Citation: Warin Rangubpit, Sunan Kitjaruwankul, Panisak Boonamnaj, Pornthep Sompornpisut, R.B. Pandey. Globular bundles and entangled network of proteins (CorA) by a coarse-grained Monte Carlo simulation[J]. AIMS Biophysics, 2019, 6(2): 68-82. doi: 10.3934/biophy.2019.2.68
[1] | Panisak Boonamnaj, Pornthep Sompornpisut, Piyarat Nimmanpipug, R.B. Pandey . Thermal denaturation of a coronavirus envelope (CoVE) protein by a coarse-grained Monte Carlo simulation. AIMS Biophysics, 2022, 9(4): 330-340. doi: 10.3934/biophy.2022027 |
[2] | Warin Rangubpit, Pornthep Sompornpisut, R.B. Pandey . Thermal-induced unfolding-refolding of a nucleocapsid COVN protein. AIMS Biophysics, 2021, 8(1): 103-110. doi: 10.3934/biophy.2021007 |
[3] | Ken Takahashi, Takayuki Oda, Keiji Naruse . Coarse-grained molecular dynamics simulations of biomolecules. AIMS Biophysics, 2014, 1(1): 1-15. doi: 10.3934/biophy.2014.1.1 |
[4] | James C. L. Chow . Recent progress in Monte Carlo simulation on gold nanoparticle radiosensitization. AIMS Biophysics, 2018, 5(4): 231-244. doi: 10.3934/biophy.2018.4.231 |
[5] | Tomohiro Yanao, Sosuke Sano, Kenichi Yoshikawa . Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity. AIMS Biophysics, 2015, 2(4): 666-694. doi: 10.3934/biophy.2015.4.666 |
[6] | Masoud Jabbary, Hossein Rajabi . High-resolution phantom of a nephron for radiation nephrotoxicity evaluation in biophysical simulations. AIMS Biophysics, 2022, 9(2): 147-160. doi: 10.3934/biophy.2022013 |
[7] | Oleksii V. Khorolskyi, Nikolay P. Malomuzh . Macromolecular sizes of serum albumins in its aqueous solutions. AIMS Biophysics, 2020, 7(4): 219-235. doi: 10.3934/biophy.2020017 |
[8] | Davide Sala, Andrea Giachetti, Antonio Rosato . Molecular dynamics simulations of metalloproteins: A folding study of rubredoxin from Pyrococcus furiosus. AIMS Biophysics, 2018, 5(1): 77-96. doi: 10.3934/biophy.2018.1.77 |
[9] | Wei Zhang, Sheng Cao, Jessica L. Martin, Joachim D. Mueller, Louis M. Mansky . Morphology and ultrastructure of retrovirus particles. AIMS Biophysics, 2015, 2(3): 343-369. doi: 10.3934/biophy.2015.3.343 |
[10] | Stephanie H. DeLuca, Samuel L. DeLuca, Andrew Leaver-Fay, Jens Meiler . RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices. AIMS Biophysics, 2016, 3(1): 1-26. doi: 10.3934/biophy.2016.1.1 |
[1] |
Furukawa Y, Nukina N (2013) Functional diversity of protein fibrillar aggregates from physiology to RNA granules to neurodegenerative diseases. Biochim Biophys Acta 1832: 1271–1278. doi: 10.1016/j.bbadis.2013.04.011
![]() |
[2] |
Bai Y, Luo Q, Liu J (2016) Protein self-assembly via supramolecular strategies. Chem Soc Rev 45: 2756–2767. doi: 10.1039/C6CS00004E
![]() |
[3] |
McManus JJ, Charbonneau P, Zaccarelli E, et al. (2016) The physics of protein self-assembly. Curr Opin Colloid Interface Sci 22: 73–79. doi: 10.1016/j.cocis.2016.02.011
![]() |
[4] |
Sgarbossa A (2012) Natural biomolecules protein aggregation: Emerging strategies against amyloidogenesis. Int J Mol Sci 13: 17121–17137. doi: 10.3390/ijms131217121
![]() |
[5] |
Sun H, Luo Q, Hou C, et al. (2017) Nanostructures based on protein self-assembly: From hierarchical construction to bioinspired materials. Nano Today 14: 16–41. doi: 10.1016/j.nantod.2017.04.006
![]() |
[6] |
Garcia-Seisdedos H, Empereur-Mot C, Elad N, et al. (2017) Proteins evolve on the edge of supramolecular self-assembly. Nature 548: 244–247. doi: 10.1038/nature23320
![]() |
[7] | Pandey RB, Farmer BL, Gerstman BS (2015) Self-assembly dynamics for the transition of a globular aggregate to a fibril network of lysozyme proteins via a coarse-grained Monte Carlo simulation. AIP Adv 5. |
[8] |
Yang L, Liu A, Cao S, et al. (2016) Self-Assembly of proteins: Towards supramolecular materials. Chem Eur J 22: 15570–15582. doi: 10.1002/chem.201601943
![]() |
[9] |
Hmiel SP, Snavely MD, Florer JB, et al. (1989) Magnesium transport in Salmonella typhimurium: genetic characterization and cloning of three magnesium transport loci. J Bacteriol 171: 4742–4751. doi: 10.1128/jb.171.9.4742-4751.1989
![]() |
[10] | Maguire ME (1992) MgtA and MgtB: prokaryotic P-type ATPases that mediate Mg2+ influx. J Bioenerg Biomembr 24: 319–328. |
[11] |
Kehres DG, Lawyer CH, Maguire ME (1998) The CorA magnesium transporter gene family. Microb Comp Genomics 3: 151–169. doi: 10.1089/omi.1.1998.3.151
![]() |
[12] | Eshaghi S, Niegowski D, Kohl A, et al. (2006) Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Science 313: 354–357. |
[13] |
Lunin VV, Dobrovetsky E, Khutoreskaya G, et al. (2006) Crystal structure of the CorA Mg2+ transporter. Nature 440: 833–837. doi: 10.1038/nature04642
![]() |
[14] |
Payandeh J, Li C, Ramjeesingh M, et al. (2008) Probing structure-function relationships and gating mechanisms in the CorA Mg2+ transport system. J Biol Chem 283: 11721–11733. doi: 10.1074/jbc.M707889200
![]() |
[15] |
Payandeh J, Pai EF (2006) A structural basis for Mg2+ homeostasis and the CorA translocation cycle. EMBO J 25: 3762–3773. doi: 10.1038/sj.emboj.7601269
![]() |
[16] |
Dalmas O, Cuello LG, Jogini V, et al. (2010) Structural Dynamics of the Magnesium-bound Conformation of CorA in a lipid bilayer. Structure 18: 868–878. doi: 10.1016/j.str.2010.04.009
![]() |
[17] |
Dalmas O, Sompornpisut P, Bezanilla F, et al. (2014) Molecular mechanism of Mg2+-dependent gating in CorA. Nat Commun 5: 3590. doi: 10.1038/ncomms4590
![]() |
[18] |
Neale C, Chakrabarti N, Pomorski P, et al. (2015) Hydrophobic gating of ion permeation in magnesium channel CorA. Plos Comput Biol 11: e1004303. doi: 10.1371/journal.pcbi.1004303
![]() |
[19] |
Kitjaruwankul S, Wapeesittipan P, Boonamnaj P, et al. (2016) Inner and outer coordination shells of Mg2+ in CorA selectivity filter from Molecular Dynamics simulations. J Phys Chem B 120: 406–417. doi: 10.1021/acs.jpcb.5b10925
![]() |
[20] |
Matthies D, Dalmas O, Borgnia MJ, et al. (2016) Cryo-EM structures of the magnesium channel CorA reveal symmetry break upon gating. Cell 164: 747–756. doi: 10.1016/j.cell.2015.12.055
![]() |
[21] |
Chakrabarti N, Neale C, Payandeh J, et al. (2010) An iris-like mechanism of pore dilation in the CorA magnesium transport system. Biophys J 98: 784–792. doi: 10.1016/j.bpj.2009.11.009
![]() |
[22] |
Nordin N, Guskov A, Phua T, et al. (2013) Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem J 451: 365–374. doi: 10.1042/BJ20121745
![]() |
[23] |
Kitjaruwankul S, Khrutto C, Sompornpisut P, et al. (2016) Asymmetry in structural response of inner and outer transmembrane segments of CorA protein by a coarse-grain model. J Chem Phys 145: 135101. doi: 10.1063/1.4963807
![]() |
[24] |
Kitjaruwankul S, Boonamnaj P, Paudel SS, et al. (2018) Thermal-induced folding and unfolding of a transmembrane protein (CorA). Physica A 506: 987–992. doi: 10.1016/j.physa.2018.05.014
![]() |
[25] |
Munishkina LA, Ahmad A, Fink AL, et al. (2008) Guiding protein aggregation with macromolecular crowding. Biochemistry 47: 8993–9006. doi: 10.1021/bi8008399
![]() |
[26] |
Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276: 10577–10580. doi: 10.1074/jbc.R100005200
![]() |
[27] |
Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11: 114–119. doi: 10.1016/S0959-440X(00)00172-X
![]() |
[28] |
Alas SJ, González-Pérez PP, Beltrán HI (2019) In silico minimalist approach to study 2D HP protein folding into an inhomogeneous space mimicking osmolyte effect: First trial in the search of foldameric backbones. BioSystems 181: 31–43. doi: 10.1016/j.biosystems.2019.04.005
![]() |
[29] |
González-Pérez PP, Orta DJ, Pena I, et al. (2017) A computational approach to studying protein folding problems considering the crucial role of the intracellular environment. J Comput Biol 24: 995–1013. doi: 10.1089/cmb.2016.0115
![]() |
[30] |
Tsao D, Dokholyan NV (2010) Macromolecular crowding induces polypeptide com paction and decreases folding cooperativity. Phys Chem Chem Phys 12: 3491–3500. doi: 10.1039/b924236h
![]() |
[31] |
Ping G, Yuan JM, Vallieres M, et al. (2003) Effects of confinement on protein folding and protein stability. J Chem Phys 118: 8042–8048. doi: 10.1063/1.1564053
![]() |
[32] |
Kuznetsova I, Zaslavsky B, Breydo L, et al. (2015) Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. Molecules 20: 1377–1409. doi: 10.3390/molecules20011377
![]() |
[33] | Binder K (1995) Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford University Press. |
[34] | Pandey RB, Farmer BL (2014) Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation. J Chem Phys 141. |
[35] | Betancourt MR, Thirumalai D. (1999) Pair potentials for protein folding: choice of reference states and sensitivity of predicted native states to variations in the interaction schemes. Protein Sci 2:361–369. |
[36] |
Miyazawa S, Jernigan RL (1985) Estimation of effective inter residue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552. doi: 10.1021/ma00145a039
![]() |
[37] |
Miyazawa S, Jernigan RL (1996) Residue-residue potentials with a favorable contact pair term for simulation and treading. J Mol Biol 256: 623–644. doi: 10.1006/jmbi.1996.0114
![]() |
[38] |
Tanaka S, Scheraga HA. (1976) Medium and long range interaction parameters between amino acids for predicting three dimensional structures of proteins. Macromolecules 9: 945–950. doi: 10.1021/ma60054a013
![]() |
[39] |
Godzik A (1996) Knowledge-based potentials for protein folding: what can we learn from protein structures? Structure 4: 363–366. doi: 10.1016/S0969-2126(96)00041-X
![]() |
[40] |
Huang SY, Zou X. (2011) Statistical mechanics-based method to extract atomic distance-dependent potentials from protein structures. Proteins 79: 2648–2661. doi: 10.1002/prot.23086
![]() |
[41] |
Pandey RB, Kuang Z, Farmer BL, et al. (2012) Stability of peptide (P1, P2) binding to a graphene sheet via an all-atom to all-residue coarse-grained approach. Soft Matter 8: 9101–9109. doi: 10.1039/c2sm25870f
![]() |
[42] |
Feng J, Pandey RB, Berry RJ, et al. (2011) Adsorption mechanism of single amino acid and surfactant molecules to Au {111} surfaces in aqueous solution: design rules for metal binding molecules. Soft Matter 7: 2113–2120. doi: 10.1039/c0sm01118e
![]() |
![]() |
![]() |
1. | Mária Lukáčová-Medviďová, Hana Mizerová, Šárka Nečasová, Michael Renardy, Global Existence Result for the Generalized Peterlin Viscoelastic Model, 2017, 49, 0036-1410, 2950, 10.1137/16M1068505 | |
2. | P. Gwiazda, M. Lukáčová-Medvidová, H. Mizerová, A. Świerczewska-Gwiazda, Existence of global weak solutions to the kinetic Peterlin model, 2018, 44, 14681218, 465, 10.1016/j.nonrwa.2018.05.016 | |
3. | Hailiang Liu, Hui Yu, An Entropy Satisfying Conservative Method for the Fokker–Planck Equation of the Finitely Extensible Nonlinear Elastic Dumbbell Model, 2012, 50, 0036-1429, 1207, 10.1137/110829611 | |
4. | John W. Barrett, Endre Süli, Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead–spring chain models for dilute polymers: The two-dimensional case, 2016, 261, 00220396, 592, 10.1016/j.jde.2016.03.018 | |
5. | Dominic Breit, Prince Romeo Mensah, Local well-posedness of the compressible FENE dumbbell model of Warner type, 2021, 34, 0951-7715, 2715, 10.1088/1361-6544/abbd82 | |
6. | Mark Dostalík, Josef Málek, Vít Průša, Endre Süli, A Simple Construction of a Thermodynamically Consistent Mathematical Model for Non-Isothermal Flows of Dilute Compressible Polymeric Fluids, 2020, 5, 2311-5521, 133, 10.3390/fluids5030133 | |
7. | Hailiang Liu, Jaemin Shin, The Cauchy--Dirichlet Problem for the Finitely Extensible Nonlinear Elastic Dumbbell Model of Polymeric Fluids, 2012, 44, 0036-1410, 3617, 10.1137/110840650 | |
8. | Mária Lukáčová–Medvid’ová, Hana Mizerová, Hirofumi Notsu, Masahisa Tabata, Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange–Galerkin method. Part II: A linear scheme, 2017, 51, 0764-583X, 1663, 10.1051/m2an/2017032 | |
9. | John W Barrett, Sébastien Boyaval, Finite element approximation of the FENE-P model, 2018, 38, 0272-4979, 1599, 10.1093/imanum/drx061 | |
10. | John W. Barrett, Endre Süli, Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers, 2012, 46, 0764-583X, 949, 10.1051/m2an/2011062 | |
11. | Nader Masmoudi, 2018, Chapter 23, 978-3-319-13343-0, 973, 10.1007/978-3-319-13344-7_23 | |
12. | Mária Lukáčová - Medvid'ová, Hirofumi Notsu, Bangwei She, Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid, 2016, 81, 02712091, 523, 10.1002/fld.4195 | |
13. | John W. Barrett, Endre Süli, Existence of global weak solutions to finitely extensible nonlinear bead–spring chain models for dilute polymers with variable density and viscosity, 2012, 253, 00220396, 3610, 10.1016/j.jde.2012.09.005 | |
14. | Takashi Uneyama, Fumiaki Nakai, Yuichi Masubuchi, Effect of Inertia on Linear Viscoelasticity of Harmonic Dumbbell Model, 2019, 47, 0387-1533, 143, 10.1678/rheology.47.143 | |
15. | Nader Masmoudi, 2016, Chapter 23-1, 978-3-319-10151-4, 1, 10.1007/978-3-319-10151-4_23-1 | |
16. | Aaron Brunk, Mária Lukáčová-Medvid’ová, Global existence of weak solutions to viscoelastic phase separation part: I. Regular case, 2022, 35, 0951-7715, 3417, 10.1088/1361-6544/ac5920 | |
17. | Pierre Degond, Alexei Lozinski, Robert G. Owens, Kinetic models for dilute solutions of dumbbells in non-homogeneous flows revisited, 2010, 165, 03770257, 509, 10.1016/j.jnnfm.2010.02.007 | |
18. | Ioannis Markou, Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces, 2017, 12, 1556-181X, 683, 10.3934/nhm.2017028 | |
19. | Nader Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows, 2013, 191, 0020-9910, 427, 10.1007/s00222-012-0399-y | |
20. | Matteo Colangeli, Manh Hong Duong, Adrian Muntean, A reduction scheme for coupled Brownian harmonic oscillators, 2022, 55, 1751-8113, 505002, 10.1088/1751-8121/acab41 | |
21. | JOHN W. BARRETT, ENDRE SÜLI, EXISTENCE AND EQUILIBRATION OF GLOBAL WEAK SOLUTIONS TO KINETIC MODELS FOR DILUTE POLYMERS II: HOOKEAN-TYPE MODELS, 2012, 22, 0218-2025, 1150024, 10.1142/S0218202511500242 | |
22. | Shiwani Singh, Ganesh Subramanian, Santosh Ansumali, Lattice Fokker Planck for dilute polymer dynamics, 2013, 88, 1539-3755, 10.1103/PhysRevE.88.013301 | |
23. | Mária Lukáčová - Medvid’ová, Hana Mizerová, Šárka Nečasová, Global existence and uniqueness result for the diffusive Peterlin viscoelastic model, 2015, 120, 0362546X, 154, 10.1016/j.na.2015.03.001 | |
24. | JOHN W. BARRETT, ENDRE SÜLI, EXISTENCE AND EQUILIBRATION OF GLOBAL WEAK SOLUTIONS TO KINETIC MODELS FOR DILUTE POLYMERS I: FINITELY EXTENSIBLE NONLINEAR BEAD-SPRING CHAINS, 2011, 21, 0218-2025, 1211, 10.1142/S0218202511005313 | |
25. | Prince Romeo Mensah, Vanishing centre-of-mass limit of the 2D-1D corotational Oldroyd-B polymeric fluid-structure interaction problem, 2025, 38, 0951-7715, 035027, 10.1088/1361-6544/adb9b0 |