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Abstract. The parasite Trypanosoma cruzi, which causes Chagas’ disease, is
typically transmitted through a cycle in which vectors become infected through
bloodmeals on infected hosts and then infect other hosts through defecation
at the sites of subsequent feedings. The vectors native to the southeastern
United States, however, are inefficient at transmitting T. cruzi in this way,
which suggests that alternative transmission modes may be responsible for
maintaining the established sylvatic infection cycle. Vertical and oral trans-

mission of sylvatic hosts, as well as differential behavior of infected vectors,
have been observed anecdotally. This study develops a model which accounts
for these alternative modes of transmission, and applies it to transmission be-
tween raccoons and the vector Triatoma sanguisuga. Analysis of the system
of nonlinear differential equations focuses on endemic prevalence levels and on
the infection’s basic reproductive number, whose form may account for how a
combination of traditionally secondary infection routes can maintain the trans-
mission cycle when the usual primary route becomes ineffective.

1. Introduction. The protozoan parasite Trypanosoma cruzi, known principally
for causing Chagas’ disease throughout Latin America, is found in mammalian
hosts and insect vectors from the United States south to Argentina and Chile.
Chagas’ disease affects millions of people throughout Latin America, and remains
enzootic in the wild—and widely underdiagnosed among humans—despite recent
successes in eradicating vectors in some areas. While transmission by blood trans-
fusion has become a concern in urban areas, including in the United States, where
many people have visited areas of Latin America at risk for Chagas’ disease infec-
tion, transmission in rural areas remains linked to the sylvatic transmission cycle in
which the parasite is maintained. In the southeastern United States (from Texas to
the Atlantic seaboard), T. cruzi has been documented in numerous hosts, includ-
ing raccoons, opossums, woodrats, skunks, dogs, armadillos, and even lemurs and
macaques in a breeding facility on a coastal island in Georgia [23, 30, 31, 32, 33].
To date six autochthonous cases of transmission to humans have been documented
in the U.S. [20]. The primary hosts in the southeastern U.S. appear to be raccoons
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and opossums, while the primary vector species is Triatoma sanguisuga [30, 32]
(others include Triatoma gerstaeckeri and Triatoma lecticularia).

Historically, the primary means of transmission has involved vectors feeding on
[usually sleeping] hosts. T. cruzi lives in the gut of blood-sucking insect vectors
such as Triatoma and Rhodnius sp. (often called cone-nose bugs or kissing bugs in
English, and chinches or vinchucas in Spanish), and in the bloodstream of domestic
and sylvatic hosts, including humans. (T. cruzi can also be found in hosts in
an intracellular form, the amastigote.) The typical infection cycle transmits the
parasite from host to vector during bloodmeals, and from vector to host through the
vector defecating on the host following (or during) feeding, and the parasite being
rubbed or scratched into the skin or mucous membranes of the host [16]—so-called
stercorarian transmission. However, the vectors native to the southeastern U.S., in
particular T. sanguisuga and T. gerstaeckeri, have long been observed to exhibit
behavior which appears to make them poor vehicles for transmitting T. cruzi. For
example, the delay between feeding and defecation, which can be no more than a few
minutes in some South American species (e.g., [2, 13, 18, 32]) is more than half an
hour in some species found in the southern U.S. [43, 44], by which time the vectors
may already have left the host. The vectors, known to be cautious, also avoid
climbing entirely onto the host while feeding, making stercorarian transmission
to hosts difficult, and likely insufficient to maintain the high levels of prevalence
observed in many host species. In addition, the strain of T. cruzi associated with
raccoons in the U.S., identified in [23, 36] as type IIa, is sometimes described as being
less virulent, suggesting a reduced infectivity compared to type I, the primary strain
responsible for causing Chagas’ disease in Central and South America. And yet the
parasite has long been observed to have a fairly high prevalence among raccoons
in the southeastern U.S. (reported between 37% and 61% in [45]). Consequently it
appears likely that this cycle involves additional transmission modes.

Recent research suggests that sylvatic hosts such as raccoons and opossums may
become infected through consumption of infected vectors [12, 33, 37, 47]; oral trans-
mission has also been confirmed in humans in these studies, as well as experimentally
(via intragastric injection) in mice, and potentially by macaques as well. A recent
mathematical study [26] superimposed a predator-prey structure upon a host-vector
SI infection cycle, and found standard disease dynamics and a reproductive number
in which the effect of oral transmission was essentially additive in the term for host
infection, as well as the possibility of vector consumption creating an Allee effect
or two locally stable positive densities (each with a different R0) in vector density.

This transmission route may be facilitated by the differential behavior of infected
vectors. Parasites have been known to affect vector behavior, for instance Añez
and East’s 1984 study of T. rangeli in which they found that parasites blocked
vectors’ throats, impeding their ability to draw blood and consequently making
them bite as much as 25 times as often as an uninfected vector [3]. Parasites may
also affect vector mobility. Normally triatomine T. cruzi vectors remain hidden in
dark areas and do not leave their hosts’ den, but anecdotal reports of vectors found
wandering in the open and later determined to be infected lend credence to this
idea. This increased mobility may increase vectors’ availability for consumption by
hosts. These behaviors, while disadvantageous for the vector, tend to amplify the
efficiency of the biting and oral transmission routes. Mathematically they may also
couple vector density dynamics to disease dynamics.
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In addition, vertical transmission has been documented in both sylvatic and
human hosts. Studies of mothers and children in Mexico, Argentina and Brazil
[4, 5, 6, 38] found a vertical transmission rate of 2% to 10%, and a study in Venezuela
found a vertical transmission rate among Wistar rats (R. norvegicus) of 9.1% for
one strain of T. cruzi isolated from dogs but none for a different strain isolated
from humans [29], which suggests variable adaptation of some strains to vertical
transmission. A higher prevalence of T. cruzi infection has also been observed in
raccoons, which are placental, than in opossums, which are marsupial (and thus
not susceptible to vertical transmission). Vertical transmission has been studied in
dengue vectors (e.g., [21]), and variable adaptation to it has been studied in directly
transmitted infections (e.g., [1, 17, 22]), but not among hosts in a vector-borne
disease. Mathematical modeling of T. cruzi has heretofore largely been limited to
its transmission in humans, including by transfusion, e.g., [34, 42].

In this paper we consider a model for the transmission of T. cruzi which incor-
porates all of these factors, in order to evaluate the relative contribution of each
transmission route to sustaining the sylvatic infection cycle. Each of the following
sections adds a feature, building up to a model which addresses the full picture.

2. Saturation in contact processes. One of the key issues in modeling biolog-
ical systems where population sizes may vary significantly is that of saturation in
the contact processes which drive mathematical models’ dynamics, by manifesting
as nonlinearities. The mean number of contacts made by an average individual in
one population per unit time with members of a second population depends, in
general, on the sizes of the two populations. If the two groups are subsets of the
same population, such as infected and uninfected members of the same species, then
the average per capita contact rate is usually considered a function of that larger
population size; if the groups making contact are not subject to a common bound
or resource limitation, then the average per capita contact rate may be considered
a function of the ratio of the two populations, as discussed further below. This con-
tact rate, say c(N), is often assumed to increase roughly linearly for small N but to
reach a saturation point for large N , beyond which it becomes largely independent
of N [7, 14, 24, 41]. This saturation occurs for logistical reasons due to the time
required for each contact (in the case of T. cruzi transmission, some kind of preda-
tion) to be made. Kribs-Zaleta [25, 27] studied ways to incorporate saturation into
general contact processes, comparing functional responses introduced by Holling to
describe saturation in predation, both sharp (type I, e.g., c(N) = c0 min(N/A, 1))
and smooth (type II, e.g., c(N) = c0N/(N + A)), as well as a range of intermediate
types. It was observed [27] that type I saturation gives rise to a wider variety of
behaviors than type II, and so, in order to capture all possible end behaviors of the
transmission cycle, this study will use type I saturation.

There are two relevant host-vector contact processes in this study of T. cruzi

infection: vector bloodmeals and host predation on vectors, both of which affect
disease transmission, and the latter of which affects vector density dynamics. Kribs-
Zaleta [26] used a variable contact rate (considering both of the options suggested
in [25]) to study vector consumption, and found that, when the saturation is sharp
enough, two locally stable vector densities may exist, giving the system “memory”.
As the vector density decoupled from disease dynamics in the absence of differential
behavior by infected vectors, and approached an equilibrium level monotonically,
standard incidence was used to describe the biting contact process which drives
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what is usually the primary infection pathway. Results found standard simple
disease dynamics, driven entirely by the infection’s reproductive number (in fact,
as will be shown in this paper for a more complicated model, in this case the results
are the same if one uses mass action incidence for the biting rate).

In general, these contact processes depend upon the ratio of vector to host popu-
lation densities. If this ratio is high enough, then vectors are so plentiful that hosts
can easily find them, while vectors are limited in their ability to contact hosts. In
this case the contact rate is a linear function of host density, and can be said to be
saturated in vector density. If, instead, the vector-host ratio is low, then hosts are
plentiful, vectors can find them easily, and hosts have a harder time finding vectors,
so that the contact rate is driven by (proportional to) vector density, and saturated
in host density. (The threshold vector-host density ratio is in general different for
each contact process.) We therefore denote the rate at which a single host makes
potentially infectious stercorarian contacts by ch(Nv/Nh), so that the total rate
of new stercorarian infections is given by multiplying ch (with units of 1/time) by
both the proportion Iv/Nv of infected vectors and the number of susceptible hosts.
(For simplicity the term “potentially”, which refers to the need to multiply by I/N ,
shall henceforth be omitted in discussing infection rates.) We also similarly denote
the rate at which a single vector makes infectious bloodmeal contacts by cv(Nv/Nh)
(units 1/time), and the per-host predation (effort) rate by Eh(Nv/Nh) (units vec-
tors/host/time). This is a modification of the model in [26], which used ch(Nv),
cv(Nh), and Eh(Nv) to consider saturation in each density only in the dynamics of
the other species. Otherwise, we retain the general framework of [26]:

I ′h(t) =

(

ch

(

Nv(t)

Nh(t)

)

Iv(t)

Nv(t)
+ ρEh

(

Nv(t)

Nh(t)

)

Iv(t)

Nv(t)

)

(Nh − Ih(t)) − µhIh(t),

I ′v(t) = cv

(

Nv(t)

Nh

)

Ih(t)

Nh

(Nv(t) − Iv(t)) − µvIv(t) − Eh

(

Nv(t)

Nh(t)

)

Nh

Iv(t)

Nv(t)
, (1)

N ′

v(t) = bv(Nv(t)) − µvNv(t) − Eh(Nv(t)/Nh(t))Nh.

Here Ih and Iv are the respective numbers of infected hosts and vectors, Nh and
Nv are the respective total densities of hosts and vectors, µh and µv the respective

natural per capita mortality rates, and bv(Nv) = rvNv

(

1 − Nv

Kv

)

the total vector

birth rate, given in terms of a maximum per capita reproductive rate rv and carrying
capacity Kv (assumed constant). Host density Nh is assumed constant since hosts
such as raccoons and opossums are opportunistic feeders with many food sources,
and as such their survival is not dependent upon finding vectors to eat. ρ is the
proportion of cases in which host consumption of an infected vector infects the host
(with units of hosts per vector).

In order to incorporate Holling type I saturation as a function of the vector-host
density ratio Q = Nv/Nh, we must first define the threshold density ratios Qh for
host predation on vectors and Qv for vector feeding on hosts, above which the given
contact process is considered saturated in vectors (and thus dependent upon host
density), and below which it is saturated in hosts (and thus dependent upon vector



ALTERNATIVE T. CRUZI TRANSMISSION MODES 661

density). Then we can write

ch(Q) = βh min(Q/Qv, 1),

cv(Q) = βv min

(

1

Q
/

1

Qv

, 1

)

= βv min(Qv/Q, 1), (2)

Eh(Q) = H min(Q/Qh, 1),

where βh is the (maximum) stercorarian infection rate for one host, βv is the (maxi-
mum) bloodborne vector infection rate, and H is the maximum (preferred) per-host
vector consumption rate. Thus the host-related rates ch and Eh saturate for high
vector-host ratios. The vector-related infection rate cv is written initially as a func-
tion of 1/Q rather than Q since it saturates in precisely the reverse way as the
per-host infection rate ch: that is, for low vector-host ratios.

Applying ratio-dependent type I saturation (2), the system (1) becomes

I ′h(t) =βh min

(

Sh(t)
Iv(t)

Nv(t)
,
Sh(t)

Nh

Iv(t)

Qv

)

+ ρH min

(

Nh,
Nv(t)

Qh

)

Sh(t)

Nh

Iv(t)

Nv(t)

− µhIh(t),

I ′v(t) =βv min

(

Qv

Sv(t)

Nv(t)
Ih(t), Sv(t)

Ih(t)

Nh

)

− H min

(

Nh,
Nv(t)

Qh

)

Iv(t)

Nv(t)
(3)

− µvIv(t),

N ′

v(t) =rvNv(t)

(

1 − Nv(t)

Kv

)

− µvNv(t) − H min

(

Nh,
Nv(t)

Qh

)

,

where to simplify notation we denote Nh − Ih(t) by Sh(t) and Nv(t) − Iv(t) by
Sv(t). Depending on the size of the vector-host ratio Q(t) = Nv(t)/Nh, each infec-
tion rate takes either the form kS(t)I(t) (species subscripts omitted) which corre-
sponds to an unsaturated contact rate and so-called mass action incidence, or the
form kS(t)I(t)/N(t) which corresponds to a saturated contact rate (since the per
capita contact rate is then largely independent of the population size) and so-called
standard incidence.

By inspection the equation for vector population density Nv(t) decouples from the
infection dynamics, and can be studied separately. This is the same as equation (3)
in [26] using Eh = Esw (Holling type I saturation) and A = NhQh; analysis in
that study found complex behavior described in terms of threshold quantities x =
H/(rv − µv)Qh and a = NhQh/(1− µv/rv)Kv: The extinction equilibrium N∗

v = 0
is locally asymptotically stable (henceforth LAS) for x > 1; a LAS equilibrium
N∗

v = (1 − x)Kv(1 − µv/rv) exists for 1 − a < x < 1; a second LAS equilibrium
1
2

(

1 +
√

1 − 4ax
)

Kv(1 − µv/rv) exists iff 4ax ≤ 1 and, if a > 1/2, x ≤ 1 − a
also; and an unstable equilibrium exists between the two positive LAS equilibria
for a ≤ 1/2 and 1 − a < x < 1/4a. The behavior can also be described in terms of
the vector population’s demographic reproductive number Rd = rv/(µv + H/Qh),
as x > 1 ⇔ Rd < 1 (see [26] for a full explanation). In summary, depending upon
parameter values, there are four possible end behaviors for this equation: globally
stable extinction, globally stable survival, an Allee effect (survival only above a
certain critical level), and two locally stable positive vector densities (this latter
behavior is not seen under Holling type II saturation).

If Nv → 0 and the vector population goes extinct, then of course the infection dies
out and Ih, Iv → 0 as well. Otherwise (and field observations suggest otherwise),
we can substitute a given equilibrium density N∗

v > 0 for Nv and study the reduced
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system, to which by a theorem of Thieme [39, 40] the full model’s behavior is
asymptotic. This yields the simple host-vector infection model

I ′h(t) = β̃hSh(t)Iv(t) − µhIh(t),

I ′v(t) = β̃vSv(t)Ih(t) − µ̃vIv(t),

where

β̃h =
βh

max(N∗
v , NhQv)

+
ρH

max(N∗
v , NhQh)

, β̃v =
βv

max(N∗
v /Qv, Nh)

,

and µ̃v = µv +
H

max(N∗
v /Nh, Qh)

.

This model has been well-studied and exhibits classical threshold behavior, with
the disease-free equilibrium (0,0) globally asymptotically stable (henceforth GAS)
for R0 < 1 and the endemic equilibrium

I∗h
Nh

=
β̃vβ̃h − µ̃vµh

β̃v(β̃h + µh)
,

I∗v
N∗

v

=
β̃hβ̃v − µhµ̃v

β̃h(β̃v + µv)

GAS for R0 > 1, where

R0 =

√

β̃hβ̃v

µhµ̃v

.

Note (as pointed out in [26]) that since R0 is a function of N∗
v , in the case mentioned

above where there are two distinct LAS equilibria N∗
v each one will correspond to

a different value of R0, leaving open the possibility that a short-term perturbation
in vector density might lead to a sustained difference in it, and consequently cause
R0 to cross the threshold value of 1, in one direction or the other.

As will be discussed further below, it is estimated in [28] that in the southeastern
United States, the actual vector-host density ratio Q is on the order of 1000 for
raccoons and opossums, far exceeding the likely ranges of Qh and Qv and thus
clearly casting both contact processes as saturated in vectors and hence proportional
to host densities.

3. Differential behavior. If we now consider the possibility of behavior changes
for infected vectors, the proportion of any given type of host-vector contact involving
infected vectors will no longer simply be prevalence Iv/Nv, but rather a weighted

proportion γIv

Sv+γIv
= γIv

Nv+(γ−1)Iv
, where infected vectors are γ times as likely as

uninfected vectors to be involved (we shall henceforth assume that γ > 1). If we
consider differential biting as well as differential presenting for consumption, we can
either consider the same factor γ to apply to both or we can assign γ1 and γ2 to the
respective phenomena (this includes the possibility that γ1 > 1 while γ2 = 1 or vice
versa, i.e., only one type of differential behavior). If γ2 6= 1, then we may consider
the effective (apparent) vector population density to be N+

v = Nv +(γ2−1)Iv rather
than Nv for vector consumption purposes, so that the per-host consumption rate is
Eh(Nv + (γ2 − 1)Iv). γ1 similarly affects ch and cv.
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These assumptions change our general one-host model (1) to

I ′h(t) =

(

ch

(

Nv + (γ1 − 1)Iv

Nh

)

γ1Iv

Nv + (γ1 − 1)Iv

+ ρEh

(

N+
v

Nh

)

γ2Iv

N+
v

)

(Nh − Ih)

− µhIh, (4)

I ′v(t) = cv

(

Nv + (γ1 − 1)Iv

Nh

)

Ih

Nh

(Nv − Iv) − µvIv − Eh(N+
v /Nh)Nh

γ2Iv

N+
v

, (5)

N ′

v(t) = rvNv

(

1 − Nv

Kv

)

− µvNv − Eh(N+
v /Nh)Nh. (6)

The dependence of Eh on Iv due to differential presenting for consumption couples
vector density dynamics to disease dynamics; however, any disease-free equilibrium
(DFE) has the same condition on N∗

v as the equation for N ′
v(t) in model (3), so

that the potential for complex vector density behavior is preserved.
Applying the next-generation operator method [15, 19], we find a basic repro-

ductive number for the infection,

R0 =

√

√

√

√

√

cv

(

N∗

v

Nh

)

µh

γ1ch

(

N∗

v

Nh

)

+ γ2ρEh

(

N∗

v

Nh

)

µv + γ2Eh

(

N∗

v

Nh

)

Nh

N∗

v

, (7)

where N∗
v is the limiting value for the vector density at the DFE. Note that the

effect of the differential behavior γ on R0 is to reduce µv by a factor of γ (in the
case γ = γ1 = γ2).

Substituting the type I forms (2) for the contact rates gives

I ′h(t) =βh min

(

Sh γ1Iv

Nv + (γ1 − 1)Iv

,
Sh

Nh

γ1Iv

Qv

)

+ ρH min

(

Nh,
N+

v

Qh

)

Sh

Nh

γ2Iv

N+
v

− µhIh,

I ′v(t) =βv min

(

Sv QvIh

Nv + (γ1 − 1)Iv

, Sv

Ih

Nh

)

− µvIv − H min

(

Nh,
N+

v

Qh

)

γ2Iv

N+
v

, (8)

N ′

v(t) =rvNv

(

1 − Nv

Kv

)

− µvNv − H min

(

Nh,
N+

v

Qh

)

.

As previously noted, estimates in [28] suggest that for raccoons and opossums in
the southeastern U.S., Q > Qh, Qv, in which case each of the minima in (8) reduces
to the first argument of each pair. However, we may first wish to see whether it is
possible for the increased vector mobility caused by infection, which makes infected
vectors γ2 times as easy for hosts to find during predation (as uninfected vectors),
to cause the vector population to go extinct because of an increase in the predation
rate. In this case we can instead take the second argument of each minimum
given in (8), and write the corresponding equilibrium conditions as follows, where
xh = Ih/Nh and xv = Iv/Nv are rescaled variables which allow us to distinguish
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between extinction of the vector population and “extinction” of the infection:
(

γ1
βh

Qv

+ γ2
ρH

Qh

)

(1 − xh)xvQ − µhxh = 0, (9)

βv(1 − xv)xh −
(

µv + γ2
H

Qh

)

xv = 0, (10)

Nv

[

rv

(

1 − Nv

Kv

)

− µv − H

Qh

(1 + (γ2 − 1)xv)

]

= 0. (11)

From (11) N∗
v = 0 is clearly a possibility, but in this case Q = 0, which implies

in (9) that x∗

h = 0, which in turn implies in (10) that x∗
v = 0. That is, the only

extinction equilibrium is disease-free, so increased mobility of infected vectors will
not cause extinction. We may therefore use the vector-saturated form of (8):

I ′h = βhSh

γ1Iv

Nv + (γ1 − 1)Iv

+ ρHSh

γ2Iv

Nv + (γ2 − 1)Iv

− µhIh,

I ′v = βvQvIh

Sv

Nv + (γ1 − 1)Iv

− µvIv − HNh

γ2Iv

Nv + (γ2 − 1)Iv

, (12)

N ′

v = rvNv

(

1 − Nv

Kv

)

− µvNv − HNh.

As with models (1) and (3), the vector density dynamics of (12) decouple from
infection dynamics. The equation for Nv has two equilibria:

N∗

± =
1

2

(

1 ±
√

1 − 4
HNhrv

Kv(rv − µv)2

)

Kv

(

1 − µv

rv

)

.

The greater of these, N∗
+, is quickly seen to be locally asymptotically stable, while

the lesser, N∗
−, is unstable. As with other simple constant-yield harvesting models

(cf. [8, 9]), the lower equilibrium becomes a threshold value, below which the
population goes extinct in finite time and above which the population approaches
a constant value (N∗

+). Since this model is not appropriate for studying extinction
equilibria, we shall take from it simply the value of the limiting vector density, N∗

+.
We can now again substitute this equilibrium density for Nv and study the re-

duced system by applying the result of Thieme. The rescaled model for the limiting
system of (12) becomes

x′

h =

(

βh

γ1xv

1 + (γ1 − 1)xv

+ ρH
γ2xv

1 + (γ2 − 1)xv

)

(1 − xh) − µhxh, (13)

x′

v = βvQv

Nh

N∗
v

xh

1 − xv

1 + (γ1 − 1)xv

− µvxv − H
Nh

N∗
v

γ2xv

1 + (γ2 − 1)xv

, (14)

and a straightforward computation shows that the reproductive number (7) takes
the particular form

R0 =

√

√

√

√

βvQv

µh

(βhγ1 + ρHγ2)
Nh

N∗

v

µv + H Nh

N∗

v

γ2

. (15)

To find endemic equilibria, we solve (13) with x′
h = 0 for x∗

h:

x∗

h =
(βhy∗

1 + ρHy∗
2)x∗

v

µh + (βhy∗
1 + ρHy∗

2)x
∗
v

, where yi =
γi

1 + (γi − 1)xv

.



ALTERNATIVE T. CRUZI TRANSMISSION MODES 665

By inspection 0 ≤ x∗
h < 1 when x∗

v ≥ 0. Substituting into (14) with x′
v = 0 yields

0 = βvQv

(βhy∗
1 + ρHy∗

2)x∗
v

µh + (βhy∗
1 + ρHy∗

2)x∗
v

1 − x∗
v

1 + (γ1 − 1)xv

− µvx∗

v

N∗
v

Nh

− Hy∗

2x∗

v.

Then either x∗
v = 0 or (multiplying by (µh + βhy∗

1x∗
v + ρHy∗

2x
∗
v)/x∗

v)

0 = βvQv(βhy∗

1 +ρHy∗

2)
1 − x∗

v

1 + (γ1 − 1)xv

−
(

µv

N∗
v

Nh

+ Hy∗

2

)

(µh +βhy∗

1x∗

v +ρHy∗

2x
∗

v).

(16)
Making this equation polynomial requires multiplying by (1+(γ1−1)x∗

v)
2(1+(γ2−

1)x∗
v)

2 and results in a quartic equation with a constant coefficient which is a positive
multiple of (R2

0 − 1); one can therefore show that the number of endemic equilibria
changes at R0 = 1. However, for the two special cases γ2 = 1 and γ2 = γ1, (16) is
equivalent to a quadratic which can more easily be shown to have one solution in
(0,1) when R0 > 1 and no such solutions otherwise. For instance, if γ = γ1 = γ2,
then (16) becomes f(x∗

v) = ax∗2
v + bx∗

v + c = 0, where

a = −(γ − 1)µv

N∗
v

Nh

[γ(βh + ρH) + µh(γ − 1)] ,

b = −βvQv(βh + ρH)γ − µhµv

N∗
v

Nh

(γ − 1)

−
(

µv

N∗
v

Nh

+ Hγ

)

[(βh + ρH)γ + µh(γ − 1)],

and c = µh

(

µv

N∗
v

Nh

+ Hγ

)

(R2
0 − 1).

Since a, b < 0, then −b/2a < 0. If R0 < 1 then c < 0, which implies that b2 − 4ac <
b2, so that any real solutions have the same sign as −b/2a, i.e., negative. If instead
R0 > 1 then c > 0, b2 − 4ac > b2, and there are two real solutions with different
signs. In this case, f(0) = c > 0 and f(1) < 0, guaranteeing that the positive
solution is in (0,1).

We can, finally, show that all solutions to (13)–(14) (and hence (12)) approach
an equilibrium (which we can show is unique and GAS for the special cases γ1 = γ2

and γ2 = 1: disease-free if R0 < 1 and endemic if R0 > 1) by applying the Poincaré-
Bendixson Theorem after observing that solutions never leave the unit square and,
by Bendixson’s Criterion, approach no periodic orbits, since

∂

∂xh

(

dxh

dt

)

= − (βhy1 + ρHy2)xv − µh < 0,

∂

∂xv

(

dxv

dt

)

= − βvQv

Nh

N∗
v

xh

γ1

[1 + (γ1 − 1)xv]2
− µv − H

Nh

N∗
v

γ2

[1 + (γ2 − 1)xv]2
< 0.

To evaluate the overall effect of the differential behavior γ on the transmission of
T. cruzi, we recall that R0 increases with γ; as γ rises, the proportion of both types
of host-vector contact made with infected vectors approaches 1 because infected
vectors are so much more active than uninfected ones. In the case γ1 = γ2, it
increases only up to a fixed maximum (obtained from (7) or (15) by setting µv = 0)
since the increase in infected vectors’ death rate due to predation keeps pace with
the increases in both types of infectious contacts. However, if γ1 (amplified vector
feeding) increases more than γ2 (amplified predation), then R0 can increase without
bound, as the rise in host infections is not matched by a rise in the vector death
rate. Note also that although increasing γi increases the proportion of contacts
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made with infected vectors, it does not necessarily increase endemic prevalence in
the case where R0 > 1. For instance, in the case γ1 = γ2 = γ, since the coefficients
a and b in f(x) are quadratic in γ but c is asymptotically linear in γ (since R0 is
asymptotically constant as γ → ∞), one can show that as γ → ∞, x∗

v → 0. This
occurs because increasing γ2 increases the death rate of infected vectors, and, as
will be seen in Section 5 below, increasing γ1 actually disadvantages new vector
infections.

4. Vertical transmission. We now incorporate into the model vertical transmis-
sion among hosts, occurring with probability p (properly speaking, a proportion),
in addition to the horizontal transmission modes addressed in previous sections.
With the additional term, (4) becomes

I ′h(t) =

(

ch

(

Nv + (γ1 − 1)Iv

Nh

)

γ1Iv

Nv + (γ1 − 1)Iv

+ ρEh

(

N+
v

Nh

)

γ2Iv

N+
v

)

Sh(t)

+ p
Ih

Nh

bh(Nh) − µhIh(t), (17)

where bh(Nh) is the total host birth rate. (Since we do not distinguish host gender
here, we may properly limit ourselves to studying female hosts.) Analysis of the
system (17), (5), (6) follows closely that of the previous section. The disease-free
dynamics and DFE are identical. Taking the host population to be a constant Nh,
the vertical transmission term in (17) simplifies to pµhIh, and the rescaled equation
(13) changes only in replacing −µhxh with −(1 − p)µhxh. All the analysis of the
rescaled systems in the previous section therefore holds here as well 1.

There is, however, a change in the structure of the basic reproductive number,
which the next-generation operator approach calculates as

Rv =
1

2

(

p +
√

p2 + 4R2
h

)

,

where Rh is the reproductive number for horizontal transmission alone (given as
R0 in (7)). This reflects the combined effects of two fundamentally different types
of transmission: vertical, with efficiency p ≤ 1, and horizontal via vectors, with
efficiency Rh. The radical in Rv reflects the two-stage vector transmission cycle,
with vertical transmission inextricably linked. We note that max(p, Rh) < Rv < p+
Rh, so that even limited vertical transmission together with an inefficient horizontal
cycle may sustain the infection.

5. Numerical analysis. To apply the model structures developed above to the
particular T. cruzi transmission cycle between raccoons Procyon lotor and the vec-
tor Triatoma sanguisuga in the southeastern quarter of the United States, we must
first estimate the values of the parameters in these models. Numerous field and lab-
oratory studies have been published on different aspects of the sylvatic transmission
cycle for Trypanosoma cruzi in the United States, but much also remains unknown,
especially as regards the rates at which oral and vertical transmission occur in hosts,
as stercorarian and bloodborne transmission driven by vector feeding has histori-
cally been the focus of study. In addition, particulars vary from place to place, even
when host and vector species are the same. [28] used an extensive literature review

1The only difference worth noting is that terms which in the previous section included R2
0 − 1

now appear as R2
h
− 1 but with µh replaced by (1 − p)µh, rather than as R2

v − 1. Such terms are

positive iff R2
v > 1, so the essential dynamics have not changed



ALTERNATIVE T. CRUZI TRANSMISSION MODES 667

Param. Meaning Value

µh Natural raccoon mortality rate 0.40/yr
Nh Raccoon population density 20. racc/km2

µv Natural T. sanguisuga mortality rate 0.271/yr
rv T. sanguisuga birth rate 33/yr
N∗

v T. sanguisuga population density 31600 vec/km2

Qh Threshold vector-host density ratio for predation 10 vec/racc
Qv Threshold vector-host density ratio for bloodmeals 100 vec/racc
p Probability (proportion) of vertical transmission 0.1
ρ Probability (proportion) of oral transmission 0.28 racc/vec
γ Amplification factor for differential behavior 6.5

Table 1. Parameter estimates, from [28]

to derive estimates for parameters relevant to modeling T. cruzi transmission in
the southeastern U.S. between (among others) raccoons and T. sanguisuga, and we
shall here make use of those estimates. Table 1 summarizes these values.

Some caveats are in order regarding these estimates (for a full discussion, see
[28] and references therein): Vector population density is based on a single study in
Texas [11] where the landscape was scrub-dominated rather than heavily wooded
as in much of the southeastern U.S. Both threshold density ratios Qh and Qv are
based on very rough estimates, including an estimated 10 bites/night maximum
that a raccoon could (or would) sustain ([28] estimated 14 < Qv < 800; our value of
100, based on the aforementioned maximum, falls roughly on the geometric mean
of this range). The probability p of vertical transmission in raccoons is taken from
estimates of 9–10% vertical transmission of certain strains of T. cruzi in Wistar rats
and humans, as described in [28], since there are no published studies on vertical
transmission rates in raccoons. The probability ρ of oral transmission to a host
given consumption of one infected vector is based on two very small studies of North
American T. cruzi hosts, one of which involved only 2 trials of a raccoon being fed
3 vectors infected with the Type IIa T. cruzi strain associated with raccoons in
the U.S. [37] (both trials resulted in infection), and the other of which involved
11 trials of a Virginia opossum (Didelphis virginiana) being fed 2 vectors infected
with a Type IIe strain from Chile (3 trials resulted in infection) [47]. (Another
study of a few South American opossums, Didelphis albiventris, which consumed
variable numbers of South American vectors Triatoma infestans infected with an
unspecified (but not Type IIa) T. cruzi strain resulted in an even lower probability
estimate of 0.075 [35].) These sample sizes are too small to infer with confidence,
but a value of 0.2 (infected raccoons per consumed vector) or lower for ρ makes the
2 successful trials described in [37] more unlikely than likely (that is, the probability
of 2 consecutive successful trials is less than 1/2), so the estimate of 0.28 taken from
[28] is not unreasonable. Finally, the amplification factor γ for differential behavior
of infected vectors is based on the single study involving the triatomine Chagas
vector Rhodnius prolixus native to South America and the parasite Trypanosoma

rangeli [3], and will be used only for illustrative purposes in considering the various
special cases discussed in Section 3.

The remaining model parameters to be estimated are the basic contact rates
βh, βv and H . In the absence of data on biting rates and infection probabilities
associated with stercorarian and bloodborne transmission, or on predation rates of
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γ1 γ2 H βh βv Rv % sterc. % oral % vert.
1 1 1 v/r/yr 0.122/yr 14.4/yr 1.89 27.4 62.6 10

6.5 1 1 v/r/yr 0.0773/yr 59.1/yr 5.24 27.4 62.6 10
1 1 0.5 v/r/yr 0.262/yr 14.4/yr 1.89 58.7 31.3 10

6.5 1 0.5 v/r/yr 0.166/yr 59.1/yr 6.53 58.7 31.3 10
1 6.5 0.5 v/r/yr 0.181/yr 14.4/yr 3.07 40.4 49.6 10

6.5 6.5 0.5 v/r/yr 0.114/yr 59.1/yr 7.57 40.4 49.6 10
1 1 0.4 v/r/yr 0.290/yr 14.4/yr 1.89 64.9 25.1 10

6.5 1 0.4 v/r/yr 0.183/yr 59.1/yr 6.75 64.9 25.1 10
1 6.5 0.4 v/r/yr 0.225/yr 14.4/yr 2.87 50.3 39.7 10

6.5 6.5 0.4 v/r/yr 0.142/yr 59.1/yr 7.58 50.3 39.7 10
Table 2. Computational results for model (17), (5), (6) for various
values of γ1, γ2 and H . All other parameters are as given in Table 1.
The last three columns give percentages of host infections at the
endemic equilibrium arising from stercorarian, oral, and vertical
transmission.

raccoons upon triatomines, these values must be estimated indirectly, using preva-
lence data and the equilibrium conditions obtained by setting x′

h and x′
v to 0 in (13)

(with µh replaced by (1−p)µh as described in Section 4) and (14). It is estimated in
[28] that the average prevalence of T. cruzi infection in raccoons in the southeastern
U.S. is 0.387 (that is, 38.7%, although a recent large study [10] generated values
ranging from 33% to 68% across the southeastern quarter of the country), while for
T. sanguisuga it is 0.565.

Applying the parameter estimates in Table 1 to the equilibrium conditions as
described above, we find that, in the case without differential behavior (γ1 = γ2 = 1)
the infection rate term βh + ρH must be about 0.4/yr in order to account for
the observed prevalence levels. Thus both the host infection rate and the host
predation rate must be quite low (βh ≤ 0.402/yr, H ≤ 1.44/yr). Without further
empirical data on the two rates, it is not possible to determine their individual
values, but we can compare results using three benchmark values for H : 1, 0.5, and
0.4 vectors/raccoon/yr. These correspond to an average raccoon eating a triatomine
vector once per year, once per 2 years, and once per 2.5 years, respectively; the last
value is significant because the average raccoon lifetime is estimated at 2.5 years, so
H values above this indicate that raccoons do on average eat a vector during their
lifetimes, while H values below this indicate that raccoons do not on average eat a
vector. For comparison purposes we also use values of 1 (no differential behavior)
and 6.5 (the estimate derived from Añez and East [3]) for γ1 and γ2. Results
are given in Table 2. Since for γ2 = 6.5 it is not possible to obtain the observed
prevalence levels for H = 1 vec/racc/yr, that combination is not given in the table.

Given the gross uncertainty in the estimate for the probability ρ of oral infection
when a raccoon consumes an infected vector, it is worth observing that the H values
in Table 2 may need adjusting, but it seems more likely that ρ is an underestimate
than an overestimate (the stark difference in experimental oral infection results
between raccoons and opossums suggesting rather that ρ is significantly smaller
for opossums than for raccoons). Thus any corrections to H would be downward
revisions, which make it even more likely that oral transmission predominates among
raccoons: for instance, doubling ρ would lead to halving H in order to produce
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the results given in the table, an implication of which would be that nearly any
predation rate which has most raccoons eating at least one vector in their lifetimes
would cause more infections than stercorarian means.

Although βh and Rv can be seen to be influenced by both γ1 and γ2 (and, to a
lesser extent, by H), there are more particular patterns to be seen. The primary
influence of the biting rate increase γ1 is on βv, but perhaps not in the direction
expected. An increased biting rate among infected vectors does increase stercorarian
transmission to hosts, but actually decreases bloodborne transmission to vectors
(the only route to infection for them) by disadvantaging uninfected vectors—an
increase in γ1 increases the proportion of bites made by infected vectors, and since
by assumption the biting rate is already vector-saturated (driven by host density),
the total number of bites made by all vectors per unit time cannot increase, only
the proportion of those bites made by infected vectors. Thus uninfected vectors
actually have fewer contacts with hosts (including infected hosts), obliging (as seen
in Table 2) βv to be higher in order to account for the same observed prevalence.
It is estimated in [28] that T. sanguisuga prefers to feed at a rate of about 0.102
bites/vector/day; converting to years and multiplying by the observed proportion
of infected hosts x∗

h = 0.387 yields a figure of 14.4/yr, in perfect agreement with
the βv estimates when γ1 = 1. This suggests that perhaps T. sanguisuga does not
exhibit an increased biting rate when infected; if true, this would be in keeping with
the many other ways in which this species has been observed to be a poor vector.

One can also observe that, regardless of the values of γ1, γ2 and H , the raw
host infection rate βh is as much as two orders of magnitude below the raw vector
infection rate βv, despite the fact that both rates arise from the same type of host-
vector contact. In all the example estimates given in Table 2, βh < 0.3/yr, which
appears to verify that T. sanguisuga is indeed a poor vector, especially compared
to the vector species found in the tropics.

Finally, the predation-related parameters γ2 and H both affect the percentages
of host infections that arise from each of the three hypothesized transmission routes
(but do not appear to affect βv). More specifically, unless γ2 and H are both
particularly low (no increased vector mobility due to infection, and an average
predation rate of well below one vector per year per raccoon), oral transmission
does appear to account for more host infection than the traditional stercorarian
route, in accordance with the conjectures of several researchers.

6. Discussion. This study developed models to evaluate the relative importance
of nontraditional (i.e., non-stercorarian) transmission avenues to hosts in sustaining
the sylvatic transmission of Trypanosoma cruzi in the southeastern United States,
in particular between raccoons and the vector T. sanguisuga. Both vector feeding
and host predation on vectors were modeled as ratio-dependent contact processes
with Holling type I saturation. The resulting system allows for complex vector
population dynamics, but no infection-driven vector extinction. More specifically,
the “sharpness” of the contact process saturation may create two locally stable vec-
tor densities, each corresponding to a different value of R0 (possibly on different
sides of 1). As a result, differential behavior of infected vectors may amplify vector
consumption to the point that it drives the vector density to a lower level where
R0 < 1 and the disease may die out. More generally, however, differential behavior
increases R0 despite the obvious inefficiency in sacrificing vectors to infect hosts



670 CHRISTOPHER M. KRIBS-ZALETA

orally (which may reduce any endemic prevalence). An increased biting rate in in-
fected vectors (represented in our model by γ1) tends to increase parasite prevalence
in hosts, but may not increase prevalence in vectors since it tends to reduce the pro-
portion of contacts made by uninfected vectors, in a setting where contact rates are
limited by the density of available hosts. On the other hand, if infection does not
also increase vector mobility to the point that they are at a higher predation risk
(γ2) than uninfected vectors (which tend to hide in dark places waiting for sleeping
hosts), then increased biting can raise R0 without bound, while increased predation
of infected vectors can have only a limited effect on R0 since it also removes the
infected vectors more quickly.

The alternative means of transmitting T. cruzi to hosts proposed by biologists
and studied here, oral (predation-based) and vertical (congenital) transmission, each
have distinct epidemiological characteristics. Vertical transmission, which has been
observed at low levels in human hosts and for which some evidence exists in sylvatic
T. cruzi hosts, cannot sustain an infection cycle by itself, but even at mediocre ef-
ficiencies can sustain the infection cycle in conjunction with even very inefficient
vector-host transmission modes. At an endemic equilibrium, the vertical transmis-
sion “probability” p (here estimated at 10%) becomes the proportion of all host
infections which result from vertical transmission, and vertical transmission is seen
to have an “almost additive” effect on the infection’s basic reproductive number,
since max(p, Rh) < Rv < p + Rh. Adaptation to oral transmission, although risky
as an evolutionary strategy for the parasite (since infected vectors can infect at
most one host this way), appears to be fully as significant as conjectured by some
researchers, as numerical analysis suggests that even when each host consumes on
average less than one T. cruzi vector per year (H < 1) oral transmission can be
the dominant transmission avenue to hosts. In general, however, numerical analysis
also indicates that T. sanguisuga is indeed as poor a vector as predicted from its
behavior, and increased biting also appears unlikely in infected vectors.

It should be noted that, while most of these conclusions hold even in the absence
of good data on oral and vertical transmission, there is a clear need for labora-
tory and field studies to document the true likelihoods of oral and vertical T. cruzi

transmissions in raccoons and other sylvatic hosts, as well as the feeding (predation)
behavior of hosts with regard to T. cruzi vectors. These transmission rates are likely
to be heavily strain-dependent, and future modeling work already in progress will
examine the role played by the adaptations of one strain (to different transmission
avenues) relative to another—in particular, the Type I and IIa strains presently cir-
culating in the southern U.S.—including the cross-immunity which infection with
one strain appears to confer against the other, which may highlight the significance
of adaptation to vertical transmission as an evolutionary strategy for the parasite.
Other work in progress will consider the overlaps between transmission cycles in-
volving distinct hosts on a larger geographical scale, from Mexico north to Texas
and east to the Atlantic coast.
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