Research article

Existence result for a nonlinear nonlocal system modeling suspension bridges

  • Received: 07 September 2018 Accepted: 28 November 2018 Published: 04 December 2018
  • MSC : 35G61, 74B20

  • A nonlinear nonlocal partial di erential system modeling suspension bridge is considered. We analyze the well-posedness of the "hyperbolic" type system through a Galerkin procedure. A correspond linear problem admits a unique solution, which makes us find that the original system also has a solution with high regularity.

    Citation: Yongda Wang. Existence result for a nonlinear nonlocal system modeling suspension bridges[J]. AIMS Mathematics, 2018, 3(4): 608-624. doi: 10.3934/Math.2018.4.608

    Related Papers:

    [1] Zayd Hajjej . A suspension bridges with a fractional time delay: Asymptotic behavior and Blow-up in finite time. AIMS Mathematics, 2024, 9(8): 22022-22040. doi: 10.3934/math.20241070
    [2] Xing Zhang, Lei Liu, Yan-Jun Liu . Adaptive NN control based on Butterworth low-pass filter for quarter active suspension systems with actuator failure. AIMS Mathematics, 2021, 6(1): 754-771. doi: 10.3934/math.2021046
    [3] Zayd Hajjej . On the exponential decay of a Balakrishnan-Taylor plate with strong damping. AIMS Mathematics, 2024, 9(6): 14026-14042. doi: 10.3934/math.2024682
    [4] Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301
    [5] Yaqiong Liu, Yunting Li, Qiuping Liao, Yunhui Yi . Classification of nonnegative solutions to fractional Schrödinger-Hatree-Maxwell type system. AIMS Mathematics, 2021, 6(12): 13665-13688. doi: 10.3934/math.2021794
    [6] Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas . A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078
    [7] Bashir Ahmad, Ahmed Alsaedi, Mona Alsulami, Sotiris K. Ntouyas . Existence theory for coupled nonlinear third-order ordinary differential equations with nonlocal multi-point anti-periodic type boundary conditions on an arbitrary domain. AIMS Mathematics, 2019, 4(6): 1634-1663. doi: 10.3934/math.2019.6.1634
    [8] Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad . Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions. AIMS Mathematics, 2022, 7(5): 8314-8329. doi: 10.3934/math.2022463
    [9] Madeaha Alghanmi, Shahad Alqurayqiri . Existence results for a coupled system of nonlinear fractional functional differential equations with infinite delay and nonlocal integral boundary conditions. AIMS Mathematics, 2024, 9(6): 15040-15059. doi: 10.3934/math.2024729
    [10] Ahmed M.A. El-Sayed, Eman M.A. Hamdallah, Hameda M. A. Alama . Multiple solutions of a Sturm-Liouville boundary value problem of nonlinear differential inclusion with nonlocal integral conditions. AIMS Mathematics, 2022, 7(6): 11150-11164. doi: 10.3934/math.2022624
  • A nonlinear nonlocal partial di erential system modeling suspension bridge is considered. We analyze the well-posedness of the "hyperbolic" type system through a Galerkin procedure. A correspond linear problem admits a unique solution, which makes us find that the original system also has a solution with high regularity.


    [1] G. Arioli, F. Gazzola, On a nonlinear nonlocal hyperbolic system modeling suspension bridges, Milan J. Math., 83 (2015), 211-236.
    [2] G. Arioli, F. Gazzola, Torsional instability in suspension bridges: the Tacoma Narrows Bridge case, Commun. Nonlinear Sci., 42 (2017), 342-357.
    [3] J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.
    [4] C. Baiocchi, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte non lineari del secondo ordine in spazi di Hilbert, Ricerche Mat., 16 (1967), 27-95.
    [5] H. Brezis, Operateurs maximaux monotones, North-Holland, Amsterdam, 1973.
    [6] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955.
    [7] R. Courant, D. Hilbert, Methods of mathematical physics, Intersciences Publishers, New York, 1953.
    [8] A. Falocchi, Structural instability in a simplified nonlinear model for suspension bridges, AIMETA 2017-Proceedings of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, 4 (2017), 746-759.
    [9] A. Falocchi, Torsional instability and sensitivity analysis in a suspension bridge model related to the Melan equation, Commun. Nonlinear Sci., 67 (2019), 60-75.
    [10] A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Cont. Dyn-A, 35 (2015), 5879-5908.
    [11] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, 68, Springer, 1997.
    [12] Y. Wang, Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., 418 (2014), 713-733.
  • This article has been cited by:

    1. Mo’tassem Al-arydah, Robert Smith, Adding Education to “Test and Treat”: Can We Overcome Drug Resistance?, 2015, 2015, 1110-757X, 1, 10.1155/2015/781270
    2. Guillaume Cantin, Cristiana J. Silva, Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models, 2019, 4, 2473-6988, 1145, 10.3934/math.2019.4.1145
    3. Nina T. Harawa, Russell Brewer, Victoria Buckman, Santhoshini Ramani, Aditya Khanna, Kayo Fujimoto, John A. Schneider, HIV, Sexually Transmitted Infection, and Substance Use Continuum of Care Interventions Among Criminal Justice–Involved Black Men Who Have Sex With Men: A Systematic Review, 2018, 108, 0090-0036, e1, 10.2105/AJPH.2018.304698
    4. Sarah T Roberts, Aditya S Khanna, Ruanne V Barnabas, Steven M Goodreau, Jared M Baeten, Connie Celum, Susan Cassels, Estimating the impact of universal antiretroviral therapy for HIV serodiscordant couples through home HIV testing: insights from mathematical models, 2016, 19, 17582652, 20864, 10.7448/IAS.19.1.20864
    5. Wim Delva, Gabriel E. Leventhal, Stéphane Helleringer, Connecting the dots, 2016, 30, 0269-9370, 2009, 10.1097/QAD.0000000000001184
    6. Kevin M. Weiss, Steven M. Goodreau, Martina Morris, Pragati Prasad, Ramya Ramaraju, Travis Sanchez, Samuel M. Jenness, Egocentric sexual networks of men who have sex with men in the United States: Results from the ARTnet study, 2020, 30, 17554365, 100386, 10.1016/j.epidem.2020.100386
    7. Aditya Subhash Khanna, Mert Edali, Jonathan Ozik, Nicholson Collier, Anna Hotton, Abigail Skwara, Babak Mahdavi Ardestani, Russell Brewer, Kayo Fujimoto, Nina Harawa, John A. Schneider, Projecting the number of new HIV infections to formulate the "Getting to Zero" strategy in Illinois, USA, 2021, 18, 1551-0018, 3922, 10.3934/mbe.2021196
    8. Qun Liu, Daqing Jiang, Stationary distribution and extinction of a stochastic multigroup DS-DI-a model for the transmission of HIV, 2022, 40, 0736-2994, 830, 10.1080/07362994.2021.1963776
    9. Anna L. Hotton, Francis Lee, Daniel Sheeler, Jonathan Ozik, Nicholson Collier, Mert Edali, Babak Mahdavi Ardestani, Russell Brewer, Katrina M. Schrode, Kayo Fujimoto, Nina T. Harawa, John A. Schneider, Aditya S. Khanna, Impact of post-incarceration care engagement interventions on HIV transmission among young Black men who have sex with men and their sexual partners: an agent-based network modeling study, 2023, 28, 2667193X, 100628, 10.1016/j.lana.2023.100628
    10. Anna L. Hotton, Pedro Nascimento de Lima, Arindam Fadikar, Nicholson T. Collier, Aditya S. Khanna, Darnell N. Motley, Eric Tatara, Sara Rimer, Ellen Almirol, Harold A. Pollack, John A. Schneider, Robert J. Lempert, Jonathan Ozik, Incorporating social determinants of health into agent-based models of HIV transmission: methodological challenges and future directions, 2025, 5, 2674-1199, 10.3389/fepid.2025.1533119
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4049) PDF downloads(600) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog