Research article Special Issues

Classification of nonnegative solutions to fractional Schrödinger-Hatree-Maxwell type system

  • Received: 07 July 2021 Accepted: 07 September 2021 Published: 26 September 2021
  • MSC : 35B08, 35B50, 35J61, 35R11

  • In this paper, we are concerned with the fractional Schrödinger-Hatree-Maxwell type system. We derive the forms of the nonnegative solution and classify nonlinearities by appling a variant (for nonlocal nonlinearity) of the direct moving spheres method for fractional Laplacians. The main ingredients are the variants (for nonlocal nonlinearity) of the maximum principles, i.e., narrow region principle (Theorem 2.3).

    Citation: Yaqiong Liu, Yunting Li, Qiuping Liao, Yunhui Yi. Classification of nonnegative solutions to fractional Schrödinger-Hatree-Maxwell type system[J]. AIMS Mathematics, 2021, 6(12): 13665-13688. doi: 10.3934/math.2021794

    Related Papers:

  • In this paper, we are concerned with the fractional Schrödinger-Hatree-Maxwell type system. We derive the forms of the nonnegative solution and classify nonlinearities by appling a variant (for nonlocal nonlinearity) of the direct moving spheres method for fractional Laplacians. The main ingredients are the variants (for nonlocal nonlinearity) of the maximum principles, i.e., narrow region principle (Theorem 2.3).



    加载中


    [1] J. Bertoin, Lévy processes, Cambridge: Cambridge University Press, 1996.
    [2] J. P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Phys. Rep., 195 (1990), 127–293. doi: 10.1016/0370-1573(90)90099-N
    [3] C. Brandle, E. Colorado, A. de Pablo, U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh, 143A (2013), 39–71.
    [4] X. Cabré, J. G. Tan, Positive solutions of nonlenear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052–2093. doi: 10.1016/j.aim.2010.01.025
    [5] L. A. Caffarelli, B. Gidas, J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271–297. doi: 10.1002/cpa.3160420304
    [6] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Differ. Equ., 32 (2007), 1245–1260. doi: 10.1080/03605300600987306
    [7] D. M. Cao, W. Dai, Classification of nonnegative solutions to a bi-harmonic equation with Hartree type nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 149 (2019), 979–994. doi: 10.1017/prm.2018.67
    [8] D. M. Cao, W. Dai, G. L. Qin, Super poly-harmonic properties, Liouville theorems and classification of nonnegative solutions to equations involving higher-order fractional Laplacians, Trans. Amer. Math. Soc., 374 (2021), 4781–4813. doi: 10.1090/tran/8389
    [9] S. A. Chang, P. C. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry, Math. Res. Lett., 4 (1997), 91–102. doi: 10.4310/MRL.1997.v4.n1.a9
    [10] W. Chen, Y. Fang, R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167–198. doi: 10.1016/j.aim.2014.12.013
    [11] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615–622.
    [12] W. Chen, C. Li, On Nirenberg and related problems–a necessary and sufficient condition, Comm. Pure Appl. Math., 48 (1995), 657–667. doi: 10.1002/cpa.3160480606
    [13] W. X. Chen, C. M. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci., 29 (2009), 949–960. doi: 10.1016/S0252-9602(09)60079-5
    [14] W. X. Chen, C. M. Li, Methods on nonlinear elliptic equations, American Institute of Mathematical Sciences, 2010.
    [15] W. X. Chen, C. M. Li, G. F. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var., 56 (2017), 29. doi: 10.1007/s00526-017-1110-3
    [16] W. X. Chen, C. M. Li, Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404–437. doi: 10.1016/j.aim.2016.11.038
    [17] W. X. Chen, Y. Li, P. Ma, The fractional laplacian, Hackensack, NJ: World Scitific, 2019.
    [18] W. X. Chen, C. M. Li, B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330–343. doi: 10.1002/cpa.20116
    [19] W. X. Chen, C. M. Li, B. Ou, Classification of solutions for a system of integral equations, Commun. Part. Differ. Equ., 30 (2005), 59–65. doi: 10.1081/PDE-200044445
    [20] W. X. Chen, Y. Li, R. B. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal., 272 (2017), 4131–4157. doi: 10.1016/j.jfa.2017.02.022
    [21] W. X. Chen, J. Y. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differ. Equ., 260 (2016), 4758–4785. doi: 10.1016/j.jde.2015.11.029
    [22] P. Constantin, Euler equations, Navier-Stokes equations and turbulence, In: Mathematical foundation of turbulent viscous flows, Springer, Berlin, Heidelberg, 2006, 1–43.
    [23] L. Caffarelli, L. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. Math., 171 (2010), 1903–1930. doi: 10.4007/annals.2010.171.1903
    [24] W. Dai, J. H. Huang, Y. Qin, B. Wang, Y. Q. Fang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, DCDS, 39 (2019), 1389–1403. doi: 10.3934/dcds.2018117
    [25] W. Dai, Y. Q. Fang, G. L. Qin, Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differ. Equ., 265 (2018), 2044–2063. doi: 10.1016/j.jde.2018.04.026
    [26] W. Dai, Z. Liu, Classification of nonnegative solutions to static Schödinger-Hartree and Schrödinger-Maxwell equations with combined nonlinearities, Calc. Var. PDE, 58 (2019), 156. doi: 10.1007/s00526-019-1595-z
    [27] W. Dai, Z. Liu, G. Z. Lu, Liouville type theorems for PDE and IE systems involving fractional Laplacian on a half space, Potential Anal., 46 (2017), 569–588. doi: 10.1007/s11118-016-9594-6
    [28] W. Dai, Z. Liu, G. L. Qin, Classification of nonnegative solutions to static Schrödinger-Hatree-Maxwell type equations, SIAM J. Math. Anal., 53 (2021), 1379–1410. doi: 10.1137/20M1341908
    [29] W. Dai, G. L. Qin, Classification of nonnegative classical solutions to third-order equations, Adv. Math., 328 (2018), 822–857. doi: 10.1016/j.aim.2018.02.016
    [30] Y. Q. Fang, W. X. Chen, A Liouville type theorem for poly-harmonic Dirichlet problems in a half space, Adv. Math., 229 (2012), 2835–2867. doi: 10.1016/j.aim.2012.01.018
    [31] R. L. Frank, E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, In: Spectral theory, function spaces and inequalities, Basel: Springer, 2012, 55–67.
    [32] J. Frohlich, E. Lenzmann, Mean-field limit of quantum bose gases and nonlinear Hartree equation, Séminaire Équations aux dérivées partielles (Polytechnique) dit aussi "Séminaire Goulaouic-Schwart", 2003–2004.
    [33] B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via maximum principle, Commun. Math. Phys., 68 (1979), 209–243. doi: 10.1007/BF01221125
    [34] A. Hanyga, Multidimensional solutions of time-fractional diffusion-wave equations, Proc. R. Soc. Lond. A, 458 (2002), 933–957. doi: 10.1098/rspa.2001.0904
    [35] Y. Y. Hu, Z. Liu, Classification of positive solutions for an integral system on the half space, Nonlinear Anal., 199 (2020), 111935. doi: 10.1016/j.na.2020.111935
    [36] S. Kheybari, M. T. Darvishi, M. S. Hashemi, A semi-analytical approach to Caputo type time-fractional modified anomalous sub-diffusion equations, Appl. Numer. Math., 158 (2020), 103–122. doi: 10.1016/j.apnum.2020.07.023
    [37] P. Le, Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order, DCDS, 41 (2021), 1605–1626. doi: 10.3934/dcds.2020333
    [38] Y. T. Lei, Qualitative analysis for the static Hartree-type equations, SIAM J. Math. Anal., 45 (2013), 388–406. doi: 10.1137/120879282
    [39] Y. Y. Li, L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27–87. doi: 10.1007/BF02786551
    [40] Y. Y. Li, M. J. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383–417.
    [41] E. H. Lieb, B. Simon, The Hartree-Fock theory for Coulomb systems, Commun. Math. Phys., 53 (1977), 185–194. doi: 10.1007/BF01609845
    [42] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 118 (1983), 349–374. doi: 10.2307/2007032
    [43] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbb{R}^{n}$, Comment. Math. Helv., 73 (1998), 206–231. doi: 10.1007/s000140050052
    [44] S. M. Liu, Regularity, symmetry, and uniqueness of some integral type quasilinear equations, Nonlinear Anal.-Theor. 71 (2009), 1796–1806.
    [45] Z. Liu, Maximum principles and monotonicity of solutions for fractional $p$-equations in unbounded domains, J. Differ. Equ., 270 (2021), 1043–1078. doi: 10.1016/j.jde.2020.09.001
    [46] Z. Liu, Symmetry and monotonicity of positive solutions for an integral system with negative exponents, Pac. J. Math., 300 (2019), 419–430. doi: 10.2140/pjm.2019.300.419
    [47] Z. Liu, W. Dai, A Liouville type theorem for poly-harmonic system with Dirichlet boundary conditions in a half space, Adv. Nonlinear Studi., 15 (2015), 117–134. doi: 10.1515/ans-2015-0106
    [48] L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Rational Mech. Anal., 195 (2010), 455–467. doi: 10.1007/s00205-008-0208-3
    [49] P. Padilla, On some nonlinear elliptic equations, Doctoral dissertation, Thesis, New York: Courant Institute, 1994.
    [50] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton, New Jersey: Princeton University Press, 1970.
    [51] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. doi: 10.1007/BF00250468
    [52] J. C. Wei, X. W. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207–228. doi: 10.1007/s002080050258
    [53] D. Y. Xu, Y. T. Lei, Classification of positive solutions for a static Schrödinger-Maxwell equation with fractional Laplacian, Appl. Math. Lett., 43 (2015), 85–89. doi: 10.1016/j.aml.2014.12.007
    [54] R. Zhuo, W. X. Chen, X. W. Cui, Z. X. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, DCDS, 36 (2016), 1125–1141.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1948) PDF downloads(63) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog