Alternative transmission modes for Trypanosoma cruzi

  • Received: 01 July 2009 Accepted: 29 June 2018 Published: 01 June 2010
  • MSC : Primary: 92D30, 92D40; Secondary: 92D25.

  • The parasite Trypanosoma cruzi, which causes Chagas' disease, is typically transmitted through a cycle in which vectors become infected through bloodmeals on infected hosts and then infect other hosts through defecation at the sites of subsequent feedings. The vectors native to the southeastern United States, however, are inefficient at transmitting T. cruzi in this way, which suggests that alternative transmission modes may be responsible for maintaining the established sylvatic infection cycle. Vertical and oral transmission of sylvatic hosts, as well as differential behavior of infected vectors, have been observed anecdotally. This study develops a model which accounts for these alternative modes of transmission, and applies it to transmission between raccoons and the vector Triatoma sanguisuga. Analysis of the system of nonlinear differential equations focuses on endemic prevalence levels and on the infection's basic reproductive number, whose form may account for how a combination of traditionally secondary infection routes can maintain the transmission cycle when the usual primary route becomes ineffective.

    Citation: Christopher M. Kribs-Zaleta. Alternative transmission modes for Trypanosoma cruzi [J]. Mathematical Biosciences and Engineering, 2010, 7(3): 657-673. doi: 10.3934/mbe.2010.7.657

    Related Papers:

    [1] Britnee Crawford, Christopher Kribs-Zaleta . A metapopulation model for sylvatic T. cruzi transmission with vector migration. Mathematical Biosciences and Engineering, 2014, 11(3): 471-509. doi: 10.3934/mbe.2014.11.471
    [2] Lin Chen, Xiaotian Wu, Yancong Xu, Libin Rong . Modelling the dynamics of Trypanosoma rangeli and triatomine bug with logistic growth of vector and systemic transmission. Mathematical Biosciences and Engineering, 2022, 19(8): 8452-8478. doi: 10.3934/mbe.2022393
    [3] Mlyashimbi Helikumi, Moatlhodi Kgosimore, Dmitry Kuznetsov, Steady Mushayabasa . Dynamical and optimal control analysis of a seasonal Trypanosoma brucei rhodesiense model. Mathematical Biosciences and Engineering, 2020, 17(3): 2530-2556. doi: 10.3934/mbe.2020139
    [4] Biao Tang, Weike Zhou, Yanni Xiao, Jianhong Wu . Implication of sexual transmission of Zika on dengue and Zika outbreaks. Mathematical Biosciences and Engineering, 2019, 16(5): 5092-5113. doi: 10.3934/mbe.2019256
    [5] Yijun Lou, Li Liu, Daozhou Gao . Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1301-1316. doi: 10.3934/mbe.2017067
    [6] A. M. Elaiw, N. H. AlShamrani . Stability of HTLV/HIV dual infection model with mitosis and latency. Mathematical Biosciences and Engineering, 2021, 18(2): 1077-1120. doi: 10.3934/mbe.2021059
    [7] Andrea Pugliese, Abba B. Gumel, Fabio A. Milner, Jorge X. Velasco-Hernandez . Sex-biased prevalence in infections with heterosexual, direct, and vector-mediated transmission: a theoretical analysis. Mathematical Biosciences and Engineering, 2018, 15(1): 125-140. doi: 10.3934/mbe.2018005
    [8] Charlène N. T. Mfangnia, Henri E. Z. Tonnang, Berge Tsanou, Jeremy Herren . Mathematical modelling of the interactive dynamics of wild and Microsporidia MB-infected mosquitoes. Mathematical Biosciences and Engineering, 2023, 20(8): 15167-15200. doi: 10.3934/mbe.2023679
    [9] Chandrani Banerjee, Linda J. S. Allen, Jorge Salazar-Bravo . Models for an arenavirus infection in a rodent population: consequences of horizontal, vertical and sexual transmission. Mathematical Biosciences and Engineering, 2008, 5(4): 617-645. doi: 10.3934/mbe.2008.5.617
    [10] A. M. Elaiw, N. H. AlShamrani . Analysis of an HTLV/HIV dual infection model with diffusion. Mathematical Biosciences and Engineering, 2021, 18(6): 9430-9473. doi: 10.3934/mbe.2021464
  • The parasite Trypanosoma cruzi, which causes Chagas' disease, is typically transmitted through a cycle in which vectors become infected through bloodmeals on infected hosts and then infect other hosts through defecation at the sites of subsequent feedings. The vectors native to the southeastern United States, however, are inefficient at transmitting T. cruzi in this way, which suggests that alternative transmission modes may be responsible for maintaining the established sylvatic infection cycle. Vertical and oral transmission of sylvatic hosts, as well as differential behavior of infected vectors, have been observed anecdotally. This study develops a model which accounts for these alternative modes of transmission, and applies it to transmission between raccoons and the vector Triatoma sanguisuga. Analysis of the system of nonlinear differential equations focuses on endemic prevalence levels and on the infection's basic reproductive number, whose form may account for how a combination of traditionally secondary infection routes can maintain the transmission cycle when the usual primary route becomes ineffective.


  • This article has been cited by:

    1. Christopher M. Kribs-Zaleta, Anuj Mubayi, The role of adaptations in two-strain competition for sylvaticTrypanosoma cruzitransmission, 2012, 6, 1751-3758, 813, 10.1080/17513758.2012.710339
    2. Mondal Hasan Zahid, Christopher M. Kribs, Decoys and Dilution: The Impact of Incompetent Hosts on Prevalence of Chagas Disease, 2020, 82, 0092-8240, 10.1007/s11538-020-00710-5
    3. Christopher M. Kribs, Christopher Mitchell, Host switching vs. host sharing in overlapping sylvaticTrypanosoma cruzitransmission cycles, 2015, 9, 1751-3758, 247, 10.1080/17513758.2015.1075611
    4. Manuel Adrian Acuña-Zegarra, Daniel Olmos-Liceaga, Jorge X. Velasco-Hernández, The role of animal grazing in the spread of Chagas disease, 2018, 457, 00225193, 19, 10.1016/j.jtbi.2018.08.025
    5. Juan M. Cordovez, Lina Maria Rendon, Camila Gonzalez, Felipe Guhl, Using the basic reproduction number to assess the effects of climate change in the risk of Chagas disease transmission in Colombia, 2014, 129, 0001706X, 74, 10.1016/j.actatropica.2013.10.003
    6. Anuj Mubayi, Christopher Kribs, Viswanathan Arunachalam, Carlos Castillo-Chavez, 2019, 40, 9780444641526, 157, 10.1016/bs.host.2018.11.001
    7. Pierre Nouvellet, Zulma M. Cucunubá, Sébastien Gourbière, 2015, 87, 9780128032565, 135, 10.1016/bs.apar.2014.12.004
    8. Christopher Kribs-Zaleta, Sociological phenomena as multiple nonlinearities: MTBI's new metaphor for complex human interactions, 2013, 10, 1551-0018, 1587, 10.3934/mbe.2013.10.1587
    9. Manuel Sánchez-Moreno, Enrique Alvarez-Manzaneda, Ramón Gutierrez-Sánchez, Inmaculada Ramírez-Macías, María José Rosales, Rachid Chahboun, Francisco Olmo, Clotilde Marín, Ibtissam Messouri, In Vitro and In Vivo Studies of the Trypanocidal Activity of Four Terpenoid Derivatives against Trypanosoma cruzi, 2012, 87, 0002-9637, 481, 10.4269/ajtmh.2012.11-0471
    10. Daniel J. Coffield, Anna Maria Spagnuolo, Meir Shillor, Ensela Mema, Bruce Pell, Amanda Pruzinsky, Alexandra Zetye, Herbert B. Tanowitz, A Model for Chagas Disease with Oral and Congenital Transmission, 2013, 8, 1932-6203, e67267, 10.1371/journal.pone.0067267
    11. Christopher M. Kribs-Zaleta, Graphical analysis of evolutionary trade-off in sylvatic Trypanosoma cruzi transmission modes, 2014, 353, 00225193, 34, 10.1016/j.jtbi.2014.03.002
    12. Juan M. Cordovez, Camilo Sanabria, Environmental Changes Can Produce Shifts in Chagas Disease Infection Risk, 2014, 8s2, 1178-6302, EHI.S16002, 10.4137/EHI.S16002
    13. Massimo Stella, Cecilia S. Andreazzi, Sanja Selakovic, Alireza Goudarzi, Alberto Antonioni, Parasite spreading in spatial ecological multiplex networks, 2016, 2051-1310, cnw028, 10.1093/comnet/cnw028
    14. Perrine Pelosse, Christopher M. Kribs-Zaleta, The role of the ratio of vector and host densities in the evolution of transmission modes in vector-borne diseases. The example of sylvatic Trypanosoma cruzi, 2012, 312, 00225193, 133, 10.1016/j.jtbi.2012.07.028
    15. Leidi Herrera, Trypanosoma cruzi, the Causal Agent of Chagas Disease: Boundaries between Wild and Domestic Cycles in Venezuela, 2014, 2, 2296-2565, 10.3389/fpubh.2014.00259
    16. Kamuela E. Yong, Anuj Mubayi, Christopher M. Kribs, Agent-based mathematical modeling as a tool for estimating Trypanosoma cruzi vector–host contact rates, 2015, 151, 0001706X, 21, 10.1016/j.actatropica.2015.06.025
    17. F. O. R. OLIVEIRA-JR, C. R. ALVES, F. S. SILVA, L. M. C. CÔRTES, L. TOMA, R. I. BOUÇAS, T. AGUILAR, H. B. NADER, M. C. S. PEREIRA, Trypanosoma cruzi heparin-binding proteins present a flagellar membrane localization and serine proteinase activity, 2013, 140, 0031-1820, 171, 10.1017/S0031182012001448
    18. Bruce Y. Lee, Sarah M. Bartsch, Laura Skrip, Daniel L. Hertenstein, Cameron M. Avelis, Martial Ndeffo-Mbah, Carla Tilchin, Eric O. Dumonteil, Alison Galvani, Ricardo E. Gürtler, Are the London Declaration’s 2020 goals sufficient to control Chagas disease?: Modeling scenarios for the Yucatan Peninsula, 2018, 12, 1935-2735, e0006337, 10.1371/journal.pntd.0006337
    19. MJ. Rovirosa-Hernández, A. López-Monteon, F. García-Orduña, J. Torres-Montero, D. Guzmán-Gómez, E. Dumonteil, E. Waleckx, O. Lagunes-Merino, D. Canales-Espinoza, A. Ramos-Ligonio, Natural infection with Trypanosoma cruzi in three species of non-human primates in southeastern Mexico: A contribution to reservoir knowledge, 2021, 213, 0001706X, 105754, 10.1016/j.actatropica.2020.105754
    20. A.M. Jansen, A.L.R. Roque, S.C.C. Xavier, 2017, 9780128010297, 265, 10.1016/B978-0-12-801029-7.00012-5
    21. Daniel J. Coffield, Anna Maria Spagnuolo, Ryan Capouellez, Gabrielle A. Stryker, A mathematical model for Chagas disease transmission with neighboring villages, 2023, 9, 2297-4687, 10.3389/fams.2023.1225137
    22. Neci Matos Soares, Nilo Manoel Pereira Vieira Barreto, Marina Morena Brito Farias, Cíntia de Lima Oliveira, Weslei Almeida Costa Araújo, Joelma Nascimento de Souza, Márcia Cristina Aquino Teixeira, Noilson Lázaro Sousa Gonçalves, Daniel Dias Sampaio, Tycha Bianca Sabaini Pavan, Paola Alejandra Fiorani Celedon, Nilson Ivo Tonin Zanchin, Fred Luciano Neves Santos, Seroepidemiological Survey of Chronic Chagas Disease in a Rural Community in Southern Bahia, Brazil, Using Recombinant Chimeric Antigens, 2023, 12, 2076-0817, 1222, 10.3390/pathogens12101222
  • Reader Comments
  • © 2010 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3059) PDF downloads(564) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog