Research article Special Issues

Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity

  • Received: 28 August 2015 Accepted: 29 October 2015 Published: 06 November 2015
  • Wrapping, crossover, and braiding of DNA are the motifs of fundamental interest in genome packaging, gene regulation, and enzyme recognition. This study explores elastic mechanisms for the selection of chirality in wrapping, crossover, and braiding of DNA based on a coarse-grained model. The DNA model consists of two elastic chains that mutually intertwine in a right-handed manner forming a double-stranded helix with the distinction between major and minor grooves. Although individual potential energy functions of the DNA model have no asymmetry in terms of left and right twist, the model as a whole exhibits an asymmetric propensity to writhe in the left direction upon bending due to the right-handed helical geometry. Monte Carlo simulations of this model suggest that DNA has a propensity to prefer left-handed wrapping around a spherical core particle and also around a uniform rod due to the asymmetric elastic coupling between bending and writhing. This result indicates an elastic origin of the uniform left-handed wrapping of DNA in nucleosomes and also has implications on the wrapping of double-stranded DNA around rod-like molecules. Monte Carlo simulations of the DNA model also suggest that two juxtaposed DNA molecules can braid each other spontaneously under moderate attractive interactions with the preference for left-handed braiding due to the asymmetric coupling between bending and writhing. This result suggests the importance of asymmetric elasticity in the selection of chirality in braiding of a pair of DNA molecules.

    Citation: Tomohiro Yanao, Sosuke Sano, Kenichi Yoshikawa. Chiral selection in wrapping, crossover, and braiding of DNA mediated by asymmetric bend-writhe elasticity[J]. AIMS Biophysics, 2015, 2(4): 666-694. doi: 10.3934/biophy.2015.4.666

    Related Papers:

  • Wrapping, crossover, and braiding of DNA are the motifs of fundamental interest in genome packaging, gene regulation, and enzyme recognition. This study explores elastic mechanisms for the selection of chirality in wrapping, crossover, and braiding of DNA based on a coarse-grained model. The DNA model consists of two elastic chains that mutually intertwine in a right-handed manner forming a double-stranded helix with the distinction between major and minor grooves. Although individual potential energy functions of the DNA model have no asymmetry in terms of left and right twist, the model as a whole exhibits an asymmetric propensity to writhe in the left direction upon bending due to the right-handed helical geometry. Monte Carlo simulations of this model suggest that DNA has a propensity to prefer left-handed wrapping around a spherical core particle and also around a uniform rod due to the asymmetric elastic coupling between bending and writhing. This result indicates an elastic origin of the uniform left-handed wrapping of DNA in nucleosomes and also has implications on the wrapping of double-stranded DNA around rod-like molecules. Monte Carlo simulations of the DNA model also suggest that two juxtaposed DNA molecules can braid each other spontaneously under moderate attractive interactions with the preference for left-handed braiding due to the asymmetric coupling between bending and writhing. This result suggests the importance of asymmetric elasticity in the selection of chirality in braiding of a pair of DNA molecules.


    加载中
    [1] Watson JD, Baker TA, Bell SP, et al. (2008) Molecular Biology of the Gene, Sixth Edition, San Francisco: Pearson Education.
    [2] Alberts B, Johnson A, Lewis J, et al. (2008) Molecular Biology of the Cell, Fifth Edition, New York: Garland Science.
    [3] Nishizaka T, Yagi T, Tanaka Y, et al. (1993) Right-handed rotation of an actin filament in an in vitro motile system. Nature 361: 269-271. doi: 10.1038/361269a0
    [4] Tee YH, Shemesh T, Thiagarajan V, et al. (2015) Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat Cell Biol 17: 445-457. doi: 10.1038/ncb3137
    [5] Bouchet-Marquis C, Zuber B, Glynn AM, et al. (2007) Visualization of cell microtubules in their native state. Biol Cell 99: 45-53. doi: 10.1042/BC20060081
    [6] Sumino Y, Nagai KH, Shikata Y, et al. (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483: 448-452. doi: 10.1038/nature10874
    [7] Orgel JPRO, Irving TC, Miller A, et al. (2006) Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A 103: 9001-9005. doi: 10.1073/pnas.0502718103
    [8] Grason GM (2015) Colloquium: Geometry and optimal packing of twisted columns and filaments. Rev Mod Phys 87: 401-419. doi: 10.1103/RevModPhys.87.401
    [9] Wan LQ, Ronaldson K, Guirguis M, et al. (2013) Micropatterning of cells reveals chiral morphogenesis. Stem Cell Res Therapy 4:24. doi: 10.1186/scrt172
    [10] Schiessel H (2003) The physics of chromatin. J Phys Condens Matter 15: R699-R774. doi: 10.1088/0953-8984/15/19/203
    [11] Arya G, Schlick T (2006) Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model. Proc Natl Acad Sci U S A 103: 16236-16241. doi: 10.1073/pnas.0604817103
    [12] Arya G, Zhang Q, Schlick T (2006) Flexible histone tails in a new mesoscopic oligonucleosome model. Biophys J 91: 133-150. doi: 10.1529/biophysj.106.083006
    [13] Müller O, Kepper N, Schöpflin R (2014) Changing chromatin fiber conformation by nucleosome repositioning. Biophys J 107: 2141-2150. doi: 10.1016/j.bpj.2014.09.026
    [14] Maeshima K, Imai R, Tamura S (2014) Chromatin as dynamic 10-nm fibers, Chromosoma 123: 225-237.
    [15] Ricci MA, Manzo C, García-Parajo MF, et al. (2015) Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell 160: 1145-1158. doi: 10.1016/j.cell.2015.01.054
    [16] Cherstvy AG, Everaers R (2006) Layering, bundling, and azimuthal orientations in dense phases of nucleosome core particles. J Phys Condens Matter 18: 11429-11442. doi: 10.1088/0953-8984/18/50/003
    [17] Luger K, Mäder AW, Richmond RK, et al. (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389: 251-260.
    [18] Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423: 145-150. doi: 10.1038/nature01595
    [19] Schiessel H (2006) The nucleosome: A transparent, slippery, sticky and yet stable DNA-protein complex. Eur Phys J E 19: 251-262. doi: 10.1140/epje/i2005-10049-y
    [20] Tolstorukov MY, Colasanti AV, McCandlish DM, et al. (2007) A Novel Roll-and-Slide Mechanism of DNA Folding in Chromatin: Implications for Nucleosome Positioning. J Mol Biol 371: 725-738. doi: 10.1016/j.jmb.2007.05.048
    [21] Olson WK, Zhurkin VB (2011) Working the kinks out of nucleosomal DNA. Curr Opin Struct Biol 21: 348-357. doi: 10.1016/j.sbi.2011.03.006
    [22] Higuchi Y, Sakaue T, Yoshikawa K (2010) Torsional effect on the wrapping transition of a semiflexible polymer around a core as a model of nucleosome. Phys Rev E 82: 031909. doi: 10.1103/PhysRevE.82.031909
    [23] Boroudjerdi H, Naji A, Netz R (2014) Global analysis of the ground-state wrapping conformation of a charged polymer on an oppositely charged nano-sphere. Eur Phys J E 37: 21. doi: 10.1140/epje/i2014-14021-6
    [24] Korolev N, Berezhnoy NV, Dong EK, et al. (2012) A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 40: 2807-2821. doi: 10.1093/nar/gks214
    [25] Kenzaki H, Takada S (2015) Partial unwrapping and histone tail dynamics in nucleosome revealed by coarse-grained molecular simulations. PLoS Comput Biol 8: e1004443.
    [26] Walter JC, Baiesi M, Barkema G, et al. (2013) Unwinding relaxation dynamics of polymers. Phys Rev Lett 110: 068301. doi: 10.1103/PhysRevLett.110.068301
    [27] Walter JC, Baiesi M, Carlon E, et al. (2014) Unwinding dynamics of a helically wrapped polymer. Macromolecules 47: 4840-4846. doi: 10.1021/ma500635h
    [28] Zheng M, Jagota A, Semke ED, et al. (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater 2: 338-342. doi: 10.1038/nmat877
    [29] Nakashima N, Okuzono S, Murakami H, et al. (2003) DNA dissolves single-walled carbon nanotubes in water. Chem Lett 32: 456-457. doi: 10.1246/cl.2003.456
    [30] Heller DA, Jeng ES, Yeung TK, et al. (2006) Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311: 508-511. doi: 10.1126/science.1120792
    [31] Manohar S, Tang T, Jagota A (2007) Structure of homopolymer DNA-CNT hybrids. J Phys Chem C 111: 17835-17845. doi: 10.1021/jp071316x
    [32] Alegret N, Santos E, Rodríguez-Fortea A, et al. (2012) Disruption of small double stranded DNA molecules on carbon nanotubes: A molecular dynamics study. Chem Phys Lett 525-526: 120-124. doi: 10.1016/j.cplett.2011.12.077
    [33] Marko JF (1997) Supercoiled and braided DNA under tension. Phys Rev E 55: 1758-1772. doi: 10.1103/PhysRevE.55.1758
    [34] Stone MD, Bryant Z, Crisona NJ, et al. (2003) Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc Natl Acad Sci U S A 100: 8654-8659. doi: 10.1073/pnas.1133178100
    [35] Charvin G, Vologodskii A, Bensimon D, et al. (2005) Braiding DNA: Experiments, simulations, and models. Biophys J 88: 4124-4136. doi: 10.1529/biophysj.104.056945
    [36] Timsit Y, Várnai P (2010) Helical chirality: a link between local interactions and global topology in DNA. PLoS One 5: e9326-e9326.
    [37] Várnai P, Timsit Y (2010) Differential stability of DNA crossovers in solution mediated by divalent cations. Nucleic Acids Res 38: 4163-4172. doi: 10.1093/nar/gkq150
    [38] Timsit Y (2013) DNA self-assembly: from chirality to evolution. Int J Mol Sci 14: 8252-8270. doi: 10.3390/ijms14048252
    [39] Cherstvy AG (2008) DNA cholesteric phases: The role of DNA molecular chirality and DNA-DNA electrostatic interactions. J Phys Chem B 112: 12585-12595. doi: 10.1021/jp801220p
    [40] Kornyshev AA, Leikin S (2001) Sequence recognition in the pairing of DNA duplexes. Phys Rev Lett 86: 3666-3669. doi: 10.1103/PhysRevLett.86.3666
    [41] Kornyshev AA, Leikin S, Lee DJ, et al. (2007) Structure and interactions of biological helices. Rev Mod Phys 79: 943-996. doi: 10.1103/RevModPhys.79.943
    [42] Cortini R, Kornyshev AA, Lee DJ, et al. (2011) Electrostatic braiding and homologous pairing of DNA double helices. Biophys J 101: 875-884. doi: 10.1016/j.bpj.2011.06.058
    [43] Cortini R, Lee DJ, Kornyshev AA (2012) Chiral electrostatics breaks the mirror symmetry of DNA supercoiling. J Phys Condens Matter 24: 162203. doi: 10.1088/0953-8984/24/16/162203
    [44] Lee DJ, Cortini R, Korte AP, et al. (2013) Chiral effects in dual-DNA braiding. Soft Matt 41: 9833-9848.
    [45] Lee DJ (2014) Undulations in a weakly interacting mechanically generated molecular braid under tension. J Phys Condens Matter 26: 245101. doi: 10.1088/0953-8984/26/24/245101
    [46] Lee DJ (2015) Collapse and coexistence for a molecular braid with an attractive interaction component subject to mechanical forces. J Phys Condens Matter 27: 145101. doi: 10.1088/0953-8984/27/14/145101
    [47] Gore J, Bryant Z, Nöllmann M, et al. (2006) DNA overwinds when stretched. Nature 442: 836-839. doi: 10.1038/nature04974
    [48] Lionnet T, Joubaud S, Lavery R, et al. Wringing out DNA. (2006) Phys Rev Lett 96: 178102.
    [49] Strick TR, Allemand JF, Bensimon D, et al. (1998) Behavior of Supercoiled DNA. Biophys J 74: 2016-2028. doi: 10.1016/S0006-3495(98)77908-1
    [50] Allemand JF, Bensimon D, Lavery R, et al. (1998) Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc Natl Acad Sci U S A 95: 14152-14157. doi: 10.1073/pnas.95.24.14152
    [51] Neukirch S (2004) Extracting DNA Twist Rigidity from Experimental Supercoiling Data. Phys Rev Lett 93: 198107. doi: 10.1103/PhysRevLett.93.198107
    [52] Besteman K, Hage S, Dekker NH, et al. (2007) Role of Tension and Twist in Single-Molecule DNA Condensation. Phys Rev Lett 98: 058103. doi: 10.1103/PhysRevLett.98.058103
    [53] Marko JF (2007) Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Phys Rev E 76: 021926. doi: 10.1103/PhysRevE.76.021926
    [54] Marko JF, Siggia ED (1994) Bending and twisting elasticity of DNA, Macromolecules 27: 981-988.
    [55] Kulić IM, Andrienko D, Deserno M (2004) Twist-bend instability for toroidal DNA condensates. Europhys Lett 67: 418-424. doi: 10.1209/epl/i2004-10076-x
    [56] Yanao T, Yoshikawa K (2014) Chiral symmetry breaking of a double-stranded helical chain through bend-writhe coupling. Phys Rev E 89: 062713.
    [57] Kornyshev AA, Leikin S (2013) Helical structure determines different susceptibilities of dsDNA, dsRNA, and tsDNA to counterion-induced condensation. Biophys J 104: 2031-2041. doi: 10.1016/j.bpj.2013.03.033
    [58] Lee D (2014) Self-consistent treatment of electrostatics in molecular DNA braiding through external forces. Phys Rev E 89: 062711.
    [59] Savelyev A, Papoian GA (2009) Molecular renormalization group coarse-graining of polymer chains: Application to double-stranded DNA. Biophys J 96: 4044-4052. doi: 10.1016/j.bpj.2009.02.067
    [60] Knotts AT, Rathore N, Schwartz DC, et al. (2007) A coarse grain model for DNA. J Chem Phys 126: 084901. doi: 10.1063/1.2431804
    [61] Ouldridge TE, Louis AA, Doye JPK (2011) Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J Chem Phys 134: 085101. doi: 10.1063/1.3552946
    [62] Snodin BEK, Randisi F, Mosayebi M, et al. (2015) Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. J Chem Phys 142: 234901. doi: 10.1063/1.4921957
    [63] Patriciu A, Chirikjian GS, Pappu RV (2004) Analysis of the conformational dependence of mass-metric tensor determinants in serial polymers with constraints. J Chem Phys 121: 12708-12720. doi: 10.1063/1.1821492
    [64] Yanao T, Yoshikawa K (2008) Elastic origin of chiral selection in DNA wrapping. Phys Rev E 77: 021904. doi: 10.1103/PhysRevE.77.021904
    [65] Geggier S, Vologodskii A (2010) Sequence dependence of DNA bending rigidity. Proc Natl Acad Sci U S A 107: 15421-15426. doi: 10.1073/pnas.1004809107
    [66] Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. (1953) Equation of State Calculations by Fast Computing Machines. J Chem Phys 21: 1087-1092. doi: 10.1063/1.1699114
    [67] Allen MP, Tildesley DJ (1987) Computer simulation of liquids, Oxford: Oxford Science Publications.
    [68] Humphrey W, Dalke A, Schulten K (1996) VMD: Visual Molecular Dynamics. J Mol Graphics 14: 33-38. doi: 10.1016/0263-7855(96)00018-5
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5832) PDF downloads(1143) Cited by(1)

Article outline

Figures and Tables

Figures(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog