Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Quantitative characterization and modeling of sub-bandgap absorption features in thin oxide films from spectroscopic ellipsometry data

  • Analytic representations of the complex dielectric function, which describe various types of materials, are needed for the analysis of optical measurements, in particularly, ellipsometric data. Here, we examine an improved multi-oscillator Tauc-Lorentz (TL) model with a constraint on the band-gap parameter Eg, which forces it to be common for all TL oscillators, and possibility to represent reasonably weak absorption features below the bandgap by inclusion of additional unbounded Lorentz and/or Gaussian oscillators with transition energies located below Eg. We conclude that the proposed model is the most appropriate for the characterization of various materials with sub-band absorption features and provides meaningful value for the energy bandgap. A few examples to illustrate the use of modified model have been provided.

    Citation: Dmitriy V. Likhachev, Natalia Malkova, Leonid Poslavsky. Quantitative characterization and modeling of sub-bandgap absorption features in thin oxide films from spectroscopic ellipsometry data[J]. AIMS Materials Science, 2015, 2(4): 356-368. doi: 10.3934/matersci.2015.4.356

    Related Papers:

    [1] Antoine Gloria Cermics . A direct approach to numerical homogenization in finite elasticity. Networks and Heterogeneous Media, 2006, 1(1): 109-141. doi: 10.3934/nhm.2006.1.109
    [2] Hirofumi Notsu, Masato Kimura . Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9(4): 617-634. doi: 10.3934/nhm.2014.9.617
    [3] Yue Tai, Xiuli Wang, Weishi Yin, Pinchao Meng . Weak Galerkin method for the Navier-Stokes equation with nonlinear damping term. Networks and Heterogeneous Media, 2024, 19(2): 475-499. doi: 10.3934/nhm.2024021
    [4] Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689
    [5] Huanhuan Li, Meiling Ding, Xianbing Luo, Shuwen Xiang . Convergence analysis of finite element approximations for a nonlinear second order hyperbolic optimal control problems. Networks and Heterogeneous Media, 2024, 19(2): 842-866. doi: 10.3934/nhm.2024038
    [6] Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of the Stokes flow with variable viscosity in a thin elastic channel. Networks and Heterogeneous Media, 2010, 5(4): 783-812. doi: 10.3934/nhm.2010.5.783
    [7] Cristian Barbarosie, Anca-Maria Toader . Optimization of bodies with locally periodic microstructure by varying the periodicity pattern. Networks and Heterogeneous Media, 2014, 9(3): 433-451. doi: 10.3934/nhm.2014.9.433
    [8] Patrick Henning, Mario Ohlberger . The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks and Heterogeneous Media, 2010, 5(4): 711-744. doi: 10.3934/nhm.2010.5.711
    [9] Yaxin Hou, Cao Wen, Yang Liu, Hong Li . A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation. Networks and Heterogeneous Media, 2023, 18(2): 855-876. doi: 10.3934/nhm.2023037
    [10] Patrick W. Dondl, Michael Scheutzow . Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7(1): 137-150. doi: 10.3934/nhm.2012.7.137
  • Analytic representations of the complex dielectric function, which describe various types of materials, are needed for the analysis of optical measurements, in particularly, ellipsometric data. Here, we examine an improved multi-oscillator Tauc-Lorentz (TL) model with a constraint on the band-gap parameter Eg, which forces it to be common for all TL oscillators, and possibility to represent reasonably weak absorption features below the bandgap by inclusion of additional unbounded Lorentz and/or Gaussian oscillators with transition energies located below Eg. We conclude that the proposed model is the most appropriate for the characterization of various materials with sub-band absorption features and provides meaningful value for the energy bandgap. A few examples to illustrate the use of modified model have been provided.


    Let $ \Omega\subset \mathbb{R}^{2} $ be a bounded convex polygonal domain covered by a thin flat plate, and $ \Gamma = \partial\Omega $ be the Lipschitz continuous boundary of $ \Omega $. For a given loading function $ f\in L^2(\Omega), \; f\leq0 \; a.e.\; \hbox{in}\; \Omega $, and an elastic obstacle $ \psi\in L^2(\Omega) $, we consider the following clamped Kirchhoff plate problem with elastic unilateral obstacle (refer to [1,2]):

    $ {FinduV,such thatJ(u)J(v),vV, $ (1.1)

    where

    $ V = H_0^{2}(\Omega),\quad J(v) = \frac{1}{2}a(v,v)+\frac{1}{2}j(v)-(f,v), $
    $ a(w,v) = \int_\Omega [\Delta w \Delta v+ (1-\nu)(2w_{xy}v_{xy}-w_{xx}v_{yy}-w_{yy}v_{xx})]dxdy,\quad \forall w,v\in V, $
    $ j(v) = \int_{\Omega}{\kappa}[(v-\psi)_{-}]^{2}dxdy,\qquad (f,v) = \int_{\Omega}fvdxdy. $

    Here $ J(v) $ is the total energy, $ a(v, v) $ represents the strain energy corresponding to displacement $ v $ of the plate, $ j(v) $ can be interpreted as the contribution from the contact with $ \psi $ and $ (f, v) $ is the potential energy. Moreover, the symbol $ v_{-} = \min \{v, 0\} $, $ \nu\in(0, 1/2) $ is the Poisson's ratio, $ \kappa\in L^{\infty}(\Omega) $ describes the stiffness of the obstacle and satisfies $ \; \kappa\geq\kappa_{0} > 0 \; a.e.\; \hbox{in}\; \Omega $. In the limiting case $ \kappa\rightarrow \infty $, the obstacle becomes rigid and the problem (1.1) reduces to a constrained minimisation:

    $ {FinduK,such thatu=argminvK[12a(v,v)(f,v)] $ (1.2)

    with $ K^* = \{v\in V: v\geq \psi\ \mbox{in}\ \Omega\} $. (1.2) is a classical displacement obstacle model of clamped Kirchhoff plate (cf.[3]) and equivalent to a fourth-order variational inequality:

    $ {FinduK,such thata(u,vu)(f,vu),vK. $ (1.3)

    Different with the displacement obstacle model (1.2), the elastic obstacle problem (1.1) can be investigated based on the following weak formulation [1]:

    $ FinduV,such that  a(u,v)+Ωκ(uψ)vdxdy=(f,v),vV, $ (1.4)

    which has a unique solution [2] and is equivalent to another fourth-order variational inequality:

    $ {FinduV,such thatvVa(u,vu)+Ωκ2[(vψ)]2dxdyΩκ2[(uψ)]2dxdy(f,vu). $ (1.5)

    As we all know, analytical solutions to obstacle problems are always difficult to obtain. In this case, the study of numerical solutions has attracted a lot of attention. The finite element method (FEM) is a popular numerical method to solve obstacle problems [3–8]. In the last decades, more efforts have devoted to FEM analysis for the limit form of elastic obstacle problem (1.1), i.e., displacement obstacle problem (1.2), see [9–17] and references therein. But works focusing on FEMs of the elastic obstacle problem (1.1) are relatively rather few in the existing literature. From [1], the convergence analysis of a mixed FEM for the elastic obstacle problem (1.1) was obtained, where elements employed must satisfy $ C^0 $ continuous. In [18], a stabilized FEM was constructed for (1.1) with a $ C^1 $ continuous requirement. [2] provided a general framework of optimal error estimates for FEM, where the continuous requirement is relatively relaxed but continuity at each element's vertex of the subdivision is indispensable. In this situation, a natural question is whether these requirements for continuity can be completely removed. In other words, a key difficulty is how to get the optimal error estimates for a strongly discontinuous element dissatisfying above continuity requirements, which is just the motivation of this work.

    In this paper, as an attempt, we will investigate the FEM approximation for the elastic obstacle problem (1.1) by using Bergan's energy-orthogonal element. This element is constructed through an energy-orthogonal free formulation (cf. [19,20]), which is convergent for arbitrary meshes. Its degrees of freedom are all defined on the element's vertex, including the function values and the two first derivatives at the three vertices of each element, which are very simple and can be used conveniently. Moreover, the global dimension of the vector of unknowns is only $ 3NP $ ($ NP $ denotes the number of vertex in mesh subdivision), about 25 percent fewer than that of the famous triangular Morley element (about $ 4NP $). This property is very useful for a reduction the amount of computation. But the element has strong discontinuous, that is, the shape function and its first derivatives are no longer continuous at the element's the vertex. This element does not satisfy the above mentioned continuity requirements. Despite so high discontinuity, Bergan's energy-orthogonal plate element has been applied to the FEM approximate for the displacement obstacle problem (1.2) (see [12]). The authors developed a convergence analysis method and obtained the optimal error estimate of order $ O(h) $ in [12]. We note that the convergence analysis relied on two additional introduced tools, i.e., an approximation subset and an enriching operator from Bergan's energy-orthogonal FE space to $ C^{1} $-conforming Bell FE space and the process is very complicated.

    This paper aims to develop a new error analysis of Bergan's energy-orthogonal element approximation for the elastic obstacle problem (1.1). Unlike the convergence analysis in [12], we make full use of some special approaches, including interpolation operator splitting and energy orthogonality, to derive the optimal error estimates of order $ O(h) $ in the broken energy norm. The theoretical analysis is very simple and clear. The numerical results demonstrate the proposed method not only enjoys one-order accuracy but also can well reflect the influence brought by the obstacle stiffness parameter $ \kappa $.

    The organization of this paper is as follows: In Section 2, Bergan's energy-orthogonal plate element and its typical properties are briefly introduced. Then we propose a novel error analysis approach and obtain the optimal error estimate of order $ O(h) $ successfully in Section 3. At last, Section 4 provides some numerical results to illustrate the validity of the theoretical analysis.

    Bergan's energy-orthogonal element was first proposed by Bergan et al. in [19] using the free formulation scheme. Then Shi et al. [20] proved that this element is equivalent to a nonconforming element constructed based on a specific interpolation $ {\Pi}_{K} $ (see Eq (2.3) below), where $ {\Pi}_{K} $ is introduced to form the shape function. It is shown in [20] that the special construction of interpolation $ {\Pi}_{K} $ makes the two components of the shape function energy-orthogonal and the stiffness matrix consistent with that in the free formulation scheme. In the following, we will introduce Bergan's energy-orthogonal plate element briefly, and the readers can refer to [19,20] for details.

    Assume that $ {T}_{h} $ is a regular triangulation of $ \Omega $ with mesh size $ h $. For a given $ K\in {T}_{h} $, let its diameter be $ h_{K} $, three vertices be $ p_{i}(x_{i}, y_{i}) $ and the area coordinates be $ \lambda_{i} $ for $ i = 1, 2, 3 $. Firstly, we select nine nodal parameters set as $ \Sigma(v) = \{{v}_1, {v}_{1x}, {v}_{1y}, {v}_2, {v}_{2x}, {v}_{2y}, {v}_3, {v}_{3x}, {v}_{3y}\}, $ where $ {v}_i = v(p_{i}), \, {v}_{ix} = \frac{\partial v}{\partial x}(p_{i}), \, {v}_{iy} = \frac{\partial v}{\partial y}(p_{i}), \; i = 1, 2, 3. $ The shape function space is taken as same as that of Zienkiewicz element, i.e., $ \widetilde{{P}}(K) = span\{\widetilde{N}_{1}, \widetilde{N}_{2}, \cdots, \widetilde{N}_{9}\}, $ here $ \widetilde{N}_{j} = \lambda_{j}, \, \widetilde{N}_{4+j} = \lambda_{j}\lambda_{j+1}, \, \widetilde{N}_{6+j} = \lambda_{j}^{2}\lambda_{j+1}-\lambda_{j+1}\lambda_{j}^{2}, \, j = 1, 2, 3 $ and $ \lambda_{4} = \lambda_{1}\nonumber $. Then the associated conventional interpolation operator $ \widetilde{\Pi}_{K}: H^{3}(K) \rightarrow \widetilde{{P}}(K) $ satisfies

    $ ˜ΠKv=6i=1αi(v)˜Ni+9i=7αi(v)˜Ni¯rK(v)+rK(v),vH3(K), $ (2.1)

    where $ \overline{r}_{K}(v) $ and $ r_{K}'(v) $ are the quadratic and cubic terms respectively, and the coefficients $ \alpha_{i}(v) $ can be written as: $ \alpha_{j}(v) = v_{j}, \ \alpha_{3+j}(v) = \frac{c_{(j+2)}}{2}({v}_{jx}-{v}_{(j+1)x})-\frac{b_{(j+2)}}{2}({v}_{jy}-{v}_{(j+1)y}), \ \alpha_{6+j}(v) = {v}_j-{v}_{(j+1)}+\frac{c_{(j+2)}}{2}({v}_{jx}+{v}_{(j+1)x})-\frac{b_{(j+2)}}{2}({v}_{jy}+{v}_{(j+1)y}) $ with $ b_{j} = y_{(j+1)}-y_{(j+2)} $ and $ c_{j} = -(x_{(j+1)}-x_{(j+2)}) $ for $ j = 1, 2, 3, $ here and later subscripts $ (j+i) $ will be replaced with $ (j+i)(mod\; 3) $ when $ (j+i) > 3 $ for $ i = 1, 2 $.

    Next we introduce another shape function space $ P(K) = span\{N_{1}, N_{2}, \cdots, N_{9}\}, $ where $ N_{i} = \widetilde{N}_{i}, \, i = 1, 2, \cdots, 6, \, \, N_{6+j} = (\lambda_{j}-\lambda_{(j+1)})^{3}, \, j = 1, 2, 3 $ and $ \lambda_{4} = \lambda_{1} $. It is easy to verify that

    $ KxxNidxdy=KyyNidxdy=KxyNidxdy=0,i=7,8,9, $ (2.2)

    and the associated traditional interpolation operator $ {\hat{{\Pi}}}_{K}: H^{3}(K) \rightarrow {P}(K) $ is defined by

    $ ˆΠKv=6i=1βi(v)Ni+9i=7βi(v)Ni¯SK(v)+SK(v),vH3(K), $ (2.3)

    where $ \beta_{i}(v), \; i = 1, 2, ..., 9, $ can be expressed as:

    $ βj(v)=139vj29(v(j+1)+v(j+2))+19[(c(j+2)c(j+1))vjx+c(j+2)v(j+1)xc(j+1)v(j+2)x]           +19[(b(j+1)b(j+2))vjyb(j+2)v(j+1)y+b(j+1)v(j+2)y],β3+j(v)=13(vj+v(j+1)2v(j+2))+16[(2c(j+2)cj)vjx+(c(j+1)2c(j+2))v(j+1)x           +(c(j+1)cj)v(j+2)x]+16[(bj2b(j+2))vjy+(2b(j+2)b(j+1))v(j+1)y+(bjb(j+1))v(j+2)y],β6+j(v)=29(vjv(j+1))+154[(cj6c(j+2))vjx+(c(j+1)6c(j+2))v(j+1)x+c(j+2)v(j+2)x]           +154[(6b(j+2)bj)vjy+(6b(j+2)b(j+1))v(j+1)yb(j+2)v(j+2)y], $

    for $ j = 1, 2, 3. $

    Now employing Eq (2.1) and Eq (2.3), we introduce an interpolation operator $ {\Pi}_{K} $ as

    $ ΠK:H3(K)P(K),   ΠKv=¯rK(v)+SK(v),vH3(K). $ (2.4)

    Then taking $ {\Pi}_{K}v $ as the shape function on $ K $ and $ \Sigma(v) $ as its associated nodal parameters (vanishing at nodes on the boundary $ \Gamma $), and defining an interpolation operator $ {\Pi}_{h} $ for every $ v \in H^{3}(\Omega) $ with $ ({\Pi}_{h}v)|_{K} = {\Pi}_{K}v, $ we can obtain a piecewise cubic polynomial space on $ \Omega $ denoted by $ V_h $. It has been shown in [20] that $ V_{h} $ is equivalent to the Bergan's energy-orthogonal plate element first proposed by Bergan etal through the free formulation scheme. Obviously, the construction process of $ V_h $ is quite different from conventional element spaces. Herein the shape function on $ K $ is formulated through the operator $ {\Pi}_{K} $ involving two interpolation operators $ \widetilde{{\Pi}}_{K} $ and $ {\hat{{\Pi}}}_{K} $.

    It follows from Eqs (2.1), (2.4) and the formulas of $ \alpha_i(v) $ and $ \beta_i(v)\; (i = 1, 2, \cdot\cdot\cdot, 9) $ that

    $ {\Pi}_{K}v(p_j)-{v}_j = \beta_{6+j}(v)-\beta_{6+(j+2)}(v),\; $
    $ ΠKvx(pj)vjx=12[3(bjb(j+1))β6+j(v)+3(b(j+2)bj)β6+(j+2)(v)b(j+1)α6+j(v)+b(j+2)α6+(j+2)(v)],ΠKvy(pj)vjy=12[3(cjc(j+1))β6+j(v)+3(c(j+2)cj)β6+(j+2)(v)c(j+1)α6+j(v)+c(j+2)α6+(j+2)(v)] $ (2.5)

    for $ j = 1, 2, 3 $, where $ \triangle $ represents the area of $ K $. Thus $ {\Pi}_{K}v $ and its two first derivatives are discontinuous at vertices $ p_j $ $ (j = 1, 2, 3) $. Moreover, the mean value of $ {\Pi}_{K}v $ along the element's each edge $ F $ can be calculated as

    $ \frac{1}{|F|}\int_{F}{\Pi}_{K}vds = \frac{1}{|F|}\int_{F}(\overline{r}_{K}(v)+S_{K}'(v))ds = \frac{1}{|F|}\int_{F}\overline{r}_{K}(v)ds+\frac{1}{4}(\beta_7(v)-\beta_9(v)) . $

    Obviously, it is not continuous neither. In spite of so high discontinuity of the interpolation $ {\Pi}_{K}v $, the element space possesses the following special features (cf.[20]), which will play an important role in the follow-up convergence analysis.

    Lemma 2.1. $ (\mathcal{R}1) $ For any $ v_{h}\in {{V}}_h $, there exists a $ v\in H^{3}(K) $ such that

    $ vh|K=ΠKv, vh=ˉvh+vh,ˉvh|K=¯rK(v),vh|K=SK(v). $ (2.6)

    When $ {v}_{h}|_{K}\in \mathbb{{P}}_2(K) $, there holds $ {v}_{h} = \bar{v}_{h} $. Moreover, $ {\partial_{xx}}\overline{r}_{K}(v) $, $ {\partial_{xy}}\overline{r}_{K}(v) $ and $ {\partial_{yy}}\overline{r}_{K}(v) $ are constants, which together with Eq (2.2) imply that $ \overline{r}_{K}(v) $ and $ S_{K}'(v) $ are energy-orthogonal, thus the element is called energy-orthogonal. Let $ \nabla^2{v}_{h} $ be the Hessian matrix of $ {v}_{h} $, then we have $ \int_{K}\nabla^2\bar{v}_{h}:\nabla^2v_{h}'dxdy = 0 $.

    $ (\mathcal{R}2) $ For $ j = 1, 2, 3 $, the quadratic term $ \overline{r}_{K}(v) $ satisfies

    $ ¯rK(v)(pj)=vj, $ (2.7)
    $ ¯rK(v)(pj+p(j+1)2)=vj+v(j+1)2+(vjxv(j+1)x)c(j+2)8(vjyv(j+1)y)b(j+2)8, $ (2.8)

    i.e., for any $ v_{h}\in {{V}}_h $, its quadratic term $ \bar{v}_{h} $ is continuous at the element's vertices and midpoints of edges. In other words, $ \bar{v}_{h}\in C^0(\Omega) $.

    $ (\mathcal{R}3) $ For any $ v\in H^{3}(K) $ and integer $ m $ $ (0\leq m\leq 3) $, there holds

    $ |vΠK(v)|m,K+|v¯rK(v)|m,KCh3mK|v|3,K,  $ (2.9)
    $ |rK(v)|m,K+|SK(v)|m,KCh3mK|ΠKv|3,K. $ (2.10)

    Here and later, $ C $ denotes a positive constant independent of $ h $ and may be different at each appearance.

    We consider the Bergan's energy-orthogonal plate element discrete approximation form of the variational inequality (1.5) as:

    $ {FinduhVh,such thatvhVha(uh,vhuh)+KThKκ2[(vhψ)]2dxdyKThKκ2[(uhψ)]2dxdy(f,vhuh), $ (2.11)

    where $ a_h(w_{h}, v_{h}) = \sum\limits_{K\in T_h} \int_{ K}\Delta w_{h} \Delta v_{h}+ (1-\nu)(2w_{hxy}v_{hxy}-w_{hxx}v_{hyy}-w_{hyy}v_{hxx})]dxdy. $

    In this section, we will establish error estimates of Bergan's energy-orthogonal FEM for the elastic obstacle problem (1.1) in the energy norm.

    Firstly, using the the similar argument to [2], we have

    Theorem 3.1. The problem (2.11) is equivalent to the discrete approximation of plate problem:

    $ {FinduhVh,such thatvhVhah(uh,vh)+KThKκ(uhψ)vhdxdy=(f,vh), $ (3.1)

    which has a unique solution $ u_h $. Moreover, $ \|u_h\|_h $ and $ \|(u_{h}-\psi)_{-}\|_0 $ are uniformly bounded independently of $ h $, where $ \left\| \cdot \right\|_{h} = (\sum\limits_{K\in T_h}\left| \cdot \right|_{2, K}^{2})^{\frac{1}{2}} $ can be shown to be a norm over $ V_{h} $ by using $ (\mathcal{R}1) $ and $ (\mathcal{R}2) $ in Lemma 2.1.

    In what follows, we will give error estimate for Eq (2.11).

    Theorem 3.2. Assume that $ u $ and $ u_{h} $ are the solutions of Eqs (1.5) and (2.11) respectively, $ u\in H^3(\Omega) $ and $ f, \; \psi\in L^{2}(\Omega) $, then we have

    $ uuhhCh, $ (3.2)

    where the constant $ C $ depends on the stiffness of the obstacle $ \kappa $.

    Proof. Since $ \left\| u-u_{h} \right\|_{h}\leq \left\| u-{{\Pi}_{h}u} \right\|_{h}+\left\| {{\Pi}_{h}u}-u_{h} \right\|_{h}, $ in view of Eq (2.9) in $ (\mathcal{R}3) $ of Lemma 2.1, we only need to estimate the second term $ \left\| {{\Pi}_{h}u}-u_{h} \right\|_{h} $. In fact, let $ w_h = {{\Pi}_{h}u}-u_{h} $ and employ Eq (3.1), we have

    $ wh2hCah(wh,wh)=C[ah(Πhuu,wh)+ah(u,wh)ah(uh,wh)]CΠhuuhwhh+C[ah(u,wh)+KThKκ(uhψ)whdxdy(f,wh)]. $ (3.3)

    Now we concentrate on the estimate of the second term in the right hand of Eq (3.3). It follows from $ (\mathcal{R}1) $ in Lemma 2.1 that $ w_{h} = \bar{w}_{h}+w_{h}' $ and there exists a $ w\in H^{3}(K) $ such that

    $ wh|K=ΠKw, ˉwh|K=¯rK(w),wh|K=SK(w), K2ˉwh:2whdxdy=0. $ (3.4)

    Then we can deduce that

    $ ah(u,wh)+KThKκ(uhψ)whdxdy(f,wh)=ah(u,ˉwh)(f,ˉwh)+ah(u,wh)(f,wh)+KThKκ(uhψ)whdxdy. $ (3.5)

    On one hand, from [2] we know that the solution $ u $ of the problem (1.5) satisfies

    $ ΩΔuvdxdy+Ωκ(uψ)vdxdy=(f,v)vH10(Ω). $ (3.6)

    On the other hand, $ (\mathcal{R}2) $ in Lemma 2.1 implies $ \bar{w}_{h} \in H_{0}^{1}(\Omega) $. Thus applying Green formula and Eq (3.6) yields

    $ ah(u,ˉwh)(f,ˉwh)=KThK(Δu(1ν)2us2)ˉwhnds+(1ν)KThK2unsˉwhsds    Ω(Δu)ˉwhdxdy(f,ˉwh)=KThK(Δu(1ν)2us2)ˉwhnds+(1ν)KThK2unsˉwhsdsΩκ(uψ)ˉwhdxdy, $ (3.7)

    here $ \textbf{n} $ and $ \textbf{s} $ are the unit outward normal vector and tangential vector respectively.

    Substituting Eq (3.7) into Eq (3.5) leads to

    $ ah(u,wh)+KThKκ(uhψ)whdxdy(f,wh)=KThK(Δu(1ν)2us2)ˉwhnds+(1ν)KThK2unsˉwhsds+ah(u,wh)(f,wh)   +KThKκ(uψ)whdxdy+KThKκ[(uhψ)(uψ)]whdxdy6j=1(Er)j. $ (3.8)

    In what follows, we will estimate $ (Er)_j $ one by one for $ j = 1, 2, ..., 6. $

    Firstly, applying Lemmas 3.5 and 3.6 in [21] yields

    $ |(Er)1|Chu3(KTh|¯rK(w)+rK(w)|22,K)12. $ (3.9)

    By use of Eq (3.4), we get

    $ |¯rK(w)|22,K+|SK(w)|22,K=|ˉwh|22,K+|wh|22,K=K2ˉwh:2ˉwhdxdy+K2wh:2whdxdy+2K2ˉwh:2whdxdy=|wh|22,K. $ (3.10)

    At the same time, employing Eq (2.10) in $ (\mathcal{R}3) $ and the inverse estimate gives

    $ |rK(w)|2,KChK|ΠKw|3,KC|ΠKw|2,K=C|wh|2,K, $ (3.11)

    which in conjunction with Eq (3.10) leads to $ \label{zz50}|(Er)_1|\leq Ch\| u\|_{3}\|w_{h}\|_h. $

    Secondly, the fact $ \bar{w}_{h} \in H_{0}^{1}(\Omega) $ implies $ \label{xzz50} (Er)_2 = 0. $

    Thirdly, from Eq (2.2), we have $ a_{h}(\overline{{\Pi}_{h}u}, w_{h}') = 0 $, which together with the Eq (2.10) in $ (\mathcal{R}3) $ and Eq (3.10) gives

    $ |(Er)3|=|ah(u¯Πhu,wh)|u¯ΠhuhwhhCh|u|3whh. $ (3.12)

    Moreover, it follows from Eq (3.4), Eq (2.10) in $ (\mathcal{R}3) $ and the inverse estimate that

    $ |wh|0,K=|SK(w)|0,KCh3K|ΠKw|3,KCh2K|ΠKw|2,K=Ch2K|wh|2,K, $ (3.13)

    which reveals

    $ |(Er)4|f0wh0Ch2f0whh, $ (3.14)
    $ |(Er)5|C(uψ)0wh0Ch2(uψ)0whh. $ (3.15)

    Finally, by use of the elementary inequality $ (t_{-}-s_{-})(t-s)\geq 0 $ and Theorem 3.1, we have

    $ (Er)6=KThKκ[(uhψ)(uψ)](Πhuu+uuh)dxdyKThKκ[(uhψ)(uψ)](Πhuu)dxdyC((uhψ)0+(uψ)0)Πhuu0C(uψ)0Πhuu0. $ (3.16)

    Then combining Eq (3.8) and the above bounds of $ (Er)_1 $–$ (Er)_6 $ results in

    $ ah(u,wh)+KThKκ(uhψ)whdxdy(f,wh)Ch(u3+hf0+h(uψ)0)whh+C(uψ)0Πhuu0. $ (3.17)

    Therefore, the desired result Eq (3.2) follows from $ (\mathcal{R}3) $, Eqs (3.3) and (3.17) immediately.

    Remark. The analysis presented herein is also valid to the elastic obstacle problem (1.1) with $ j(v) = \int_{\Omega}{\kappa}[(v-\psi)_{+}]^{2}dxdy $, $ v_{+} = \max \{v, 0\} $ and $ f\in L^{2}(\Omega), \; f\geq0 \; a.e.\; in\; \Omega $.

    We consider the elastic obstacle problem (1.1) with $ \Omega = (0, 1)^2 $, $ f = -10, \ \nu = 0.25 $ and an elastic obstacle defined by the function $ \psi = \left\{0    if(x,y)[0.3,0.7]2,1               otherwise. \right. $ The domain $ \Omega $ is firstly divided into $ N\times N $ rectangles. Then each rectangle is further divided along its diagonal into two equal triangles.

    Since it is not easy to derive the exact solution, we denote $ u_N $ as the $ N $-th level discrete solution and take $ \|e_N\|_h = \|u_N-u_{N-1}\|_h $ as the error in the broken energy norm. The numerical results $ \|e_N\|_h $ for different obstacle stiffness parameter $ \kappa = 10^j \ (j = 0, 1, 3, 4) $ with $ N = 16, 32, 64,128 $ are given in Table 1 and further plotted in the logarithm scales in Figure 1. We observed that the errors in the energy norm are indeed convergent at optimal order $ O(\frac{1}{N}) $, i.e., $ O(h) $, as $ h = \frac{\sqrt{2}}{N}\rightarrow 0 $. This result is consistent with the theoretical analysis in Theorem 3.2.

    Table 1.  Numerical results of $ \parallel e_N \parallel_{h} $ and Orders under different $ \kappa $.
    $ \kappa $ $ N $ $ \parallel e_N \parallel_{h} $ $ Order $ $ \kappa $ $ N $ $ \parallel e_N\parallel_{h} $ $ Order $
    $ \kappa=1 $ $ 16 $ 0.1258 $ \kappa=10^3 $ $ 16 $ 0.1084
    $ 32 $ 0.0647 0.9593 $ 32 $ 0.0517 1.0681
    $ 64 $ 0.0326 0.9889 $ 64 $ 0.0259 0.9972
    $ 128 $ 0.0163 1.0000 $ 128 $ 0.0128 1.0168
    $ \kappa=10 $ $ 16 $ 0.1255 $ \kappa=10^4 $ $ 16 $ 0.0974
    $ 32 $ 0.0645 0.9603 $ 32 $ 0.0402 1.2767
    $ 64 $ 0.0325 0.9889 $ 64 $ 0.0202 0.9928
    $ 128 $ 0.0162 1.0044 $ 128 $ 0.0100 1.0144

     | Show Table
    DownLoad: CSV
    Figure 1.  Errors with different parameter $ \kappa $.

    Moreover, the discrete solution $ u_N $ with $ N = 64 $ is also depicted in Figures 24, where the parameter $ \kappa $ is chosen as $ 1, 10^3\; $and$ \; 10^4 $, respectively. We can see that the bigger parameter $ \kappa $, the more obvious the influence of obstacles. From Figure 2 ($ \kappa = 1 $) and Figure 3 ($ \kappa = 10^3 $), we observe that the difference of $ \kappa $ makes the minimum value of the discrete solution change, but the shape of the solution does not change significantly. In Figure 4 ($ \kappa = 10^4 $), it is easy to see that the elastic obstacle has a very obvious effect on the solution, which is agrees with the fact that the elastic obstacle will become a rigid obstacle when $ \kappa\rightarrow \infty $. This phenomenon further indicates the proposed numerical method in this paper can also be used for approximated simulation of the displacement obstacle problem by taking a relatively large obstacle stiffness parameter $ \kappa $.

    Figure 2.  The discrete solution $ u_{N} $ with $ \kappa = 1 $.
    Figure 3.  The discrete solution $ u_N $ with $ \kappa = 10^3 $.
    Figure 4.  The discrete solution $ u_{N} $ with $ \kappa = 10^4 $.

    In a word, the numerical results in this section confirm the theoretical analysis in Section 3 and indicate the effectiveness of the numerical method.

    This work was supported by the National Natural Science Foundation of China (No.11701523, 11801527, 11871441).

    The authors declare there is no conflict of interest.

    [1] Takeuchi H, Ha D, King T-J (2004) Observation of bulk HfO2 defects by spectroscopic ellipsometry. J Vac Sci Technol A 22: 1337-1341. doi: 10.1116/1.1705593
    [2] Nguyen NV, Davydov AV, Chandler-Horowitz D, et al. (2005) Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl Phys Lett 87: 192903. doi: 10.1063/1.2126136
    [3] Price J, Lysaght PS, Song SC, et al. (2007) Identification of sub-band-gap absorption features at the HfO2/Si(100) interface via spectroscopic ellipsometry. Appl Phys Lett 91: 061925. doi: 10.1063/1.2769389
    [4] Ferrieu F, Dabertrand K, Lhostis S, et al. (2007) Observation of HfO2 thin films by deep UV spectroscopic ellipsometry. J Non-Cryst Solids 353: 658-662. doi: 10.1016/j.jnoncrysol.2006.10.032
    [5] Price J, Lysaght PS, Song SC, et al. (2008) Observation of interfacial electrostatic field-induced changes in the silicon dielectric function using spectroscopic ellipsometry. Phys. Status Solidi A 205: 918-921. doi: 10.1002/pssa.200777836
    [6] Price J, Bersuker G, Lysaght PS (2009) Identification of interfacial defects in high-κ gate stack films by spectroscopic ellipsometry. J Vac Sci Technol B 27: 310-312. doi: 10.1116/1.3021045
    [7] Price J, Bersuker G, Lysaght PS (2012) Identification of electrically active defects in thin dielectric films by spectroscopic ellipsometry. J Appl Phys 111: 043507. doi: 10.1063/1.3684605
    [8] Vasić R, Consiglio S, Clark RD, et al. (2013) Multi-technique x-ray and optical characterization of crystalline phase, texture, and electronic structure of atomic layer deposited Hf1-xZrxO2 gate dielectrics deposited by a cyclical deposition and annealing scheme. J Appl Phys 113: 234101. doi: 10.1063/1.4811446
    [9] Fan X, Liu H, Zhang X (2014) Identification of optimal ALD process conditions of Nd2O3 on Si by spectroscopic ellipsometry. Appl Phys A 114: 545-550.
    [10] Fan X, Liu H, Zhang X, et al. (2015) Optical characteristics of H2O-based and O3-based HfO2 films deposited by ALD using spectroscopy ellipsometry. Appl Phys A 119: 957-963. doi: 10.1007/s00339-015-9048-9
    [11] Collins RW, Ferlauto AS (2005) Optical physics of materials, In: Tompkins HG, Irene EA (Eds.), Handbook of Ellipsometry, Norwich: William Andrew Publishing/ Noyes, 93-235.
    [12] Jellison GE Jr. (2005) Data analysis for spectroscopic ellipsometry, In: Tompkins HG, Irene EA (Eds.), Handbook of Ellipsometry, Norwich: William Andrew Publishing/ Noyes, 237-296.
    [13] Petrik P (2014) Parameterization of the dielectric function of semiconductor nanocrystals. Physica B 453: 2-7. doi: 10.1016/j.physb.2014.03.065
    [14] Cho YJ, Nguyen NV, Richter CA, et al. (2002) Spectroscopic ellipsometry characterization of high-κ dielectric HfO2 thin films and the high-temperature annealing effects on their optical properties. Appl Phys Lett 80: 1249-1251. doi: 10.1063/1.1448384
    [15] Sancho-Parramon J, Modreanu M, Bosch S, et al. (2008) Optical characterization of HfO2 by spectroscopic ellipsometry: Dispersion models and direct data inversion. Thin Solid Films 516: 7990-7995. doi: 10.1016/j.tsf.2008.04.007
    [16] Jellison, Jr GE, Modine FA (1996) Parameterization of the optical functions of amorphous materials in the interband region. Appl Phys Lett 69: 371-373; Erratum: ‘‘Parameterization of the optical functions of amorphous materials in the interband region'' [Appl. Phys. Lett. 69, 371 (1996)], idid. 69: 2137. doi: 10.1063/1.118064
    [17] Ferlauto AS, Ferreira GM, Pearce JM, et al. (2002) Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J Appl Phys 92: 2424-2436. doi: 10.1063/1.1497462
    [18] Ferlauto AS, Ferreira GM, Pearce JM, et al. (2004) Analytical model for the optical functions of amorphous semiconductors and its applications for thin film solar cells. Thin Solid Films 455-456: 388-392. doi: 10.1016/j.tsf.2003.11.234
    [19] Foldyna M, Postava K, Bouchala J, et al. (2004) Model dielectric functional of amorphous materials including Urbach tail, In: Pistora J, Postava K, Hrabovsky M, et al. (Eds.), Microwave and Optical Technology 2003, Ostrava, Czech Republic, August 11-15, 2003, SPIE Proc. 5445: 301-305.
    [20] Falahatgar SS, Ghodsi FE (2013) A developed model for the determination of the dielectric function for some absorbing thin films using pseudo-Urbach tail. Physica B 412: 4-11. doi: 10.1016/j.physb.2012.12.011
    [21] Price J, Hung PY, Rhoad T, et al. (2004) Spectroscopic ellipsometry characterization of HfxSiyOz films using the Cody-Lorentz parameterized model. Appl Phys Lett 85: 1701-1703. doi: 10.1063/1.1784889
    [22] Kamineni VK, Hilfiker JN, Freeouf JL, et al. (2011) Extension of far UV spectroscopic ellipsometry studies of high-κ dielectric films to 130 nm. Thin Solid Films 519: 2894-2898. doi: 10.1016/j.tsf.2010.12.080
    [23] Mei JJ, Chen H, Shen WZ, et al. (2006) Optical properties and local bonding configurations of hydrogenated amorphous silicon nitride thin films. J Appl Phys 100: 073516. doi: 10.1063/1.2356915
    [24] Eiamchai P, Chindaudom P, Pokaipisit A, et al. (2009) A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation. Curr Appl Phys 9: 707-712. doi: 10.1016/j.cap.2008.06.011
    [25] Avci N, Smet PF, Poelman H, et al. (2009) Characterization of TiO2 powders and thin films prepared by non-aqueous sol-gel techniques. J Sol-Gel Sci Technol 52: 424-431. doi: 10.1007/s10971-009-2028-9
    [26] Peiponen K-E, Vartiainen EM (1991) Kramers-Kronig relations in optical data inversion. Phys Rev B 44: 8301-8303. doi: 10.1103/PhysRevB.44.8301
    [27] De Sousa Meneses D, Malki M, Echegut P (2006) Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy. J Non-Cryst Solids 352: 769-776. doi: 10.1016/j.jnoncrysol.2006.02.004
    [28] Jellison, Jr. GE, Modine FA (1983) Optical functions of silicon between 1.7 and 4.7 eV at elevated temperatures. Phys Rev B 27: 7466-7472.
    [29] Lautenschlager P, Garriga M, Viña L, et al. (1987) Temperature dependence of the dielectric function and interband critical points in silicon. Phys Rev B 36: 4821-4830. doi: 10.1103/PhysRevB.36.4821
    [30] Vineis CJ (2005) Complex dielectric function of biaxial tensile strained silicon by spectroscopic ellipsometry. Phys Rev B 71: 245205. doi: 10.1103/PhysRevB.71.245205
    [31] Awazu K, Kawazoe H, Saito Y, et al. (1991) Structural imperfections in silicon dioxide films identified with vacuum ultraviolet optical absorption measurements. Appl Phys Lett 59: 528-530. doi: 10.1063/1.105428
    [32] Awazu K, Kawazoe H, Muta K-i (1991) Optical properties of oxygen-deficient centers in silica glasses fabricated in H2 or vacuum ambient. J Appl Phys 70: 69-74. doi: 10.1063/1.350245
    [33] Terada N, Haga T, Miyata N, et al. (1992) Optical absorption in ultrathin silicon oxide films near the SiO2/Si interface. Phys Rev B 46: 2312-2318. doi: 10.1103/PhysRevB.46.2312
    [34] Aarik J, Mändar H, Kirm M, et al. (2004) Optical characterization of HfO2 thin films grown by atomic layer deposition. Thin Solid Films 466: 41-47. doi: 10.1016/j.tsf.2004.01.110
    [35] Lucovsky G, Zhang Y, Luning J, et al. (2005) Intrinsic band edge traps in nano-crystalline HfO2 gate dielectrics. Microelectron Eng 80: 110-113. doi: 10.1016/j.mee.2005.04.052
    [36] Hoppe EE, Sorbello RS, Aita CR (2007) Near-edge optical absorption behavior of sputter deposited hafnium dioxide. J Appl Phys 101: 123534. doi: 10.1063/1.2750406
    [37] Ferrieu F, Dabertrand K, Lhostis S, et al. (2007) Observation of HfO2 thin films by deep UV spectroscopic ellipsometry. J Non-Cryst Solids 353: 658-662. doi: 10.1016/j.jnoncrysol.2006.10.032
    [38] Martínez FL, Toledano-Luque M, Gandía JJ, et al. (2007) Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering. J Phys D: Appl Phys 40: 5256-5265. doi: 10.1088/0022-3727/40/17/037
    [39] Hill DH, Bartynski RA, Nguyen NV, et al. (2008) The relationship between local order, long range order, and sub-band-gap defects in hafnium oxide and hafnium silicate films. J Appl Phys 103: 093712. doi: 10.1063/1.2909442
    [40] Park J-W, Lee D-K, Lim D, et al. (2008) Optical properties of thermally annealed hafnium oxide and their correlation with structural change. J Appl Phys 104: 033521. doi: 10.1063/1.2961326
    [41] Bersch E, Di M, Consiglio S, et al. (2010) Complete band offset characterization of the HfO2/SiO2/Si stack using charge corrected x-ray photoelectron spectroscopy. J Appl Phys 107: 043702. doi: 10.1063/1.3284961
    [42] Xu K, Sio H, Kirillov OA, et al. (2013) Band offset determination of atomic-layer-deposited Al2O3 and HfO2 on InP by internal photoemission and spectroscopic ellipsometry. J Appl Phys 113: 024504. doi: 10.1063/1.4774038
    [43] Di M, Bersch E, Diebold AC, et al. (2011) Comparison of methods to determine bandgaps of ultrathin HfO2 films using spectroscopic ellipsometry. J Vac Sci Technol A 29: 041001.
    [44] Franta D, Ohlídal I, Nečas D, et al. (2011) Optical characterization of HfO2 thin films. Thin Solid Films 519: 6085-6091. doi: 10.1016/j.tsf.2011.03.128
    [45] Nguyen NV, Han J-P, Kim JY, et al. (2003) Optical properties of jet-vapor-deposited TiAlO and HfAlO determined by vacuum utraviolet spectroscopic ellipsometry, In: Seiler DG, Diebold AC, Shaffner TJ, et al. (Eds.), Characterization and Metrology for ULSI Technology 2003, Austin, TX, U.S.A., March 24-28, 2003, AIP Conf. Proc. 683: 181-185.
    [46] Nguyen NV, Sayan S, Levin I, et al. (2005) Optical band gaps and composition dependence of hafnium-aluminate thin films grown by atomic layer chemical vapor deposition. J Vac Sci Technol A 23: 1706-1713.
    [47] Wang XF, Li Q, Egerton RF, et al. (2007) Effect of Al addition on the microstructure and electronic structure of HfO2 film. J Appl Phys 101: 013514. doi: 10.1063/1.2405741
    [48] Park TJ, Kim JH, Jang JH, et al. (2010) Reduction of electrical defects in atomic layer deposited HfO2 films by Al doping. Chem Mater 22: 4175-4184. doi: 10.1021/cm100620x
    [49] Sandberg RL, Allred DD, Lunt S, et al. (2004) Optical properties and application of uranium-based thin films for the extreme ultraviolet and soft x-ray region, In: Soufli R, Seely JF (Eds.), Optical Constants of Materials for UV to X-Ray Wavelengths, Denver, CO, U.S.A., August 2, 2004, SPIE Proc. 5538: 107-118.
    [50] Meek TT, von Roedern B (2008) Semiconductor devices fabricated from actinide oxides. Vacuum 83: 226-228. doi: 10.1016/j.vacuum.2008.04.005
    [51] Kruschwitz CA, Mukhopadhyay S, Schwellenbach D, et al. (2014) Semiconductor neutron detectors using depleted uranium oxide, In: Burger A, Franks L, James RB, et al. (Eds.), Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, San Diego, CA, U.S.A., August 17, 2014, SPIE Proc. 9213: 92130C-1-92130C-9.
    [52] Chen Q, Lai X, Bai B, et al. (2010) Structural characterization and optical properties of UO2 thin films by magnetron sputtering. Appl Surf Sci 256: 3047-3050. doi: 10.1016/j.apsusc.2009.11.071
    [53] He H, Andersson DA, Allred DD, et al. (2013) Determination of the insulation gap of uranium oxides by spectroscopic ellipsometry and density functional theory. J Phys Chem C 117: 16540-16551. doi: 10.1021/jp401149m
    [54] Khilla MA, Rofail NH (1986) Optical absorption edge of uranium trioxide phases: Part I. Radiochim Acta 40: 155-158.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6712) PDF downloads(1054) Cited by(4)

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog