measure of noncompactness. Using this generalized Darbo fixed point theorem, we have given the existence of solution of a system of differential equations. At the end, we have given an example which supports our findings.
Citation: Rahul, Nihar Kumar Mahato. Existence solution of a system of differential equations using generalized Darbo's fixed point theorem[J]. AIMS Mathematics, 2021, 6(12): 13358-13369. doi: 10.3934/math.2021773
[1] | Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order $ (1, 2) $. AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496 |
[2] | Rahul, Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad . An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem. AIMS Mathematics, 2022, 7(8): 15484-15496. doi: 10.3934/math.2022848 |
[3] | Mouffak Benchohra, Zohra Bouteffal, Johnny Henderson, Sara Litimein . Measure of noncompactness and fractional integro-differential equations with state-dependent nonlocal conditions in Fréchet spaces. AIMS Mathematics, 2020, 5(1): 15-25. doi: 10.3934/math.2020002 |
[4] | Aphirak Aphithana, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon . Measure of non-compactness for nonlocal boundary value problems via $ (k, \psi) $-Riemann-Liouville derivative on unbounded domain. AIMS Mathematics, 2023, 8(9): 20018-20047. doi: 10.3934/math.20231020 |
[5] | Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali . On generalization of Petryshyn's fixed point theorem and its application to the product of $ n $-nonlinear integral equations. AIMS Mathematics, 2023, 8(12): 30562-30573. doi: 10.3934/math.20231562 |
[6] | Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029 |
[7] | Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Abd Elmotaleb A.M.A. Elamin, R. Samidurai, Sina Etemad, Muath Awadalla . Attractive solutions for Hilfer fractional neutral stochastic integro-differential equations with almost sectorial operators. AIMS Mathematics, 2024, 9(5): 11486-11510. doi: 10.3934/math.2024564 |
[8] | Lakshmi Narayan Mishra, Vijai Kumar Pathak, Dumitru Baleanu . Approximation of solutions for nonlinear functional integral equations. AIMS Mathematics, 2022, 7(9): 17486-17506. doi: 10.3934/math.2022964 |
[9] | Niaz Ahmad, Nayyar Mehmood, Thabet Abdeljawad, Aiman Mukheimer . Krasnoselskii-type results for equiexpansive and equicontractive operators with application in radiative transfer equations. AIMS Mathematics, 2023, 8(6): 14592-14608. doi: 10.3934/math.2023746 |
[10] | Dumitru Baleanu, Ramkumar Kasinathan, Ravikumar Kasinathan, Varshini Sandrasekaran . Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions. AIMS Mathematics, 2023, 8(2): 2556-2575. doi: 10.3934/math.2023132 |
In this paper, we proposed a generalized of Darbo's fixed point theorem via the concept of operators S(∙;.) associated with the measure of noncompactness. Using this generalized Darbo fixed point theorem, we have given the existence of solution of a system of differential equations. At the end, we have given an example which supports our findings.
The measure of noncompactness (MNC) performs an important character in real world problems. First of all, the fundamental paper of Kuratowski [1] in 1930 open up a new direction of MNC to solve diffent type of Functional equations, which comes from the diffent real life problems. Using the notion of MNC, Darbo [2] in 1955 ensure that the endurance of fixed points, which is obtained by the generalization of Schauder fixed point theorem (SFPT) and banach contraction principle. Many authors using the notion of MNC generalize Darbo fixed point theorem (DFPT) which ensure that the endurance of fixed point to solve various kind of integal or differentail equations. Up to now, many authors have been published several papers using the notion of generalization of DFPT and MNC [3,4,5,6,7,8,9,10,11,12,13,14].
Our purpose of present paper is to extend the DFPT and we aaply our obtained results to find the existence of solutions of the functional differential equations.
At the beginning we provide concepts, notations, definitions and the preliminaries, which will be used all over the present paper.
The set of real numbers is symbolize by R, R+=[0,∞) and the set of natural numbers by N. Let (Ξ,∥.∥) be real Banach spaces. If Ω is a nonempty subset of Ξ then ˉΩ and ConvΩ, symbolize the closure and convex closure of Ω respectively. Also, let MΞ symbolize the set of all nonempty and bounded subsets of Ξ and NΞ is the subset of all relatively compact sets.
Banas and Lecko [15] have given the definition of MNC which is given below.
Definition 2.1. A MNC is a mapping χ:MΞ→R+ if it fulfills the following constraints for all Ω,Ω1,Ω2∈MΞ.
(M1) The family ker χ={Ω∈MΞ:χ(Ω)=0} is nonempty and ker χ⊂NΞ.
(M2)Ω1⊂Ω2⟹χ(Ω1)≤χ(Ω2).
(M3)χ(ˉΩ)=χ(Ω).
(M4)χ(ConvΩ)=χ(Ω).
(M5)χ(κΩ1+(1−κ)Ω2)≤κχ(Ω1)+(1−κ)χ(Ω2) for κ∈[0,1].
(M6) if Ωn∈MΞ,Ωn=ˉΩn,Ωn+1⊂Ωn for n=1,2,3,... and limn→∞χ(Ωn)=0, then ∞⋂n=1Ωn≠∅.
We are going to define the Concept of operator S(∙;.) which was introduced by Altan and Turkoglu [16].
Definition 2.2. Let A(R+) be the set of fuctions f:R+→R+ and let Z be the set of functions S(∙;.):A(R+)→A(R+), which fulfills the following constraints:
(O1) S(f;σ)≥0forσ>0andS(h;0)=0, S(f;σ1)≤S(f;σ2)forσ1≤σ2,
(O2) limn→∞S(f;σn)=S(f;limn→∞σn),
(O3) S(f;max{σ1,σ2})=max{S(f;σ1),S(f;σ2)} for some f∈A(R+).
Theorem 2.1. (Schauder)[17] A mapping Δ:Ω→Ω which is compact and continuous has at least one fixed point for a nonempty, bounded, closed and convex (NBCC) subset Ω of a Banach space Ξ.
DFPT is generalize by resting the compactness of Schauder's mapping and theorem is known as SFPT.
Theorem 2.2. (Darbo)[18] Let Δ:Ω→Ω be a continuous mapping and χ is an MNC. Then for any nonempty subset ℘ of Ω, there exists a k∈[0,1) having the inequality
χ(Δ℘)<kχ(℘). |
Then the mapping Δ have a fixed point in Ω.
Isik et al. [10] introduce a function f to generalize the Banach contraction, we find various type of contraction mapping.
Theorem 2.3. Let Δ:Ω→Ω be a continuous self-mapping, where (Ω,ρ) is a complete metric space. Then for all γ,δ∈Ξ there exists a mapping f:R+→R+ such that limτ→0+f(τ)=0,f(0)=0,
ρ(Δγ,Δδ)≤f(ρ(γ,δ))−f(ρ(Δγ,Δδ)). |
Then Δ contains a unique fixed point.
Parvenah et al. [10] generalized DFPT as follows:
Theorem 2.4. Let Δ:Ω→Ω be a continuous operator defined on a NBCC subet Ω of Ξ having the inequality
χ(Δ℘)≤f(χ(℘))−f(χ(Δ℘)), |
for all ℘⊂Ω, where f:R+→R+ with limτ→0+f(τ)=0,f(0)=0, and χ is an MNC. Then Δ contains a fixed point in Ω.
Remark 2.1. Remember that Theorem 2.4 generalize DFPT. Since Δ:℘→℘ is a Darbo mapping.
Then for all ℘⊂Ξ there exists k∈[0,1) having the property χ(Δ℘)<kχ(℘).
So with the help of inequality, we have
χ(Δ℘)≤kχ(℘)≤k1+k−√kχ(℘), |
for all ℘⊂Ξ.
Consequently
kχ(Δ℘)+(1−√k)χ(Δ℘)≤kχ(℘), |
(1−√k)χ(Δ℘)≤kχ(℘)−kχ(Δ℘). |
So
χ(Δ℘)≤k1−√kχ(℘)−k1−√kχ(Δ℘). |
Taking f(τ)=k1−√kτ, we have χ(Δ℘)≤f(χ(℘))−f(χ(Δ℘)) for all ℘⊂Ξ. Therefore the Darbo Theorem is a specific case of contraction mapping of Theorem (2.4).
Let us recall an important theorem in this work which extends DFPT by taking the concept of S(h;.).
Theorem 3.1. Let (Ξ,∥.∥) be a Banach space. Suppose Δ:Ξ→Ξ is a continuous, nondecreasing and bounded mapping fulfills the following inequality
S(h;χ(Δ℘)∫0π(τ)dτ+ϕ(χ(Δ℘)∫0π(τ)dτ))≤f(S(h;χ(℘)∫0π(τ)dτ+ϕ(χ(℘)∫0π(τ)dτ)))−f(S(h;χ(Δ℘)∫0π(τ)dτ+ϕ(χ(Δ℘)∫0π(τ)dτ))), | (3.1) |
for all bounded ℘ of Ξ, where χ is MNC, h∈A(R+),S(∙;.)∈Z, ϕ,π:R+→R+ is continuous functions and f:R+→R+ is a function as limτ→0+f(τ)=0,f(0)=0. Then Δ contains at least one fixed point.
Proof. Assume that ℘n with ℘0=℘ and ℘n+1=conv(Δ℘n) for all n≥0.
Also, Δ℘0=Δ℘⊆℘=℘0,℘1=conv(Δ℘0)⊆℘=℘0. Since ℘n is a closed and bounded subset in Ξ and
℘0⊃℘1⊃,...,⊃℘n⊃,.... | (3.2) |
Following (3.1), we have
S(h;χ(℘n+1)∫0π(τ)dτ+ϕ(χ(℘n+1)∫0π(τ)dτ))=S(h;χ(conv(Δ℘n))∫0π(τ)dτ+ϕ(χ(conv(Δ℘n))∫0π(τ)dτ)), |
S=(h;χ(Δ℘n)∫0π(τ)dτ+ϕ(χ(Δ℘n)∫0π(τ)dτ)) |
≤f(S(h;χ(℘n)∫0π(τ)dτ+ϕ(χ(℘n)∫0π(τ)dτ)))−f(S(h;χ(Δ℘n)∫0π(τ)dτ+ϕ(χ(Δ℘n)∫0π(τ)dτ))). |
Taking the limit as n→∞ on both the sides of this inequality, we have
limn→∞S(h;χ(Δ℘n)∫0π(τ)dτ+ϕ(χ(Δ℘n)∫0π(τ)dτ)) |
≤limn→∞f(S(h;χ(℘n)∫0π(τ)dτ+ϕ(χ(℘n)∫0π(τ)dτ)))−limn→∞f(S(h;χ(Δ℘n)∫0π(τ)dτ+ϕ(χ(Δ℘n)∫0π(τ)dτ))). |
Therefore
limn→∞S(h;χ(℘n)∫0π(τ)dτ+ϕ(χ(℘n)∫0π(τ)dτ))=0. |
By the virtue of (iii) of Definition S(h;.), we get
S(h;limn→∞χ(℘n)∫0π(τ)dτ+limn→∞ϕ(χ(℘n)∫0π(τ)dτ))=0, |
and therefore limn→∞χ(℘n)∫0π(τ)dτ=0.
But for any ϵ>0,ϵ∫0π(τ)dτ>0, then χ(℘n)→0asn→∞.
Now since ℘n is nested sequence, by the definition of (MNC) of (M6), we conclude that ℘∞=∩∞n=1℘n is NBCC of Ξ. Also we aware that ℘∞∈kerχ. Therefore ℘∞ is compact and invariant under the mapping Δ. Therefore by the SFPT, Δ has a fixed point in ℘∞.
Remark 3.1. Putting π(τ)=1 for τ∈[0,∞) in Theorem 3.1, we have
S(h;χ(Δ℘)+ϕ(χ(Δ℘)))≤f(S(h;χ(℘)+ϕ(χ(℘))))−f(S(h;χ(Δ℘)+ϕ(χ(Δ℘)))).
Remark 3.2. Take ϕ=0,S(h;τ)=τ,h=I in Remark(3.1), then we have
χ(Δ℘)≤f(χ(℘))−f(χ(Δ℘)). |
It is a generalization of the result given by Parvenah et al.[10].
Definition 3.1. [19] A mapping Δ:Ξ×Ξ×Ξ→Ξ is said to have a TFP (γ,δ,θ)∈Ξ3 if
Δ(γ,δ,θ)=γ,Δ(γ,δ,θ)=δ,Δ(γ,δ,θ)=θ. |
Theorem 3.2. [18] Let χ1,χ2,...,χn be the measure of noncompactness of Ξ1,Ξ2,...,Ξn respectively. Also assume that the function B:R+τ→R+ is convex and B(γ1,γ2,...,γτ)=0 if and only if γr=0 for r=1,2,...,τ. Then
ˆχ(Θ)=B(χ1(Θ1),χ2(Θ2),...,χn(Θn)). |
Example 3.1. [20] Let B(γ,δ,θ)=max{γ,δ,θ} for (γ,δ,θ)∈R+3. Now B(γ,δ,θ)=max{γ,δ,θ}=0 iff γ=δ=θ=0. Then B is convex and satisfied all conditions of Theorem 3.2. Therefore ˆχ(Θ)=B(χ1(Θ1),χ2(Θ2),χ3(Θ3)) is an MNC on Ξ1×Ξ2×Ξ3, where χ be an MNC in Ξ and Θj is the natural projections of Z into Ξj for j=1,2,3.
Example 3.2. [20] Let B(γ,δ,θ)=γ+δ+θ for (γ,δ,θ)∈R+3. Now B(γ,δ,θ)=γ+δ+θ=0 iff γ=δ=θ=0. Then B is convex and satisfied all conditions of Theorem 3.2. Therefore ˆχ(Θ)=B(χ1(Θ1),χ2(Θ2),χ3(Θ3)) is an MNC on Ξ1×Ξ2×Ξ3, where χ be an MNC in Ξ and Xj is the natural projections of Z into Ξj for j=1,2,3.
Theorem 3.3. Let C be a NBCC subset of a Banach space Ξ and let Δ:C×C×C→C be a continuous mapping such that
S(f;χ(Δ(Θ1×Θ2×Θ3)))=ω[S(f;χ(Θ1)+χ(Θ2)+χ(Θ3))]−ω[S(f;χ(ΔΘ1)+χ(ΔΘ2)+χ(ΔΘ3))], |
for all Θ1,Θ2,Θ3∈C, χ is MNC and ω:[0,∞)→[0,∞) is such that limτ→0+ω(τ)=0,ω(0)=0. Also S(f;.)∈Z and S(f;τ1+τ2+τ3)=S(f;τ1)+S(f;τ2)+S(f;τ3) for all τ1,τ2,τ3≥0. Δ has at least a triple fixed point.
Proof. We define a mapping ˆΔ:C3→C3 by
ˆΔ(γ,δ,θ)=(Δ(γ,δ,θ),Δ(δ,γ,θ),Δ(θ,δ,γ)) for all (γ,δ,θ)∈C3.
ˆΔ is continuous, since Δ is continuous.
We know that ˆχ(Θ)=χ(Θ1)+χ(Θ2)+χ(Θ3),
where Θ1,Θ2,Θ3 denotes the natural projections of C. Suppose Θ⊂C3 be a nonempty subset.
Now using the Theorem 3.3, we get
S(f;ˆχ(ˆΔΘ))≤S(f;ˆχ(Δ(Θ1×Θ2×Θ3)×Δ(Θ2×Θ1×Θ3)×Δ(Θ3×Θ2×Θ1))) |
≤S(f;χ(Δ(Θ1×Θ2×Θ3)+S(f;χ(Δ(Θ2×Θ1×Θ3)))+S(f;χ(Δ(Θ3×Θ2×Θ1)) |
≤ω(S(f;χ(Θ1×Θ2×Θ3)))−ω(S(f;χ(Δ(Θ1×Θ2×Θ3)))) |
+ω(S(f;χ(Θ2×Θ1×Θ3)))−ω(S(f;χ(Δ(Θ2×Θ1×Θ3)))) |
+ω(S(f;χ(Θ3×Θ2×Θ1)))−ω(S(f;χ(Δ(Θ3×Θ2×Θ1)))) |
≤[ω(S(f;χ(Θ1)+χ(Θ2)+χ(Θ3)))−ω(S(f;χ(ΔΘ1)+χ(ΔΘ2)+χ(ΔΘ3)))] |
+[ω(S(f;χ(Θ2)+χ(Θ1)+χ(Θ3)))−ω(S(f;χ(ΔΘ2)+χ(ΔΘ1)+χ(ΔΘ3)))] |
+[ω(S(f;χ(Θ3)+χ(Θ2)+χ(Θ1)))−ω(S(f;χ(ΔΘ3)+χ(ΔΘ2)+χ(ΔΘ1)))] |
≤3ω(S(f;ˆχ(ˆΘ)))−3ω(S(f;ˆχ(ˆΔΘ))). |
Putting ω=13ν, we have
S(f;ˆχ(ˆΔΘ))≤ν(S(f;ˆχ(Θ)))−ν(S(f;ˆχ(ˆΔΘ))). |
Now from the Theorem 3.1, we conclude that Δ has at least a triple fixed point.
Remark 3.3. By taking S(f;τ)=τ,ν(τ)=τ,f=I in Theorem 3.3, we get the corollary which is given below.
Corollary 1. Let Δ:C×C×C→C be a continuous function defined on a NBCC subset C of Ξ in such a way that
χ(Δ(Θ1×Θ2×Θ3))≤12[χ(Θ1)+χ(Θ2)+χ(Θ3)]. |
Then Δ has a TFP.
This section contains the applicability of Theorem 3.1 and Corollary 1 by using the system of equations which is defined as
ξ′(γ)=h(γ,ξ(ζ(τ)),ν(ζ(τ)),w(ζ(τ)),ξ′(η(τ)),ν′(η(τ)),w′(η(τ))),ν′(γ)=h(γ,ν(ζ(τ)),w(ζ(τ)),ξ(ζ(τ)),ν′(η(τ)),w′(η(τ)),ξ′(η(τ))),w′(γ)=h(γ,w(ζ(τ)),ξ(ζ(τ)),ν(ζ(τ)),w′(η(τ)),ξ′(η(τ)),ν′(η(τ))), | (4.1) |
where γ∈[0,T] with the initial state ξ(0)=ξ0,ν(0)=ν0andw(0)=w0.
Suppose that the space of all bounded continuous function defined on [0,T] is C[0,T] equipped with the standard norm
||γ||=sup{|γ(τ)|:τ∈[0,T]}. |
A function having Modulus of contiunity for γ∈[0,T] is defined as
ω(γ,ϵ)=sup{|γ(τ1)−γ(τ2)|:τ1,τ2∈[0,T],|τ1−τ2|≤ϵ}, |
ω(γ,ϵ)→0asϵ→0, because γ is continuously uniform on [0,T]. The Hausdorff MNC for every bounded subset ℘ of C[0,T] is
μ(℘)=limϵ→0{supγ∈Θω(γ,ϵ)}. |
Now, we construct the assumptions by which the system of integral Eq (4.1) will be studied.
(i) ζ,η:[0,T]→[0,T] are the functions which are continuous.
(ii) For a continuous function h:[0,T]×R6→R there exists a continuous function ϕ:R+→R+ with ϕ(0)=0andϕ(τ)<τ for all τ>0 and also satisfy
S(f;|h(τ,γ1,...,γ6)−h(τ,δ1,...,δ6)|) |
≤ϕ(S(f;max1≤i≤3{|γi−δi|}))+12S(f;max{|γ4−δ4|,|γ5−δ5|,|γ6−δ6|}). |
(iii) M=sup{S(f;|h(τ,ξ0,ν0,z0,0,0)|)}<∞, where τ∈[0,T] and S(f;ϵ)<ϵ.
(iv) There exists r0 such that
ϕ(S(f;Δr0))+12S(f;3r0)+M≤r0. |
Theorem 4.1. The system (4.1) with the assumptions (i)−(iv) has at least one solution which belongs to the space {C[0,T]}3.
Proof. Assume that U(τ)=ξ′(τ),V(τ)=ν′(τ),W(τ)=w′(τ). Then our system of Eq (4.1) can be written as the system of integral eqautions
U(τ)=h(τ,ξ0+ζ(τ)∫0ξ(ϱ)dϱ,ν0+ζ(τ)∫0ν(ϱ)dϱ,w0+ζ(τ)∫0w(ϱ)dϱ,ξ(η(τ)),ν(η(τ)),w(η(τ))),V(τ)=h(τ,ν0+ζ(τ)∫0ν(ϱ)dϱ,w0+ζ(τ)∫0w(ϱ)dϱ,ξ0+ζ(τ)∫0ξ(ϱ)dϱ,ν(η(τ)),w(η(τ)),ξ(η(τ))),W(τ)=h(τ,w0+ζ(τ)∫0w(ϱ)dϱ,ξ0+ζ(τ)∫0ξ(ϱ)dϱ,ν0+ζ(τ)∫0ν(ϱ)dϱ,w(η(τ)),ξ(η(τ)),ν(η(τ))), | (4.2) |
where τ∈[0,T].
Assume Δ:C[0,T]→C[0,T] be a operator with
Δ(ξ,ν,w)(τ)=h(τ,ξ0+ζ(τ)∫0ξ(ϱ)dϱ,ν0+ζ(τ)∫0ν(ϱ)dϱ,w0+ζ(τ)∫0w(ϱ)dϱ,ξ(η(τ)),ν(η(τ)),w(η(τ))). |
We notice for every τ∈C[0,T], the mapping Δ is continuous i.e Δ maps the space C[0,T] into itself.
For fixed arbitrary τ∈C[0,T] and f∈F([0,∞)), we have from the assumptions (i)−(iv),
S(f;|Δ(ξ,ν,w)(τ)|)=S(f;|h(τ,ξ0+ζ(τ)∫0ξ(ϱ)dϱ,ν0+ζ(τ)∫0ν(ϱ)dϱ,w0+ζ(τ)∫0w(ϱ)dϱ,ξ(η(τ)),ν(η(τ)),w(η(τ)))|)≤S(f;|h(τ,ξ0+ζ(τ)∫0ξ(ϱ)dϱ,ν0+ζ(τ)∫0ν(ϱ)dϱ,w0+ζ(τ)∫0w(ϱ)dϱ,ξ(η(τ)),ν(η(τ)),w(η(τ)))−h(τ,ξ0,ν0,w0,0,0,0)|)+S(f;|h(τ,ξ0,ν0,w0,0,0,0)|)≤ϕ(S(f;max{|ζ(τ)∫0ξ(ϱ)dϱ|,|ζ(τ)∫0ν(ϱ)dϱ|,|ζ(τ)∫0w(ϱ)dϱ|}))+12S(f;|ξ(η(τ))|+|ν(η(τ))|+|w(η(τ))|)+S(f;|h(τ,ξ0,ν0,w0,0,0,0)|)≤ϕ(S(f;Δmax{||ξ||,||ν||,||w||}))+12S(f;||ξ||+||ν||+||w||)+M. |
Thus
S(f;||Δ(ξ,ν,w)(τ)||)≤ϕ(S(f;Δmax{||ξ||,||ν||,||w||})+12S(f;||ξ||+||ν||+||w||))+M, |
and
Δ(ξ,ν,w)∈C[0,T]. |
Due to the inequality ϕ(S(f;Δr0))+12S(f;3r0)+M≤r0, the function Δ maps (Br0)3 into (Br0).
Now we prove that Δ is continuous on (Br0)3.
Let fixed arbitrary ϵ>0 and take (γ,δ,θ),(ξ,ν,w)∈(Br0)3 such that
max{||γ−ξ||,||δ−ν||,||θ−w||}<ϵ. |
Therefore for every t∈[0,T], we get
S(f;|Δ(γ,δ,θ)(τ)−Δ(ξ,ν,w)(τ)|)≤S(f;|h(τ,x0+ζ(τ)∫0x(ϱ)dϱ,y0+ζ(τ)∫0y(ϱ)dϱ,z0+ζ(τ)∫0z(ϱ)dϱ,x(η(τ)),y(η(τ)),z(η(τ)))|)−S(f;|h(τ,ξ0+ζ(τ)∫0ξ(ϱ)dϱ,ν0+ζ(τ)∫0ν(ϱ)dϱ,w0+ζ(τ)∫0w(ϱ)dϱ,ξ(η(τ)),ν(η(τ)),w(η(τ)))|)≤ϕ(S(f;Tmax{|x0−ξ0|+ζ(τ)∫0|x(s)−ξ(ϱ)dϱ,|y0−ν0|+ζ(τ)∫0|y(s)−ν(ϱ)dϱ,|z0−w0|+ζ(τ)∫0|z(s)−w(s)|ds}))+12S(f;max{|x(η(τ))−ξ(η(τ))|,|y(η(τ))−ν(η(τ))|,|z(η(τ))−w(η(τ))|})≤ϕ(S(f;ϵ+Δϵ))+12S(f;ϵ). |
Thus, we have ϕ(S(f;ϵ+Δϵ))+12S(f;ϵ)→0 as ϵ→0.
Therefore Δ is a continuous function on (Br0)3. Now, we shall show that Δ satisfy all the conditions of Corollary 1. To do this, let U,VandW are nonempty and bounded subsets of (Br0) and ϵ>0 is constant. Moreover we take τ1,τ2∈[0,T] with |τ2−τ1|≤ϵ and ξ∈U,ν∈Vandw∈W.
Then we have
S(f;|Δ(γ,δ,θ)(τ)−Δ(ξ,ν,w)(τ)|)=S(f;|h(τ1,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ1)),ν(η(τ1)),w(η(τ1)))−h(τ1,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ2)),ν(η(τ2)),w(η(τ2)))|)+S(f;|h(τ1,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ2)),ν(η(τ2)),w(η(t2)))−h(τ2,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ2)),ν(η(τ2)),w(η(τ2)))|)+S(f;|h(τ2,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ2)),ν(η(τ2)),w(η(τ2)))−h(τ2,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ2)),ν(η(τ2)),w(η(τ2)))|)+S(f;|h(τ2,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ2)),ν(η(τ2)),w(η(τ2)))−h(τ2,ξ0+ζ(τ1)∫0ξ(ϱ)dϱ,ν0+ζ(τ1)∫0ν(ϱ)dϱ,w0+ζ(τ1)∫0w(ϱ)dϱ,ξ(η(τ2)),ν(η(τ2)),w(η(τ2)))|)≤12S(f;max{|ξ(η(τ1))−ξ(η(τ2))|,|ν(η(τ1))−ν(η(τ2))|,|w(η(τ1))−w(η(t2))|})+S(f;ω(h,ϵ))+ϕ(S(f;max{ζ(τ2)∫ζ(τ1)|ξ(ϱ)|dϱ,ζ(τ2)∫ζ(τ1)|ν(ϱ)|dϱ,ζ(τ2)∫ζ(τ1)|w(ϱ)|dϱ}))≤12S(f;max{ω(ξ,ω(η,ϵ)),ω(ν,ω(η,ϵ)),ω(w,ω(η,ϵ))})+S(f;ω(h,ϵ))+ϕ(S(f;maxr0ω(ζ,ϵ))), |
where ω(η,ϵ)=sup{|η(τ2)−η(τ1)|:|τ1−τ2|≤ϵ,τ1,τ2∈[0,T]},
ω(ζ,ϵ)=sup{|ζ(τ2)−ζ(τ1)|:|τ1−τ2|≤ϵ,τ1,τ2∈[0,T]},
ω(ξ,ω(η,ϵ))=sup{|ξ(τ2)−ξ(τ1)|:|τ1−τ2|≤ω(η,ϵ),τ1,τ2∈[0,η(T)]},
ω(h,ϵ)=sup{|h(τ1,γ1,...,γ6)−h(τ2,γ1,...,γ6)|:|τ1−τ2|≤ϵ,τ1,τ2∈[0,T]},
and γ1,...,γ6∈[−r0,r0].
We infer that
S(f;|Δ(γ,δ,θ)(τ)−Δ(ξ,ν,w)(τ)|)≤12S(f;max{ω(ξ,ω(η,ϵ)),ω(ν,ω(η,ϵ)),ω(w,ω(η,ϵ))})+S(f;ω(h,ϵ))+ϕ(S(f;maxr0ω(ζ,ϵ))). |
Therefore we get
S(f;ω(Δ(U×V×W),ϵ))≤12S(f;max{ω(U,ω(η,ϵ)),ω(V,ω(η,ϵ)),ω(W,ω(η,ϵ))})+S(f;ω(h,ϵ))+ϕ(S(f;maxr0ω(ζ,ϵ))).
Since h,η,ζ are uniformly continuous on [0,T]×[−r0,r0]5,[0,T]and[0,T] respectively, we get ω(h,ϵ)→0,ω(η,ϵ)→0andω(ζ,ϵ)→0asϵ→0.
By taking S(f;τ)=τ,Θ1=U,Θ2=V,Θ3=W,f=I and from the MNC definition, we have χ(Θ1×Θ2×Θ3)≤12(max{χ(Θ1),χ(Θ2),χ(Θ3)}).
By the Corollary 1, Δ has at least a TFP.
Example 5.1. Let the system of differentail equations is as
ξ′(τ)=τ2+3√ξ(τ)+5√ν(τ)+7√w(τ)3+16log(1+|τ′(τ)+ν′(τ)+w′(τ)|),ν′(τ)=τ2+3√ξ(τ)+5√ν(τ)+7√w(τ)3+16log(1+|ν′(τ)+w′(τ)+ξ′(τ)|),w′(τ)=τ2+3√ξ(τ)+5√ν(τ)+7√w(τ)3+16log(1+|w′(τ)+ξ′(τ)+ν′(τ)|). | (5.1) |
with the state condition ξ(0)=1,ν(0)=3,w(0)=2 and τ∈[0,5].
System of Eq (5.1) is the particular case of Eq (4.1) where ζ(τ)=τ=η(τ),
By the definition of ζ and β assumption (i) is satisfied.
h(τ,γ1,...,γ6)=τ2+3√ξ(τ)+5√ν(τ)+7√w(τ)3+16log(1+|ξ′(τ)+ν′(τ)+w′(τ)|).
Now assume that τ∈[0,T],S(f;τ)=τ,andϕ(τ)=maxi=3,5,7{i√τ},
we get
|f(τ,γ1,...,γ6)−f(τ,γ1,...,γ6)|≤|3√γ1−3√δ1|+|5√γ2−5√δ2|+|7√γ3−7√δ3|3+16|log(1+|γ4+γ5+γ6|)−log(1+|δ4+δ5+δ6|)≤|3√γ1−3√δ1|+|5√γ2−5√δ2|+|7√γ3−7√δ3|3+16log(1+|γ4+γ5+γ6|−|δ4+δ5+δ6|1++|δ4+δ5+δ6|)≤3√|γ1−δ1|+5√|γ2−δ2|+7√|γ3−δ3|3+16log(1+|γ4+γ5+γ6−(δ4+δ5+δ6)|)≤3√|γ1−δ1|+5√|γ2−δ2|+7√|γ3−δ3|3+16log(1+|γ4−δ4|+|γ5−δ5|+|γ6−δ6|)=13(maxγ{|γ4−δ4|,|γ5−δ5|,|γ6−δ6|})+ϕ(maxγi=1,2,3{|γi−δi|}). |
Hence assumption (ii) is satisfied. Moreover
M=sup{|h(τ,γ0,δ0,θ0,0,0,0):τ∈[0,T]}=sup{τ2+3√1+5√3+7√2:τ∈[0,5]}≤29. |
It is simple to notice every number r≥75 fulfills the inequality given in (iii).
Now the inequality in assumption (iv) is ϕ(S(f;Δr0))+16S(f;3r0)+M is equal to
ϕ(5r)+16(3r)+29≤r. |
Hence, as the number r0 we can take r0=75. Therefore, all the assumptions of Theorem 4.1 are satisfied. Hence the system of Eq (5.1) have at least one solution which belongs to {C[0,T]}3 space.
The present paper concentrated on multiple FPT which is based on the generalization of DFPT via MNC. In this work, by using the concept of operators we extend DFPT by using MNC. We demonstrate the endurance of TFP by our extended DFPT and MNC. At the last we yield an example which fulfills our findings.
The authors would like to express their deep gratitude to the journal editor and referees for their careful reviews and valuable comments which helped to improve the paper. This research is supported by Govt. of India CSIR fellowship, Program No. 09/1174(0005)/2019-EMR-I, New Delhi.
All the authors declare that there is no conflict of interest.
[1] |
K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301–309. doi: 10.4064/fm-15-1-301-309
![]() |
[2] | G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Semin. Mat. Univ. Padova, 24 (1955), 84–92. |
[3] |
A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of systems of integral equations, J. Comput. Appl. Math., 260 (2014), 68–77. doi: 10.1016/j.cam.2013.09.039
![]() |
[4] |
A. Hajji, A generalization of Darbo's fixed point and common solutions of equations in Banach spaces, Fixed Point Theory Appl., 2013 (2013), 62. doi: 10.1186/1687-1812-2013-62
![]() |
[5] |
H. K. Nashine, R. W. Ibrahim, R. P. Agarwal, N. H. Can, Existence of local fractional integral equation via a measure of non-compactness with monotone property on Banach spaces, Adv. Differ. Equ., 2020 (2020), 694. doi: 10.1186/s13662-020-03154-2
![]() |
[6] |
A. Samadi, M. B. Ghaemi, An extension of Darbo fixed point theorem and its applications to coupled fixed point and integral equations, Filomat, 28 (2014), 879–886. doi: 10.2298/FIL1404879S
![]() |
[7] |
L. S. Cai, J. Liang, New generalizations of Darbo's fixed point theorem, Fixed Point Theory Appl., 2015 (2015), 156. doi: 10.1186/s13663-015-0406-2
![]() |
[8] |
S. Banaei, An extension of Darbo's theorem and its application to existence of solution for a system of integral equations, Cogent Math. Stat., 6 (2019), 1614319. doi: 10.1080/25742558.2019.1614319
![]() |
[9] |
A. Das, B. Hazarika, P. Kumam, Some new generalization of Darbo's fixed point theorem and its application on integral equations, Mathematics, 7 (2019), 214. doi: 10.3390/math7030214
![]() |
[10] |
V. Parvaneh, M. Khorshidi, M. De La Sen, H. Isik, M. Mursaleen, Measure of noncompactness and a generalized Darbo's fixed point theorem and its applications to a system of integral equations, Adv. Differ. Equ., 2020 (2020), 243. doi: 10.1186/s13662-020-02703-z
![]() |
[11] |
S. Banaei, Solvability of a system of integral equations of Volterra type in the Frechet space Lploc(R+) via measure of noncompactness, Filomat, 32 (2018), 5255–5263. doi: 10.2298/FIL1815255B
![]() |
[12] |
S. Banaei, M. B. Ghaemi, R. Saadati, An extension of Darbo's theorem and its application to system of neutral differential equation with deviating argument, Miskolc Math. Notes., 18 (2017), 83–94. doi: 10.18514/MMN.2017.2086
![]() |
[13] |
A. Das, B. Hazarika, V. Parvaneh, M. Mursaleen, Solvability of generalized fractional order integral equations via measures of noncompactness, Math. Sci., 15 (2021), 241–251. doi: 10.1007/s40096-020-00359-0
![]() |
[14] |
S. Banaei, M. Mursaleen, V. Parvaneh, Some fixed point theorems via measure of noncompactness with applications to differential equations, Comp. Appl. Math., 39 (2020), 139. doi: 10.1007/s40314-020-01164-0
![]() |
[15] |
J. Banas, M. Lecko, Solvability of infinite systems of differential equations in Banach sequence spaces, J. Comput. Appl. Math., 137 (2001), 363–375. doi: 10.1016/S0377-0427(00)00708-1
![]() |
[16] | I. Altun, D. Turkoglu, A fixed point theorem for mappings satisfying a general condition of operator type, J. Comput. Anal. Appl., 9 (2007), 9–14. |
[17] | A. Aghajani, J. Banas, N. Sabzali, Some generalizations of Darbo fixed point theorem and applications, Bull. Belg. Math. Soc., 20 (2013), 345–358. |
[18] | J. Banas, On measures of noncompactness in Banach spaces, Commentat. Math. Univ. Carol., 21 (1980), 131–143. |
[19] |
V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal.-Theor., 74 (2011), 4889–4897. doi: 10.1016/j.na.2011.03.032
![]() |
[20] |
A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of systems of integral equations, J. Comput. Appl. Math., 260 (2014), 68–77. doi: 10.1016/j.cam.2013.09.039
![]() |
1. | Bhuban Chandra Deuri, Marija V. Paunović, Anupam Das, Vahid Parvaneh, Ali Jaballah, Solution of a Fractional Integral Equation Using the Darbo Fixed Point Theorem, 2022, 2022, 2314-4785, 1, 10.1155/2022/8415616 | |
2. | Nihar Kumar Mahato, Sumati Kumari Panda, Manar A. Alqudah, Thabet Abdeljawad, An existence result involving both the generalized proportional Riemann-Liouville and Hadamard fractional integral equations through generalized Darbo's fixed point theorem, 2022, 7, 2473-6988, 15484, 10.3934/math.2022848 | |
3. | Fahim Uddin, Faizan Adeel, Khalil Javed, Choonkil Park, Muhammad Arshad, Double controlled M-metric spaces and some fixed point results, 2022, 7, 2473-6988, 15298, 10.3934/math.2022838 | |
4. | N. K. Mahato, 2023, Chapter 16, 978-981-99-0596-6, 219, 10.1007/978-981-99-0597-3_16 | |
5. | Rahul Rahul, Nihar Kumar Mahato, Mohsen Rabbani, Nasser Aghazadeh, EXISTENCE OF THE SOLUTION VIA AN ITERATIVE ALGORITHM FOR TWO-DIMENSIONAL FRACTIONAL INTEGRAL EQUATIONS INCLUDING AN INDUSTRIAL APPLICATION, 2023, 35, 0897-3962, 10.1216/jie.2023.35.459 | |
6. | Nihar Kumar Mahato, Bodigiri Sai Gopinadh, , 2024, Chapter 15, 978-981-99-9545-5, 339, 10.1007/978-981-99-9546-2_15 | |
7. | An Enhanced Darbo-Type Fixed Point Theorems and Application to Integral Equations, 2024, 11, 2395-602X, 120, 10.32628/IJSRST24116165 |