Citation: Ken Takahashi, Takayuki Oda, Keiji Naruse. Coarse-grained molecular dynamics simulations of biomolecules[J]. AIMS Biophysics, 2014, 1(1): 1-15. doi: 10.3934/biophy.2014.1.1
[1] | Scuseria GE (1999) Linear Scaling Density Functional Calculations with Gaussian Orbitals. J Phys Chem A 103: 4782-4790. doi: 10.1021/jp990629s |
[2] | Go N (1983) Theoretical Studies of Protein Folding. Annu Rev Biophys Bioeng 12: 183-210. doi: 10.1146/annurev.bb.12.060183.001151 |
[3] | Doi K, Takeuchi H, Nii R, et al. (2013) Self-assembly of 50 bp poly(dA).poly(dT) DNA on highly oriented pyrolytic graphite via atomic force microscopy observation and molecular dynamics simulation. J Chem Phys 139: 085102. |
[4] | Lin J, Alexander-Katz A (2013) Cell Membranes Open "Doors" for Cationic Nanoparticles/Biomolecules: Insights into Uptake Kinetics. ACS Nano 7: 10799-10808. doi: 10.1021/nn4040553 |
[5] | Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15: 144-150. doi: 10.1016/j.sbi.2005.02.005 |
[6] | Cheon M, Chang I, Hall CK (2010) Extending the PRIME model for protein aggregation to all 20 amino acids. Proteins 78: 2950-2960. doi: 10.1002/prot.22817 |
[7] | Marrink SJ, Risselada HJ, Yefimov S, et al. (2007) The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B 111: 7812-7824. doi: 10.1021/jp071097f |
[8] | Monticelli L, Kandasamy SK, Periole X, et al. (2008) The MARTINI coarse-grained force field: Extension to proteins. J Chem Theory Comput 4: 819-834. doi: 10.1021/ct700324x |
[9] | Shih AY, Arkhipov A, Freddolino PL, et al. (2006) Coarse grained protein-lipid model with application to lipoprotein particles. J Phys Chem B 110: 3674-3684. doi: 10.1021/jp0550816 |
[10] | Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22: 130-137. doi: 10.1016/j.sbi.2012.01.010 |
[11] | Stark AC, Andrews CT, Elcock AH (2013) Toward optimized potential functions for proteinprotein interactions in aqueous solutions: osmotic second virial coefficient calculations using the MARTINI coarse-grained force field. J Chem Theory Comput 9: 4176-4185. doi: 10.1021/ct400008p |
[12] | Kopelevich DI (2013) One-dimensional potential of mean force underestimates activation barrier for transport across flexible lipid membranes. J Chem Phys 139: 134906. doi: 10.1063/1.4823500 |
[13] | May A, Pool R, van Dijk E, et al. (2013) Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins. Bioinformatics 30: 326-334. |
[14] | Periole X, Knepp AM, Sakmar TP, et al. (2012) Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J Am Chem Soc 134: 10959-10965. doi: 10.1021/ja303286e |
[15] | Mondal S, Johnston JM, Wang H, et al. (2013) Membrane Driven Spatial Organization of GPCRs. Sci Rep 3: 2909. |
[16] | Lewis DR, Kholodovych V, Tomasini MD, et al. (2013) In silico design of anti-atherogenic biomaterials. Biomaterials 34: 7950-7959. doi: 10.1016/j.biomaterials.2013.07.011 |
[17] | Li H, Gorfe AA (2013) Aggregation of lipid-anchored full-length H-Ras in lipid bilayers: simulations with the MARTINI force field. Plos One 8: e71018. doi: 10.1371/journal.pone.0071018 |
[18] | Bucher D, Hsu YH, Mouchlis VD, et al. (2013) Insertion of the Ca(2)(+)-independent phospholipase A(2) into a phospholipid bilayer via coarse-grained and atomistic molecular dynamics simulations. PLoS Comput Biol 9: e1003156. doi: 10.1371/journal.pcbi.1003156 |
[19] | Lee H (2013) Membrane penetration and curvature induced by single-walled carbon nanotubes: the effect of diameter, length, and concentration. Phys Chem Chem Phys 15:16334-16340. doi: 10.1039/c3cp52747f |
[20] | Siuda I, Thogersen L (2013) Conformational flexibility of the leucine binding protein examined by protein domain coarse-grained molecular dynamics. J Mol Model 19: 4931-4945. doi: 10.1007/s00894-013-1991-9 |
[21] | Liu FF, Huang B, Dong XY, et al. (2013) Molecular basis for the dissociation dynamics of protein a-immunoglobulin g1 complex. Plos One 8: e66935. doi: 10.1371/journal.pone.0066935 |
[22] | Lopez CA, Sovova Z, van Eerden FJ, et al. (2013) Martini Force Field Parameters for Glycolipids. J Chem Theory Comput 9: 1694-1708. doi: 10.1021/ct3009655 |
[23] | Khalid S, Bond PJ, Holyoake J, et al. (2008) DNA and lipid bilayers: self-assembly and insertion. J R Soc Interface 5 Suppl 3: S241-250. |
[24] | Cruz VL, Ramos J, Melo MN, et al. (2013) Bacteriocin AS-48 binding to model membranes and pore formation as revealed by coarse-grained simulations. Biochim Biophys Acta 1828:2524-2531. doi: 10.1016/j.bbamem.2013.05.036 |
[25] | Hess B, Kutzner C, van der Spoel D, et al. (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4: 435-447. doi: 10.1021/ct700301q |
[26] | Dahlberg M (2007) Polymorphic phase behavior of cardiolipin derivatives studied by coarsegrained molecular dynamics. J Phys Chem B 111: 7194-7200. |
[27] | López CA, Rzepiela AJ, de Vries AH, et al. (2009) Martini Coarse-Grained Force Field: Extension to Carbohydrates. J Chem Theory Comput 5: 3195-3210. doi: 10.1021/ct900313w |
[28] | Yesylevskyy SO, Schafer LV, Sengupta D, et al. (2010) Polarizable Water Model for the Coarse-Grained MARTINI Force Field. Plos Comput Biol 6: e1000810. doi: 10.1371/journal.pcbi.1000810 |
[29] | Yoo J, Cui Q (2009) Curvature generation and pressure profile modulation in membrane by lysolipids: insights from coarse-grained simulations. Biophys J 97: 2267-2276. doi: 10.1016/j.bpj.2009.07.051 |
[30] | Donnini S, Tegeler F, Groenhof G, et al. (2011) Constant pH Molecular Dynamics in Explicit Solvent with lambda-Dynamics. J Chem Theory Comput 7: 1962-1978. doi: 10.1021/ct200061r |
[31] | Bennett WFD, Chen AW, Donnini S, et al. (2013) Constant pH simulations with the coarsegrained MARTINI model - Application to oleic acid aggregates. Can J Chem 91: 839-846. doi: 10.1139/cjc-2013-0010 |
[32] | Schonichen A, Webb BA, Jacobson MP, et al. (2013) Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys42: 289-314. |
[33] | Brunger AT, Adams PD, Rice LM (1997) New applications of simulated annealing in X-ray crystallography and solution NMR. Structure 5: 325-336. doi: 10.1016/S0969-2126(97)00190-1 |
[34] | Kirkpatrick S, Gelatt CD, Jr., Vecchi MP (1983) Optimization by simulated annealing. Science 220: 671-680. doi: 10.1126/science.220.4598.671 |
[35] | Nury H, Poitevin F, Van Renterghem C, et al. (2010) One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proc Natl Acad Sci U S A107: 6275-6280. |
[36] | Jensen MO, Jogini V, Borhani DW, et al. (2012) Mechanism of voltage gating in potassium channels. Science 336: 229-233. doi: 10.1126/science.1216533 |
[37] | Baoukina S, Marrink SJ, Tieleman DP (2012) Molecular Structure of Membrane Tethers. Biophys J 102: 1866-1871. doi: 10.1016/j.bpj.2012.03.048 |
[38] | Louhivuori M, Risselada HJ, van der Giessen E, et al. (2010) Release of content through mechano-sensitive gates in pressurized liposomes. Proc Natl Acad Sci USA 107: 19856-19860. doi: 10.1073/pnas.1001316107 |
[39] | Dill KA, MacCallum JL (2012) The Protein-Folding Problem, 50 Years On. Science 338:1042-1046. doi: 10.1126/science.1219021 |
[40] | Clementi C (2008) Coarse-grained models of protein folding: toy models or predictive tools? Curr Opin Struct Biol 18: 10-15. doi: 10.1016/j.sbi.2007.10.005 |
[41] | Gregersen N, Bross P, Vang S, et al. (2006) Protein Misfolding and Human Disease. Annu Rev Genomics Hum Genet 7: 103-124. doi: 10.1146/annurev.genom.7.080505.115737 |
[42] | Borgia MB, Borgia A, Best RB, et al. (2011) Single-molecule fluorescence reveals sequencespecific misfolding in multidomain proteins. Nature 474: 662-665. doi: 10.1038/nature10099 |
[43] | Yang S, Cho SS, Levy Y, et al. (2004) Domain swapping is a consequence of minimal frustration. Proc Natl Acad Sci USA 101: 13786-13791. doi: 10.1073/pnas.0403724101 |
[44] | Wu C, Shea J-E (2011) Coarse-grained models for protein aggregation. Curr Opin Struct Biol21: 209-220. |
[45] | Nguyen HD, Hall CK (2004) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci USA 101: 16180-16185. doi: 10.1073/pnas.0407273101 |
[46] | Voegler Smith A, Hall CK (2001) α-Helix formation: Discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins 44: 344-360. doi: 10.1002/prot.1100 |
[47] | Arkhipov A, Roos WH, Wuite GJ, et al. (2009) Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys J 97: 2061-2069. doi: 10.1016/j.bpj.2009.07.039 |
[48] | Krishna V, Ayton GS, Voth GA (2010) Role of protein interactions in defining HIV-1 viral capsid shape and stability: a coarse-grained analysis. Biophys J 98: 18-26. doi: 10.1016/j.bpj.2009.09.049 |
[49] | Grime JM, Voth GA (2012) Early stages of the HIV-1 capsid protein lattice formation. Biophys J 103: 1774-1783. doi: 10.1016/j.bpj.2012.09.007 |
[50] | Zhang R, Linse P (2013) Icosahedral capsid formation by capsomers and short polyions. J Chem Phys 138: 154901. doi: 10.1063/1.4799243 |
[51] | Rapaport DC (2004) Self-assembly of polyhedral shells: A molecular dynamics study. Phys Rev E 70: 051905. doi: 10.1103/PhysRevE.70.051905 |
[52] | Khelashvili G, Harries D (2013) How sterol tilt regulates properties and organization of lipid membranes and membrane insertions. Chem Phys Lipids 169: 113-123. doi: 10.1016/j.chemphyslip.2012.12.006 |
[53] | Bennett WFD, MacCallum JL, Hinner MJ, et al. (2009) Molecular View of Cholesterol Flip- Flop and Chemical Potential in Different Membrane Environments. J Am Chem Soc 131:12714-12720. doi: 10.1021/ja903529f |
[54] | Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design--a review. Curr Top Med Chem 10: 95-115. doi: 10.2174/156802610790232260 |
[55] | Roos WH, Gibbons MM, Arkhipov A, et al. (2010) Squeezing Protein Shells: How Continuum Elastic Models, Molecular Dynamics Simulations, and Experiments Coalesce at the Nanoscale. Biophys J 99: 1175-1181. doi: 10.1016/j.bpj.2010.05.033 |
[56] | Chen X, Cui Q, Tang Y, et al. (2008) Gating Mechanisms of Mechanosensitive Channels of Large Conductance, I: A Continuum Mechanics-Based Hierarchical Framework. Biophys J95: 563-580. |
[57] | Riniker S, van Gunsteren WF (2012) Mixing coarse-grained and fine-grained water in molecular dynamics simulations of a single system. J Chem Phys 137: 044120. doi: 10.1063/1.4739068 |