Citation: Tomohiro Yanao, Sosuke Sano, Kenichi Yoshikawa. Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity[J]. AIMS Biophysics, 2015, 2(4): 666-694. doi: 10.3934/biophy.2015.4.666
[1] | Watson JD, Baker TA, Bell SP, et al. (2008) Molecular Biology of the Gene, Sixth Edition, San Francisco: Pearson Education. |
[2] | Alberts B, Johnson A, Lewis J, et al. (2008) Molecular Biology of the Cell, Fifth Edition, New York: Garland Science. |
[3] | Nishizaka T, Yagi T, Tanaka Y, et al. (1993) Right-handed rotation of an actin filament in an in vitro motile system. Nature 361: 269-271. doi: 10.1038/361269a0 |
[4] | Tee YH, Shemesh T, Thiagarajan V, et al. (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17: 445-457. doi: 10.1038/ncb3137 |
[5] | Bouchet-Marquis C, Zuber B, Glynn AM, et al. (2007) Visualization of cell microtubules in their native state. Biol Cell 99: 45-53. doi: 10.1042/BC20060081 |
[6] | Sumino Y, Nagai KH, Shikata Y, et al. (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483: 448-452. doi: 10.1038/nature10874 |
[7] | Orgel JPRO, Irving TC, Miller A, et al. (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A 103: 9001-9005. doi: 10.1073/pnas.0502718103 |
[8] | Grason GM (2015) Colloquium: Geometry and optimal packing of twisted columns and filaments. Rev Mod Phys 87: 401-419. doi: 10.1103/RevModPhys.87.401 |
[9] | Wan LQ, Ronaldson K, Guirguis M, et al. (2013) Micropatterning of cells reveals chiral morphogenesis. Stem Cell Res Therapy 4:24. doi: 10.1186/scrt172 |
[10] | Schiessel H (2003) The physics of chromatin. J Phys Condens Matter 15: R699-R774. doi: 10.1088/0953-8984/15/19/203 |
[11] | Arya G, Schlick T (2006) Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc Natl Acad Sci U S A 103: 16236-16241. doi: 10.1073/pnas.0604817103 |
[12] | Arya G, Zhang Q, Schlick T (2006) Flexible histone tails in a new mesoscopic oligonucleosome model. Biophys J 91: 133-150. doi: 10.1529/biophysj.106.083006 |
[13] | Müller O, Kepper N, Schöpflin R (2014) Changing chromatin fiber conformation by nucleosome repositioning. Biophys J 107: 2141-2150. doi: 10.1016/j.bpj.2014.09.026 |
[14] | Maeshima K, Imai R, Tamura S (2014) Chromatin as dynamic 10-nm fibers, Chromosoma 123: 225-237. |
[15] | Ricci MA, Manzo C, García-Parajo MF, et al. (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160: 1145-1158. doi: 10.1016/j.cell.2015.01.054 |
[16] | Cherstvy AG, Everaers R (2006) Layering, bundling, and azimuthal orientations in dense phases of nucleosome core particles. J Phys Condens Matter 18: 11429-11442. doi: 10.1088/0953-8984/18/50/003 |
[17] | Luger K, Mäder AW, Richmond RK, et al. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389: 251-260. |
[18] | Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423: 145-150. doi: 10.1038/nature01595 |
[19] | Schiessel H (2006) The nucleosome: A transparent, slippery, sticky and yet stable DNA-protein complex. Eur Phys J E 19: 251-262. doi: 10.1140/epje/i2005-10049-y |
[20] | Tolstorukov MY, Colasanti AV, McCandlish DM, et al. (2007) A Novel Roll-and-Slide Mechanism of DNA Folding in Chromatin: Implications for Nucleosome Positioning. J Mol Biol 371: 725-738. doi: 10.1016/j.jmb.2007.05.048 |
[21] | Olson WK, Zhurkin VB (2011) Working the kinks out of nucleosomal DNA. Curr Opin Struct Biol 21: 348-357. doi: 10.1016/j.sbi.2011.03.006 |
[22] | Higuchi Y, Sakaue T, Yoshikawa K (2010) Torsional effect on the wrapping transition of a semiflexible polymer around a core as a model of nucleosome. Phys Rev E 82: 031909. doi: 10.1103/PhysRevE.82.031909 |
[23] | Boroudjerdi H, Naji A, Netz R (2014) Global analysis of the ground-state wrapping conformation of a charged polymer on an oppositely charged nano-sphere. Eur Phys J E 37: 21. doi: 10.1140/epje/i2014-14021-6 |
[24] | Korolev N, Berezhnoy NV, Dong EK, et al. (2012) A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 40: 2807-2821. doi: 10.1093/nar/gks214 |
[25] | Kenzaki H, Takada S (2015) Partial unwrapping and histone tail dynamics in nucleosome revealed by coarse-grained molecular simulations. PLoS Comput Biol 8: e1004443. |
[26] | Walter JC, Baiesi M, Barkema G, et al. (2013) Unwinding relaxation dynamics of polymers. Phys Rev Lett 110: 068301. doi: 10.1103/PhysRevLett.110.068301 |
[27] | Walter JC, Baiesi M, Carlon E, et al. (2014) Unwinding dynamics of a helically wrapped polymer. Macromolecules 47: 4840-4846. doi: 10.1021/ma500635h |
[28] | Zheng M, Jagota A, Semke ED, et al. (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater 2: 338-342. doi: 10.1038/nmat877 |
[29] | Nakashima N, Okuzono S, Murakami H, et al. (2003) DNA dissolves single-walled carbon nanotubes in water. Chem Lett 32: 456-457. doi: 10.1246/cl.2003.456 |
[30] | Heller DA, Jeng ES, Yeung TK, et al. (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311: 508-511. doi: 10.1126/science.1120792 |
[31] | Manohar S, Tang T, Jagota A (2007) Structure of homopolymer DNA-CNT hybrids. J Phys Chem C 111: 17835-17845. doi: 10.1021/jp071316x |
[32] | Alegret N, Santos E, Rodríguez-Fortea A, et al. (2012) Disruption of small double stranded DNA molecules on carbon nanotubes: A molecular dynamics study. Chem Phys Lett 525-526: 120-124. doi: 10.1016/j.cplett.2011.12.077 |
[33] | Marko JF (1997) Supercoiled and braided DNA under tension. Phys Rev E 55: 1758-1772. doi: 10.1103/PhysRevE.55.1758 |
[34] | Stone MD, Bryant Z, Crisona NJ, et al. (2003) Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc Natl Acad Sci U S A 100: 8654-8659. doi: 10.1073/pnas.1133178100 |
[35] | Charvin G, Vologodskii A, Bensimon D, et al. (2005) Braiding DNA: Experiments, simulations, and models. Biophys J 88: 4124-4136. doi: 10.1529/biophysj.104.056945 |
[36] | Timsit Y, Várnai P (2010) Helical chirality: a link between local interactions and global topology in DNA. PLoS One 5: e9326-e9326. |
[37] | Várnai P, Timsit Y (2010) Differential stability of DNA crossovers in solution mediated by divalent cations. Nucleic Acids Res 38: 4163-4172. doi: 10.1093/nar/gkq150 |
[38] | Timsit Y (2013) DNA self-assembly: from chirality to evolution. Int J Mol Sci 14: 8252-8270. doi: 10.3390/ijms14048252 |
[39] | Cherstvy AG (2008) DNA cholesteric phases: The role of DNA molecular chirality and DNA-DNA electrostatic interactions. J Phys Chem B 112: 12585-12595. doi: 10.1021/jp801220p |
[40] | Kornyshev AA, Leikin S (2001) Sequence recognition in the pairing of DNA duplexes. Phys Rev Lett 86: 3666-3669. doi: 10.1103/PhysRevLett.86.3666 |
[41] | Kornyshev AA, Leikin S, Lee DJ, et al. (2007) Structure and interactions of biological helices. Rev Mod Phys 79: 943-996. doi: 10.1103/RevModPhys.79.943 |
[42] | Cortini R, Kornyshev AA, Lee DJ, et al. (2011) Electrostatic braiding and homologous pairing of DNA double helices. Biophys J 101: 875-884. doi: 10.1016/j.bpj.2011.06.058 |
[43] | Cortini R, Lee DJ, Kornyshev AA (2012) Chiral electrostatics breaks the mirror symmetry of DNA supercoiling. J Phys Condens Matter 24: 162203. doi: 10.1088/0953-8984/24/16/162203 |
[44] | Lee DJ, Cortini R, Korte AP, et al. (2013) Chiral effects in dual-DNA braiding. Soft Matt 41: 9833-9848. |
[45] | Lee DJ (2014) Undulations in a weakly interacting mechanically generated molecular braid under tension. J Phys Condens Matter 26: 245101. doi: 10.1088/0953-8984/26/24/245101 |
[46] | Lee DJ (2015) Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces. J Phys Condens Matter 27: 145101. doi: 10.1088/0953-8984/27/14/145101 |
[47] | Gore J, Bryant Z, Nöllmann M, et al. (2006) DNA overwinds when stretched. Nature 442: 836-839. doi: 10.1038/nature04974 |
[48] | Lionnet T, Joubaud S, Lavery R, et al. Wringing out DNA. (2006) Phys Rev Lett 96: 178102. |
[49] | Strick TR, Allemand JF, Bensimon D, et al. (1998) Behavior of Supercoiled DNA. Biophys J 74: 2016-2028. doi: 10.1016/S0006-3495(98)77908-1 |
[50] | Allemand JF, Bensimon D, Lavery R, et al. (1998) Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci U S A 95: 14152-14157. doi: 10.1073/pnas.95.24.14152 |
[51] | Neukirch S (2004) Extracting DNA Twist Rigidity from Experimental Supercoiling Data. Phys Rev Lett 93: 198107. doi: 10.1103/PhysRevLett.93.198107 |
[52] | Besteman K, Hage S, Dekker NH, et al. (2007) Role of Tension and Twist in Single-Molecule DNA Condensation. Phys Rev Lett 98: 058103. doi: 10.1103/PhysRevLett.98.058103 |
[53] | Marko JF (2007) Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys Rev E 76: 021926. doi: 10.1103/PhysRevE.76.021926 |
[54] | Marko JF, Siggia ED (1994) Bending and twisting elasticity of DNA, Macromolecules 27: 981-988. |
[55] | Kulić IM, Andrienko D, Deserno M (2004) Twist-bend instability for toroidal DNA condensates. Europhys Lett 67: 418-424. doi: 10.1209/epl/i2004-10076-x |
[56] | Yanao T, Yoshikawa K (2014) Chiral symmetry breaking of a double-stranded helical chain through bend-writhe coupling. Phys Rev E 89: 062713. |
[57] | Kornyshev AA, Leikin S (2013) Helical structure determines different susceptibilities of dsDNA, dsRNA, and tsDNA to counterion-induced condensation. Biophys J 104: 2031-2041. doi: 10.1016/j.bpj.2013.03.033 |
[58] | Lee D (2014) Self-consistent treatment of electrostatics in molecular DNA braiding through external forces. Phys Rev E 89: 062711. |
[59] | Savelyev A, Papoian GA (2009) Molecular renormalization group coarse-graining of polymer chains: Application to double-stranded DNA. Biophys J 96: 4044-4052. doi: 10.1016/j.bpj.2009.02.067 |
[60] | Knotts AT, Rathore N, Schwartz DC, et al. (2007) A coarse grain model for DNA. J Chem Phys 126: 084901. doi: 10.1063/1.2431804 |
[61] | Ouldridge TE, Louis AA, Doye JPK (2011) Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134: 085101. doi: 10.1063/1.3552946 |
[62] | Snodin BEK, Randisi F, Mosayebi M, et al. (2015) Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J Chem Phys 142: 234901. doi: 10.1063/1.4921957 |
[63] | Patriciu A, Chirikjian GS, Pappu RV (2004) Analysis of the conformational dependence of mass-metric tensor determinants in serial polymers with constraints. J Chem Phys 121: 12708-12720. doi: 10.1063/1.1821492 |
[64] | Yanao T, Yoshikawa K (2008) Elastic origin of chiral selection in DNA wrapping. Phys Rev E 77: 021904. doi: 10.1103/PhysRevE.77.021904 |
[65] | Geggier S, Vologodskii A (2010) Sequence dependence of DNA bending rigidity. Proc Natl Acad Sci U S A 107: 15421-15426. doi: 10.1073/pnas.1004809107 |
[66] | Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. (1953) Equation of State Calculations by Fast Computing Machines. J Chem Phys 21: 1087-1092. doi: 10.1063/1.1699114 |
[67] | Allen MP, Tildesley DJ (1987) Computer simulation of liquids, Oxford: Oxford Science Publications. |
[68] | Humphrey W, Dalke A, Schulten K (1996) VMD: Visual Molecular Dynamics. J Mol Graphics 14: 33-38. doi: 10.1016/0263-7855(96)00018-5 |